8-3-1逻辑推理.题库教师版[1]
%bd%91%e7%9a%84%e6%b6%b2%e5%8e%8b%e8%bf%9c%e7%a8%8b%e6%8e%a7%e5%88%b6%e7%b3%bb%e7%bb%9f%e5%bb%b6%e6%
图 ’ 采用补偿器前后系统的单位阶跃响应曲线 ./01’ 237P95<63/8<47=P8<=78937;768<348;=>=37? Q/3:
A<BQ/3:85368?P7<=A384=
R 延时预测算法
图 ,所 示 的 系 统 中!互 联 网 环 节 不 仅 导 致 信 息 传递延 时!而且 由 于 目 前 互 联 网 中 路 由 器 多 是 采 用 动态路由协议依据互联网负载状况选择信息的传递 路由 ) %S( 因此!互联网负载的实时变化!造成信息的 传 递路由 动态 变 化!从 而 导 致 信 息 传 递 延 时 具 有 不 确定性)研究表明!对于图 &所示的控制系统!如果 系统的补偿器使用的预测延时值不等于互联网的实 际 延 时 值 !即 存 在 延 时 补 偿 误 差 时 !补 偿 器 不 能 及 时 准 确地 补偿信 息 延 时!系 统 的 性 能 仍 然 不 能 得 到 改 善)图 +是延时补偿误差对系统性能的影响)曲线 T表示没有延时补偿误差时的系统单位阶跃响应) 曲 线 U 和 V 分 别 表 示 延 时 补 偿 误 差 为 WXWY=和
独 立 的 *具 有 相 同 概 率 分 布 *统 计 特 性 已 知 的 均 匀 分 布 ) %+( 对于图 ,所示的基于互联网的远程控制系统 而 言 !不 仅 存 在 信 息 的 传 输 延 时 问 题 !而 且 信 息 延 时 很难用确定的随机规律描述)
ห้องสมุดไป่ตู้
图 - 基于互联网的远程液压控制系统 ./01- 234563547893:737;768<348;=>=37? @A=7B8<C<374<73
字~声音~静 态 及 动 态 的 图 像 等 静 态 信 息E系 统 对 信 息的实时性要求不高F更具有实际意义的是如图 "
高考语文复习之逻辑推理题(教师版)
高考语文复习之逻辑推理题(教师版)考点探究2021年三套全国卷均在第21题设题考查了“语言表达准确”那个考点。
此题是从逻辑推理的角度设计的,要求对题中给出的各种结论(推断)进行评判,看是否符合客观实际,有无判定错误、推理偏颇以及说法绝对等逻辑问题。
2021年全国卷语用题要求:下面文字有三处推断存在问题,请参照①的方式,说明另外两处问题。
答题注意事项:1、推断(内容)★★★★★2、表述方式(形式)学会正确分析逻辑关系,提高解题能力典型例题下面文段有三处推断存在问题,请参照①的方式,说明另外两处问题。
(2021年全国卷Ⅱ第21题)云南的“思茅市”改成“普洱市”,四川的“南坪县”更名为“九寨沟县”后,都市的知名度都有了专门大提高,经济有了较快进展,可见,更名必定带来都市经济的进展。
我市的名字不够响亮,这严峻阻碍了我们的经济进展。
假如更名,就一定会带来我市的经济腾飞,因此,更名的事要尽快提到日程上来。
①更名并不一定能带来都市的进展。
②_________________________ 。
③_________________________。
②“都市名字不够响亮并不一定会严峻阻碍经济进展”③“更名并不一定会带来经济腾飞”实战演练1.下面文段有三处推断存在问题,请参考①的方式,说明另外两处问题。
(5分)手机是今天人类常使用的现代发明,能够满足生活中的所有需求,改变了人、社会,甚至世界。
作为工具的手机,几乎进化成人类躯体的一部分,手机里的信息,确实是一个人社会关系的全部。
没有手机的生活,会让人陷入惧怕的深潭。
①手机不一定能够满足生活中的所有需求。
②_____________________________。
③_____________________________。
手机里的信息不一定确实是一个人社会关系的全部没有手机的生活不一定会让人陷入惧怕的黑暗2.下面文段有三处推断存在问题,请参考①的方式,说明另外两处问题。
二年级上册简单逻辑推理题
二年级上册简单逻辑推理题
一、加法推理题
1. 2+2=4,3+3=6,那么4+3=?
2. 1+2+3=6,1+2+4=7,那么1+2+5=?
3. 2+3-4=1,3+4-5=2,那么4+5-6=?
二、减法推理题
1. 8-3=5,7-2=5,那么9-4=?
2. 10-6=4,9-5=4,那么8-7=?
3. 12-5=7,15-6=9,那么16-7=?
三、乘法推理题
1. 3*8=24,2*9=18,那么6*7=?
2. 7*7=49,6*8=48,那么8*8=?
3. 9*9+9=90,8*9+7=83,那么7*9+6=?
四、综合推理题
1. 小明有5个苹果,妈妈又给了他一些苹果,现在他一共有8个苹果。
请问妈妈给了他几个苹果?
2. 小华有5个本子,她把其中3个送给妹妹。
现在她还有几个本子?
3. 小明有3个玩具汽车,他给了弟弟一个玩具汽车。
现在他还有几个玩具汽车?
以上就是一些简单的逻辑推理题,适合二年级上册的学生进行思维训练和数学学习。
通过这些题目,可以锻炼学生的观察力、思考力和判断力,同时也可以帮助他们更好地理解和掌握数学知识。
智力测试题目推理题库(3篇)
第1篇一、逻辑推理题1. 逻辑推理题:五个人参加比赛,他们分别是甲、乙、丙、丁、戊。
比赛结束后,他们的成绩分别是第一名、第二名、第三名、第四名和第五名。
已知甲不是第一名,丙不是第三名,戊不是第五名。
请问,他们的成绩排名是怎样的?答案:甲、乙、丙、丁、戊的排名是第二名、第三名、第五名、第一名、第四名。
2. 逻辑推理题:小明、小红、小刚、小丽和小强是五兄弟,他们的年龄从小到大依次为:①、②、③、④、⑤。
已知①比②大3岁,③比④小2岁,⑤比①大4岁。
请问,他们的年龄分别是多少?答案:小明的年龄是①,小红的年龄是②,小刚的年龄是③,小丽的年龄是④,小强的年龄是⑤。
年龄分别是:①10岁,②7岁,③8岁,④10岁,⑤14岁。
3. 逻辑推理题:一个班级有40名学生,其中有20名女生。
如果男女生人数比例不变,请问这个班级增加10名学生后,男女生的比例是多少?答案:男女生的比例仍然是2:1。
因为增加10名学生后,男生人数仍然是20名,女生人数仍然是20名,男女生的比例不变。
4. 逻辑推理题:一家公司有10名员工,他们的年龄分别是20、22、24、26、28、30、32、34、36、38岁。
请问,这10名员工中,至少有几人的年龄相差2岁?答案:至少有3人的年龄相差2岁。
例如,22岁和24岁、26岁和28岁、30岁和32岁。
5. 逻辑推理题:一个篮子里有5个苹果,小明、小红、小刚和小丽分别从篮子里取出苹果。
已知小明取了1个,小红取了2个,小刚取了3个,小丽取了4个。
请问,篮子里原来有多少个苹果?答案:篮子里原来有5个苹果。
因为小明、小红、小刚和小丽取出的苹果总数是1+2+3+4=10个,而篮子里原来只有5个苹果,所以其他5个苹果一定是被其他人取走了。
二、数学推理题1. 数学推理题:一个三位数的百位和十位数字之和等于个位数字,且这个三位数是7的倍数。
请问,这个三位数是多少?答案:这个三位数是147。
因为1+4=5,5是7的倍数,所以这个三位数是147。
河南省新乡市数学小学奥数系列8-3-1逻辑推理(二)
河南省新乡市数学小学奥数系列8-3-1逻辑推理(二)姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、 (共37题;共163分)1. (1分) (2019六上·南康期末) 六年级1、2、3、4四个班举行拔河比赛,甲、乙、丙三个同学猜测四个班比赛的前三名名次.甲说:1班第三,3班第一;乙说:3班第二,2班第三;丙说:4班第二,1班第一.比赛结果,三个人都猜对了一半.那么,1班第________名,4班第________名.2. (5分)宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳高冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号吗?3. (1分)六年级四个班进行数学竞赛,小明猜想比赛的结果是:班第一名,班第二名,班第三名,班第四名.小华猜想比赛的结果是:班第一名,班第二名,班第三名,班第四名.结果只有小华猜到的班为第二名是正确的.那么这次竞赛的名次是________班第一名,________班第二名,________班第三名,________班第四名。
4. (5分)振华小学组织了一次投篮比赛,规定投进一球得分,投不进倒扣分.小亮投了个球,投进了个.那么,他应该得多少分?5. (5分)烟鬼甲每天抽50支烟,烟鬼乙每天抽10支烟。
5年后,烟鬼乙抽的烟比烟鬼甲抽的还多,为什么?6. (5分)架子上摆着大、中、小三种皮球,只知道小皮球每只20元,每层皮球的价钱同样多,每只中皮球和大皮球各需要多少元?7. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.8. (5分)甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?9. (5分)塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)10. (5分)在下表中填入三人的名字。
趣味逻辑推理100题第1-10题及答案
丽娜、梦涵、紫轩、玲玲、曼璐和亚妮6个女孩怀揣美丽的梦想来到北京打拼。
她们分别是武汉、西安、广州、沈阳、福州和石家庄人,恰好租住在同一个楼层。
其中:丽娜和武汉女孩是模特;曼璐和福州女孩是歌手。
紫轩和西安女孩是演员;梦涵和亚妮都喜欢看韩剧,而西安女孩却喜欢看日剧;沈阳女孩比丽娜年龄大,石家庄女孩比紫轩年龄大;梦涵同武汉女孩下周要到广州演出,紫轩和沈阳女孩打算明天一起去购物。
您知道6个女孩分别来自哪座城市吗?解:已知:1、丽娜与武汉女孩是模特;2、曼璐与福州女孩是歌手;3、紫轩与西安女孩是演员;4、梦涵与亚妮看韩剧;5、西安女孩看日剧;6、沈阳女孩比丽娜年龄大;7、石家庄女孩比紫轩年龄大;8、梦涵同武汉女孩下周到广州演出;9、紫轩和沈阳女孩明天去购物。
推理:(1)、从1、2、3推出丽娜、曼璐和紫轩分别是沈阳、石家庄和广州人。
(2)、从6、9推出丽娜和紫轩都不是沈阳人,所以推出曼璐是沈阳人。
(3)、从7紫轩不是石家庄人,推出丽娜是石家庄人。
而紫轩是广州人。
(4)、从4、5余梦涵、亚妮和玲玲,分别是西安、广州、武汉人。
其中梦涵亚妮看韩剧,推出玲玲是西安人。
(5)从8梦不是武汉女孩,推出亚妮是武汉人;梦涵是广州人。
即:曼璐---------沈阳人丽娜---------石家庄人紫轩---------广州人玲玲---------西安人亚妮---------武汉人梦涵-------- 广州人赛马场上,三匹马的夺冠呼声最高,它们分别是火龙、飞燕和闪电。
观从甲说:“我认为冠军不会是火龙,也不会是飞燕。
”乙说:“我觉得冠军不会是火龙,而闪电一定是冠军。
”丙说:“可我认为冠军不会是闪电,而是火龙。
”比赛结果很快出来了,他们中有一个人的两个判断都对;另一个人的两个判断都错了;还有一个人的判断是一对一错。
请你依据这些情况,推断出谁是赛马冠军。
解:已知:1、甲:冠军不会是火龙,也不会是飞燕。
2、乙:冠军不会是火龙,闪电一定会是冠军。
第七讲 逻辑推理(三) -教师版
(1)张教授的实验一共做了几个小时?
(2)他做完实验时,挂钟敲了多少下?
分析:由于挂钟只在整点报时,几点就报几下,共敲了39下,39要么是几个连续的小于13的正整数之和,要么是……。11,12,1,2……这样的几个正整数之和。只要知道报了几次时,也就知道了张教授的实验时间。
例1三名学生参加了若干科的考试,以考试名次积分,每科第一名得A分,第二名得B分,第三名得C分,且A>B>C>0,A,B,C都是整数。已知甲积分为22分,乙、丙积分都为9分,并且乙是英语第一名,问数学第二名是谁?
分析:甲、乙、丙三名学生参加了若干科的考试(至少2科),首先应估计到底是几科。依题意可列表如下:
若是第③、④种情况,乙都不可能得一个第一名且总分是9。
所以m不能是4。
(三)若m≥8,则A+B+C≤5,又A+B+C≥6,所以m≥8的情况不会出现。
(四)综上所述m只能是5。
解:设共有m科,m≥2,且m为整数。由题意可得m(A+B+C)=40=23×5,经分析可知m=5,A+B+C=8,由A,B,C是正整数,且C≥1可得下列2种情况:A=4,B=3,C=1或A=5,B=2,C=1。
若A=4,B=3,C=1,则乙不可能有一个第一名且总分是9。因此,A=5,B=2,C=1。
得分情况如下表:
说明:首先要把所有可能的得分情况逐一列举出来,有时,由于数据较多,还经常采用图表的办法帮助分析,使得分析过程清楚、简洁、一目了然,排除不合情理的情况,从而得出正确的结论。这是解决推理计算题目常用的排除法。
75道逻辑推理题及答案20道面试逻辑思维题目
75道逻辑推理题及答案20道面试逻辑思维题目【1】假设有一个池塘,里面有无穷多的水。
现有2个空水壶,容积分别为5升和6升。
问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】周雯的妈妈就是豫林水泥厂的化验员。
一天,周雯走进化验室做作业。
略过后想要出去玩。
'等等,妈妈还要托福你一个题目,'她接着说道,'你看看这6只搞化验用的玻璃杯,前面3只盛满了水,后面3只是觑的。
你能够只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔出来吗?'快乐动脑筋的周雯,就是学校里出名的'大机灵',她只想了一会儿就努力做到了。
恳请你想想看,'大机灵'就是怎样搞的?设杯子编号为abcdef,abc为满,def为空,把b中的水倒进e中即可。
【3】三个小伙子同时凤凰于飞了一个姑娘,为了同意他们谁能够嫁给这个姑娘,他们同意用枪展开一次对决。
小李的命中率就是30%,小黄比他好些,命中率就是50%,最差的枪手就是小林,他从不犯规,命中率就是%。
由于这个显而易见的事实,为公平确保安全,他们同意按这样的顺序:小李先开火,小黄第二,小林最后。
然后这样循环,直至他们只剩一个人。
那么这三个人中谁养下来的机会最小呢?他们都必须实行什么样的策略?小林在轮到自己且小黄没死的条件下必杀黄,再跟菜鸟李单挑。
所以黄在林活著的情况下必踢林,否则自己必死。
小李经过计算比较(过程略),会决定自己先打小林。
于是经排序,小李存有/≈33.6%的生机;小黄有/≈41.9%的生机;小林存有24.5%的生机。
哦,这样,那小李的第一枪会朝天开,以后当然是打敌人,谁活着打谁;小黄一如既往先踢林,小林还是先杀掉徐,冤家路窄啊!最后李,黄,林存活率约38:27:35;菜鸟活下来抱著得美人归的几率小。
逻辑思维题30题
逻辑思维题30题一、数字规律类1. 找规律:1,3,6,10,15,()- 解析:相邻两个数的差值依次为2、3、4、5,那么下一个差值应该是6。
15+6 = 21,所以括号里应填21。
2. 2,4,8,16,32,()- 解析:这组数字是后一个数为前一个数的2倍,32×2 = 64,所以括号里应填64。
3. 1,4,9,16,25,()- 解析:这些数依次是1²、2²、3²、4²、5²,那么下一个数就是6² = 36,括号里应填36。
二、逻辑推理类4. 甲、乙、丙三人中有一人是牧师,一人是骗子,一人是赌棍。
牧师只说真话,骗子只说假话,赌棍有时说真话有时说假话。
甲说:“丙是牧师。
”乙说:“甲是赌棍。
”丙说:“乙是骗子。
”那么甲、乙、丙分别是什么人?- 解析:假设甲是牧师,那么甲说“丙是牧师”就是假话,这与牧师说真话矛盾,所以甲不是牧师;假设丙是牧师,那么丙说“乙是骗子”是真话,此时甲就是赌棍,乙就是骗子,而甲说“丙是牧师”为真,不符合赌棍有时说真话有时说假话,所以丙不是牧师;所以乙是牧师,那么丙说的是假话,丙是骗子,甲就是赌棍。
5. 有四个孩子在一个房间里,他们分别是A、B、C、D。
A说:“B比C高。
”B说:“A比D高。
”C说:“我比D高。
”D说:“C比B高。
”如果他们之中只有一个人说的是真话,那么谁最高?- 解析:A说的“B比C高”和D说的“C比B高”相互矛盾,必然一真一假。
因为只有一个人说的是真话,所以B和C说的都是假话。
B说“ A比D高”为假,那么D比A高;C说“我比D高”为假,那么D比C高。
所以A说的是真话,B>C,又因为D>A,D>C,所以最高的是B。
6. 一个岛上住着两种人,一种是骑士,总是说真话;一种是无赖,总是说假话。
一天,你遇到岛上的两个人A和B。
A说:“或者我是无赖,或者B是骑士。
”根据这句话,你能判断出A和B分别是什么人吗?- 解析:假设A是无赖,那么他说的话就是假话。
高思导引--四年级第二十四-逻辑推理教师版
教师版第24讲逻辑推理一兴趣篇1.甲、乙、丙三人中有一人是牧师,有一人是骗子,还有一人是赌棍.牧师从不说谎,骗子总说谎,赌棍有时说真话有时说谎话.甲说:“我是牧师.”乙说:“我是骗子.”丙说:“我是赌棍.”请问:甲、乙、丙三人中谁是牧师?谁是骗子?谁是赌棍?答;甲是牧师,乙是赌棍,丙是骗子。
分析;因为牧师不说谎,所有甲是牧师,同理骗子总说谎所有丙是骗子,赌棍有时说真话有时说谎话所以乙是赌棍。
2.有三只盒子一只盒子里装有两个黑球,另一只盒子装有两个白球,还有一只盒子里装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从其中一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?答;先那贴有一黑一白的盒子。
分析;因为三只盒子上的标签全贴错了,所以贴有一黑一白的盒子里一定是两黑或两白,如果从盒子里拿出黑的球,那么盒子里就是两个黑球,贴有两黑的就两白,贴有两白的就是一黑一白,如果从盒子里拿出白球同理如上。
3.费叔叔手里握有两个硬币,他让小悦、冬冬和阿奇猜哪只手握有硬币.小悦说:“左手没有,右手有.”冬冬说:“右手没有,左手有.”阿奇说:“不会两手都没有,我猜左手没有.”结果三个人的话都说对一句,说错一句.请问:费叔叔是怎么握住硬币的?答;两个手都有,分析:小悦说左手没有是对的,那么,冬冬说左手有就是错误的,那么,冬冬说右手没有也就是对了,这样两个手都没有,不符合题意,所以小悦说的右手有是对,冬冬说的左手有为对,阿奇说的不会两手都没有为对,所以费叔叔两个手都有。
4. 甲、乙、丙、丁四位同学的运动衫上印上了不同的号码:赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是1号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.请问:丙的号码是几号?答:丙是4号。
分析;我们知道赵、钱、孙、李每人都只说对了一半.假如赵说甲是2号为对,那么钱说丙是四号就是对的,孙说的3号也为对啦,那么孙说的就和钱说的就互相矛盾啦,所以说的乙为3号为对,那么丙就是四号。
8-3-1逻辑推理.题库教师版[1]
1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.模块一、列表推理法 【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由例题精讲知识点拨教学目标8-3逻辑推理第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【巩固】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ ⑵李波喜欢与体育老师、数学老师交谈;⑶ ⑶体育老师和图画老师都比政治老师年龄大;⑷ ⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【解析】 李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】 这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
广西钦州市数学小学奥数系列8-3-1逻辑推理(三)
广西钦州市数学小学奥数系列8-3-1逻辑推理(三)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共33题;共117分)1. (5分)去年学而思杯颁奖大会上,很多同学都过来领奖了。
崔梦迪老师在让所有获奖的同学就座后,突然突发奇想,让所有同学用一张纸写下来在会场里的其他同学中,自己认识的人数。
崔老师把同学们写好的纸条收走后,看了一遍,说:“真巧,咱们所有同学在这里认识的人数都刚好不一样。
”这时下面有个特别聪明的同学,立刻说道:“不可能,肯定是有人统计错了!”当他解释过自己这样说的原因后,教室里的其他同学们和崔老师都很佩服这个同学。
那么同学们能够说出这个同学这样说的原因吗?2. (5分)给三个非常聪明的人各戴了一顶帽子.并且告诉他们,他们的帽子的颜色可能是红色的,也可能是蓝色的,没有其他颜色.且三人中至少有一个人的帽子是红色的.三人互相看了看,没有人能很快地说出自己戴的是什么颜色的帽子.三人又冥思苦想了一阵,几乎同时都猜到了自己戴了什么颜色的帽子.你知道他们三人各戴了什么颜色的帽子吗?请说明理由.3. (5分)一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个选手都与其余9名选手各赛1盘,每盘棋的胜者得1分,负者得0分,平局双方各得0.5分.结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分.那么,甲、乙、丙三队参加比赛的选手人数各多少?4. (5分)桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根,规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?5. (5分)在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
B、C 应该是几?C4B3142A6. (5分)塑料袋里有六个橘子,如何均分给三个小孩,而塑料袋里仍有二个橘子?(不可以分开橘子)7. (1分) (2019二下·中期末) 3个小朋友,分别出生在北京、苏州和沈阳。
(word完整版)1-3-1定义新运算.题库教师版
定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7)=(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
河南省焦作市数学小学奥数系列8-3-1逻辑推理(二)
河南省焦作市数学小学奥数系列8-3-1逻辑推理(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共37题;共163分)1. (1分)(2020·成都模拟) 小明去听报告,发现报告厅里只有最后一排没有坐满,但是他无论坐哪一个位置都会和同一排另一名听众相邻,每排均有19个位子,那么最后一排最少坐了________人。
2. (5分)有A、B、C、D、E、F六人围一张圆桌而坐,已知E与C相隔一人并坐在C的右面(如图),D坐在A的对面,B与F相隔一人并坐在F的左面,F与A不相邻。
试定A、B、C、D、E、F的位置。
3. (1分)甲、乙、丙、丁四位同学的运动衫上印有不同的号码,赵说:“甲是2号,乙是3号。
”钱说:“丙是4号,乙是2号。
”孙说:“丁是2号,丙是3号。
”李说:“丁是1号,乙是3号。
”又知道赵、钱、孙、李每人都说对了一半,那么丙的号码是________号。
4. (5分)一个篮子里装着五个苹果,要分给五个人,要求每人分的一样多,最后篮子里还要剩下一个苹果,如何分(不能切开苹果)5. (5分)(2020·海安模拟) 一辆公交车由起点站开往终点站(共10站),在起点站始发时上来9名乘客,到下一站下去1名乘客,又上来8名乘客,以后每站下去的乘客比前站多1名,上来的乘客比前站少1名。
如果要使每位乘客都有座位,这辆车上至少应该有多少个座位?6. (5分)甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.7. (5分)名运动员参加一项比赛,赛前,甲说:“我肯定是最后一名.”乙说:“我不可能是第一名,也不可能是最后一名.”丙说:“我绝对不会得最后一名.”丁说:“我肯定得第一名.”赛后,发现他们人的预测中只有一人是错误的.请问谁的预测是错误的?8. (5分)四对夫妇坐在一起闲谈.四个女人中,吃了个梨,吃了个,吃了个,吃了个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的倍,丙吃的是妻子的倍,丁吃的是妻子的倍.四对夫妇共吃了个梨.问:丙的妻子是谁?9. (5分)小明带100元去买一件75元的衬衫,但老板却只找了5块钱给他,为什么?10. (5分) 3个人3天用3桶水,9个人9天用几桶水?11. (6分)(2020·成都模拟) 为创建“资源节约型社会”,某区对用电的收费标准如下:每月每户用电不超过10度的部分按照每度0.4元收费,超过10度而不超过20度的部分按照每度0.9元收费,超过20度的部分按照每度1.7元收费。
四年级奥数逻辑推理教师版
知识要点逻辑推理根据解题思路的不同,逻辑推理分为两种类型:真假判断型和条件分析型。
真假判断型逻辑推理主要有以下两种推理方法: 1.假设推理法(真假为二选一):根据已知条件先作一个假设,然后利用已知条件一步一步往下推,直到推出结论为止。
如果从这个假设出发推出自相矛盾的结论,这就说明所作的假设不成立,而假设的反面就一定是成立的。
主要适用于结论只有两种、非真即假的推理题目。
2.枚举排除法(有多种真假情况):通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到符合题意的解答。
适用于真假情况不只两种的推理题目。
条件分析型逻辑推理可借助于画图、列表来简化推理过程: 1.图表分析法:将题中关系用图表表示出来,再借助其他分析方法结合图表进行分析推理以得出结论。
其他逻辑推理真假判断型条件分析型枚举排除法假设法图表分析法真假判断型1.甲、乙两人中的一人来自真话村,一个人来自谎话村,谎话村里的人从来不说真话,真话村里的人从来不说谎话。
甲说:“我们两人中至少有一个人在说谎。
”那么甲、乙分别来自什么村呢?【分析】假设甲来自谎话村,那么他的话是假的,那么实际上两人都没有说谎,这一结论与假设是矛盾的。
假设甲来自真话村,那么他的话是真的,那么两个人至少有一人在说谎,也就是乙来自谎话村,甲来自真话村。
2.一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话。
请提一个尽量简单的问题,使两人的回答相同。
这个问题可以是什么呢?【分析】如果问的问题是客观的,也就是说对于这两个人来说真正的答案是一样的话,那么他们的回答肯定不一样。
所以要问一个与他们自身相关的问题。
例如:①你是老实人吗?②你是骗子吗?③他(她)是老实人吗?④他(她)是骗子吗?这样他们的回答才会一样。
3.甲、乙、丙三人中只有1人懂法语。
甲说:“我懂。
”乙说:“我不懂。
”丙说:“甲不懂。
”如果三个人的话恰有一句是真话,那么懂法语的是_______,讲真话的是_______。
数字推理题库道详解
数字推理题100道详解【301】1,8,9,4,(),1/6A,3;B,2;C,1;D,1/3分析:选C, 1=14;8=23;9=32;4=41;1=50;1/6=6(-1)【302】63,26,7,0,-2,-9,()分析:43-1=63;33-1=26;23-1=7;13-1=0; -13-1=-2;-23-1=-9 ;-33-1=-28【303】8,8,12,24,60,( )A,240;B,180;C,120;D,80分析:选B,8, 8是一倍12,24两倍关系60,(180)三倍关系【304】-1,0,31,80,63,( ),5A.35;B.24; C.26;D.37;分析:选B,-1 = 07 - 1 0 = 16 - 1 31= 25 - 1 80 = 34 - 1 63 = 43 - 1 24 = 52 - 1 5 = 61–1【305】3,8,11,20,71,()A.168;B.233;C.91;D.304分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2【306】88,24,56,40,48,(),46A.38;B.40;C.42;D.44分析:选D,前项减后项=>64、-32、16、-8、4、-2=>前项除以后项=>-2、-2、-2、-2、-2【307】4,2,2,3,6,()A.10;B.15;C.8;D.6;分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5 所以6×2.5=15【308】49/800,47/400,9/40,( )A.13/200;B.41/100;C.51/100;D.43/100分析:选D,思路一:49/800, 47/400, 9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344 49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。
黑龙江省双鸭山市小学数学小学奥数系列8-3-1逻辑推理(三)
黑龙江省双鸭山市小学数学小学奥数系列 8-3-1 逻辑推理(三)姓名:________班级:________成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、(共 33 题;共 117 分)1. (5 分) 在一次数学竞赛中, , , , , 五位同学分别得了前五名(没有并列同一名次 的),关于各人的名次大家作出了下面的猜测: 说:“第二名是 ,第三名是 .” 说:“第二名是 , 第四名是 .” 说:“第一名是 ,第五名是 .” 说:“第三名是 ,第四名是 .” 说: “第二名是 ,第五名是 .”结果每人都只猜对了一半,他们的名次如何?2. (5 分) 有一个骗子和一个老实人,骗子永远讲假话,老实人永远讲真话,你能提出一个尽量简单的问题, 使两个人的回答相同吗?这个问题可以是3. (5 分) 三张分别写有 2,1,6 的卡片,能否排成一个可以被 43 除尽的整数?4. (5 分) 甲和乙做猜数的游戏。
首先,甲在纸上写 个各位数字都不同的四位数,写好后将纸翻过来。
不 让乙看到,然后让乙猜这个四位数的各位数字。
如果数字和位数都猜对了就是○,如果数字对而位数不对就是△。
例如:甲写的是,乙猜的是,那么就是 个○, 个△。
请阅读以下对话并回答问题:乙:“我猜”,甲:“ 个○, 个△。
”乙:“?”,甲:“也是 个○, 个△。
”乙:“?”,甲:“也是 个○, 个△。
”乙:“呢?”,甲:“ 个△。
”乙:“哇,猜不着呀,呢?”甲:“也是 个△。
”(1) :请从以上的对话中答出甲最可能写的 个四位数。
第 1 页 共 10 页后来,甲发现自己刚才的回答中对四位数的判断有误。
甲:“对不起,刚才有搞错的。
”乙:“啊!那么”甲“只是 个数字搞错了,在刚才说到的数字中,只是对 个△。
”的判断有误,正确的回答应该是 个○,乙“稍等一会儿,啊!我知道啦!甲写的四位数是________吗”?甲:“对啦!你真棒!”(2) 请问甲写的这个四位数是什么?5. (5 分) 从一写到一万,你会用多少时间?6. (5 分) 猴子每分钟能掰一个玉米,在果园里,一只猴子 5 分钟能掰几个玉米?7. (1 分) 六年级四个班进行数学竞赛,小明猜想比赛的结果是: 班第一名, 班第二名, 班第三名, 班第四名.小华猜想比赛的结果是: 班第一名, 班第二名, 班第三名, 班第四名.结果只有小华猜 到的 班为第二名是正确的.那么这次竞赛的名次是________班第一名,________班第二名,________班第三名, ________班第四名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-3-1逻辑推理.题库教师版[1]8-3逻辑推理教学目标1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2.培养学生的逻辑推理能力,掌握解不同题型的突破口3.能够利用所学的数论等知识解复杂的逻辑推理题知识点拨逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【巩固】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴顾锋最年轻;⑵⑵李波喜欢与体育老师、数学老师交谈;⑶⑶体育老师和图画老师都比政治老师年龄大;⑷⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?【解析】李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【巩固】王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
李刚在北京,是农民。
【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【解析】由题意可画出下面三个表:将表3补全为表4.由表4知,工人是辽宁人,而乙不是工人,所以乙不是辽宁人,由此可将表1补全为表5.所以,甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人.方法二:将能判断的条件先列入图表中,广西人是教师,但是乙不是广西人,所以乙不是教师,乙又不是工人,所以乙为演员。
在对应的地方打上“√”,对应的行列均打“×”。
但是辽宁人不是演员,所以乙不是辽宁人,乙就是山东人,所以甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人。
【巩固】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。
现知道:(1)小明不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)爱好游泳的在一小;(5)爱好游泳的不是小芳。
问:三人上各爱好什么运动?各上哪所小学?【解析】这道题比上例复杂,因为要判断人、学校和爱好三个内容。
先将题目条件中给出的关系用下面的表1、表2、表3表示:因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。
由表4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。
于是可将表1补全为表5。
对照表5和表4,得到:小明在二小上学,爱好打乒乓球;小芳在三小上学,爱好打羽毛球;小花在一小上学,爱好游泳。
【巩固】小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。
问:谁是工人?谁是农民?谁是教师?【解析】这道题目并不难,聪明的小朋友思考一下就能得到答案,但是今天我们通过这道题目一起来学习一个十分有用的方法:列表分析法。
由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。
由此得到左下表。
表格中打“√”表示肯定,打“×”表示否定。
因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。
因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。
因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。
例题中采用列表法,使得各种关系更明确。
为了讲解清楚,例题中画了几个表,实际解题时,不用画这么多表,只在一个表中先后画出各种关系即可。
需要注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上;②每行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的其余格中都应画“×”。
【例 3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【解析】律师、教师、警察.由⑶可以知道丙不是律师,但是他见过律师,再由⑸知乙不是律师,又由⑷可知甲是律师.于是由⑴和⑶知丙不是教师,由⑵和⑸知丙不是医生,从而丙是警察.再由⑵知乙是教师,丁是医生.列表如下(列表的好处在于直观明了,不会犯错误):【巩固】徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。
(1)电工只和车工下棋;(2)王、陈两位师傅经常与木工下棋;(3)徐师傅与电工下棋互有胜负;(4)陈师傅比钳工下得好。
问:徐、王、陈、赵四位师傅各从事什么工种?【解析】徐是车工,王是钳工,陈是木工,赵是电工。
【巩固】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】根据条件⑵和⑶,甲和中队长的成绩不相同,中队长比乙的成绩差,可以断定,甲不是中队长,乙也不是中队长,只有丙是中队长了(也可以列表确定中队长).甲和乙两人谁是大队长呢?由⑴和⑶,丙比大队长的成绩好,中队长比乙的成绩差,可以推断出按成绩高低排列的话,乙的成绩比中队长(丙)的成绩好,丙的成绩比大队长的成绩好.这样,乙、丙就都不是大队长,那么,大队长肯定是甲.【巩固】甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地.甲说:“我和乙都住在北京,丙住在天津.”乙说:“我和丁都住在上海,丙住在天津.”丙说:“我和甲都不住在北京,何伟住在南京.”丁说:“甲和乙都住在北京,我住在广州.”假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?【解析】因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾.所以假设不成立,即“丙住在天津”是真话.因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的.由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话.所以,何伟住在南京.【巩固】A,B,C,D分别是中国、日本、美国和法国人.已知:⑴A和中国人是医生;⑵B和法国人是教师;⑶C和日本人职业不同;⑷D不会看病.问:A,B,C,D各是哪国人,【解析】有⑴⑵可知,A、B都不是中国人和法国人,再由⑴⑷知,D也不是中国人,所以,C是中国人,由⑶,日本人也是教师,从而推知,D是法国人,得下表:最后由C是中国人及⑴⑶,推知日本人是教师,再由⑵知B是日本人.【巩固】根据条件判断旅游团去了A、B、C、D、E中的哪几个地方?⑴如果去A,就必须去B;⑵D、E两地至少去一地;⑶B、C两地只能去一地;⑷C、E两地要去都去,要不去都不去;⑸若去D,则A、E两地必须去.【解析】从⑶入手,分别假设去B或C:⑶若去B则不能去C,⑷也不能去E,⑵只能去D.⑸必须去A、E,与不能去E矛盾.所以不能去B假设去C:⑷必去E,⑵需去D,⑸必须去A、E,⑴去A必须去B,与⑶B、C不能同去矛盾,所以不能去D.综上只能去C、E.【例 4】甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【解析】 由⑴⑵⑷可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译.由下表看出,甲会的另一种语言不是中文就是英语.丁丙乙甲日法英中×××√×先假设甲会说中文.由⑵知,丁也会中文;由⑴知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表:由⑴⑷推知乙会中文和法语;再由⑶及每人会两种语言,推知丁会英语(见右下表).结果符合题意.丁丙乙甲日法英中×√√√××××√√×√√√丁丙乙甲日法英中×√√√××××××√√×再假设甲会说英语.由⑵知,丁也会英语;由⑴知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由⑴⑷ 推知,乙会中文和日语;再由⑶及每人会两种语言,推知丁会法语(见右下表).右下表与“有一种语言只有一人会说”矛盾.假设不成立.√丁丙乙甲日法英中×√√√××××√×√√√丁丙乙甲日法英中×√√√××××××√√×所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语.【巩固】宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳高冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号吗?【解析】由⑵知,宝宝不是跳高冠军和大作家;由⑸知,贝贝不是大作家;由⑹知,贝贝、聪聪都不是小画家,可以得到下表:因为宝宝是小画家,所以由⑶⑷知宝宝不是短跑健将和数学博士,推知宝宝是歌唱家,因为聪聪是大作家,所以由⑵知聪聪不是跳高冠军,推知贝贝是跳高冠军,因为贝贝是跳高冠军,所以由⑴知贝贝不是数学博士,将上面结论依次填入上表,得到下表:所以,宝宝是小画家和歌唱家,贝贝是短跑健将和跳高冠军,聪聪是数学博士和大作家.【例 5】(2007年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。