材料物理性能考点
材料物理性能考试复习资料
1. 影响弹性模量的因素包括:原子结构、温度、相变。
2. 随有温度升高弹性模量不一定会下降。
如低碳钢温度一直升到铁素体转变为奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。
这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。
3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。
4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合力。
对于一定的材料它是个常数。
弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。
因为建立的模型不同,没有定量关系。
(☆)5. 材料的断裂强度:a E th /γσ=材料断裂强度的粗略估计:10/E th =σ6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T 的三次方趋近与零的试验结果。
7. 德拜温度意义:① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温度θD 来划分这两个温度区域:在低θD 的温度区间,电阻率与温度的5次方成正比。
在高于θD 的温度区间,电阻率与温度成正比。
② 德拜温度------晶体具有的固定特征值。
③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有相同的关系曲线。
德拜温度表征了热容对温度的依赖性。
本质上,徳拜温度反应物质内部原子间结合力的物理量。
8. 固体材料热膨胀机理:(1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。
(2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。
随着温度升高,热缺陷浓度呈指数增加,这方面影响较重要。
9. 导热系数与导温系数的含义:材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。
即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆)10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震性。
材料物理性能总复习
奈曼-柯普定律
化合物分子热容等于构成此化合物各元素原子热容之和。
杜隆珀替定律
恒压下元素的原子热容等于25J/(K.mol)。
经典热容理论:模型过于简单,不能解释低温下热容减小的现象
1
2
3
4
5
6
2、经典热容理论
• 爱因斯坦热容理论假设:每个原子皆为一个独立的振子,原子之间彼此无关。
高温部分符合较好,但低温部分的理论值比实验值下降得过快。
磁性是一切物质的基本属性,从微观粒子到宏观物体以至于宇宙间的天体都存在着磁的现象。 磁性是磁性材料的一种使用性能,磁性材料具有能量转换、存储或改变能量状态的功能。
材料的磁学性能
01
02
1、基本磁参量的概念与定义以及影响因素
磁矩
磁化强度
磁导率
方向与环形电流法线的方向一致,其大小为电流与封闭环形面积的乘积IΔS,与电流I和封闭环形面积ΔS成正比
6、半导体的载流子浓度、迁移率及其电阻率 本征半导体 本征载流子浓度与温度T和禁带宽度Eg 有关: 随温度增加,载流子浓度增加; 禁带宽度大时,载流子浓度小; μn 和μp 分别表示在单位场强下自由电子和空穴的平均漂移速度(cm/s),称为迁移率。 杂质半导体 多子导电
温 度 升 高
半导体载流子浓度、迁移率及其电阻率与温度的关系
n -- 单位体积内载流子数目 q -- 为每一载流子携带的电荷量
E -- 为外电场电场强度
μ为载流子的迁移率,其含义为单位电场下载流子的平均漂移速度。
J -- 为电流密度
2、导电性本质因素
决定材料导电性好坏的本质因素有两个:
载流子浓度
载流子迁移率
温度、压力等外界条件,以及键合、成分等材料因素都对载流子数目和载流子迁移率有影响。任何提高载流子浓度或载流子迁移率的因素,都能提高电导率,降低电阻率。
材料物理性能学知识点
(5)空间电荷极化:在离子多晶体中,界面、缺陷处存在空间电荷。这些混乱分布的 空间电荷,在外电场作用下,趋向于有序化,即空间电荷的正、负质点分别向外电场的负、 正极方向移动,从而表现为极化。空间电荷极化的特点:空间电荷极化常常发生在不均匀介 质中任何宏观不均匀性,均可形成空间电荷极化,所以又称界面极化,由于空间电荷的积累, 可形成很高的与外场方向相反的电场,有时又称为高压式极化。空间电荷极化随温度升高而 下降。温度升高,离子运动加剧,离子容易扩散,因而空间电荷减小,空间电荷极化需要较 长时间,只有直流或低频交流才显示出来。
39、由于温度作用而使电介质电极化强度变化的性质,称为热释电效应。具有热释电效 应的晶体一定具有自发极化(固有极化)的晶体,在结构上应具有极轴。具有对称中心的晶体
不可能有热释电效应。具有压电性的晶体不一定有热释电性。
40、极化强度随外加电场的变化曲线称为电滞回线。具有这种性质的晶体称为铁电体。 自发极化的产生机制与铁电体的晶体结构密切相关,主要是晶体中原子(离子)位置变化的结 果。
9、形成固溶体时,合金导电性能降低。在连续固溶体中合金成份距组元越远,电阻率 越高。
10、除过渡族金属外,在同一溶剂中溶入1%原子溶质金属所引起的电阻率增加,由溶 剂和溶质的价数决定,价数越大电阻率增加越大。
11、X 射线与电子显微镜分析表明该固溶体为单相组织,但固溶体中原子间距的大小显 著地波动,其波动正是组元原子在晶体中不均匀分布的结果,所以称“不均匀固溶体”,又 称“K 状态”。K 状态是“相内分解”的结果,它不析出任何具有自己固有点阵的晶体。
材料物理性能复习总结
第一章电学性能1。
1 材料的导电性,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。
ρ的倒数σ称为电导率。
一、金属导电理论1、经典自由电子理论在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。
它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。
当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。
在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。
2、量子自由电子理论金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。
但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。
0K时电子所具有最高能态称为费密能E F.不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。
另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻.马基申定则:,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻。
3、能带理论能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。
图1—1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。
图1—1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体.图1—1(e),半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那么困难,满带中的电子受热振动等因素的影响,能被激发跳过禁带而进入上面的空带,在外电场作用下空带中的自由电子产生电流。
材料物理性能
材料物理性能第一章考点1. 电子理论的发展经历了三个阶段,即古典电子理论、量子自由电子理论和能带理论。
古典电子理论假设金属中的价电子完全自由,并且服从经典力学规律;量子自由电子理论也认为金属中的价电子是自由的,但认为它们服从量子力学规律;能带理论则考虑到点阵周期场的作用。
考点2. 费米电子在T = 0K时,大块金属中的自由电子从低能级排起,直到全部价电子均占据了相应的能级为止。
具有能量为EF(0)以下的所有能级都被占满,而在EF(0)之上的能级都空着,EF(0)称为费米能,是由费米提出的,相应的能级称为费米能级。
考点3. 四个量子数1、主量子数n2、角量子数l3、磁量子数m4、自旋量子数ms考点4. 思考题1、过渡族金属物理性能的特殊性与电子能带结构有何联系?过渡族金属的 d 带不满,且能级低而密,可容纳较多的电子,夺取较高的 s 带中的电子,降低费米能级。
第二章考点5. 载流子载流子可以是电子、空穴,也可以是离子、离子空位。
材料所具有的载流子种类不同,其导电性能也有较大的差异,金属与合金的载流子为电子,半导体的载流子为电子和空穴,离子类导电的载流子为离子、离子空位。
而超导体的导电性能则来自于库柏电子对的贡献。
考点6. 杂质可以分为两类一种是作为电子供体提供导带电子的发射杂质,称为“施主”;另一种是作为电子受体提供价带空穴的收集杂质,称为“受主”。
掺入施主杂质后在热激发下半导体中电子浓度增加(n>p),电子为多数载流子,简称“多子”,空穴为少数载流子,简称“少子”。
这时以电子导电为主,故称为n型半导体。
施主杂质有时也就称为n型杂质。
在掺入受主的半导体中由于受主电离(p>n),空穴为多子,电子为少子,因而以空穴导电为主,故称为p型半导体。
受主杂质也称为p型杂质。
考点7. 我们把只有本征激发过程的半导体称为本征半导体。
考点8. 在同一种半导体材料中往往同时存在两种类型的杂质,这时半导体的导电类型主要取决于掺杂浓度高的杂质。
材料物理性能期末复习考点教学内容
材料物理性能期末复习考点一名词解释1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动。
2.光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。
3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。
4.热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。
5.一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。
6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。
7.热膨胀:物体的体积或长度随温度升高而增大的现象。
8.热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法。
9.热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。
10.热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力。
11.热应力:由于材料的热胀冷缩而引起的内应力。
12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流13.载流子:材料中参与传导电流的带电粒子称为载流子14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金15.本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。
16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。
17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体。
18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。
材料物理性能复习重点-图文
材料物理性能复习重点-图文第二章非组织敏感:弹性模量,热膨胀系数,居里点(成分)组织敏感性:内耗,电阻率,磁导率(成分及组织)相对电导率:IACS%定义:把国际标准纯软铜(在室温20度,电阻率为0.01724.mm2/m)的电导率作为100%,其它导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。
载流子:电荷的载体(电子,空穴,正离子,负离子)物体的导电现象的微观本质是:载流子在电场作用下的定向迁移迁移数t某,也称输运数(tranferencenumber)定义为:某t某T式中:σT为各种载流子输运电荷形成的总电导率σ某表示某种载流子输运电荷的电导率t某的意义:是某一种载流子输运电荷占全部电导率的分数表示。
载流子与导电性能的关系:因素:单位体积中可移动的带电粒子数量N每个载流子的电荷量q载流子的迁移率μ迁移率:受到外加电场作用时,材料中的载流子移动的难易程度令μ=v/E,并定义其为载流子的迁移率。
其物理意义为载流子在单位电场中的迁移速度。
σ=Nqμ迁移率的影响因素:1.温度越高,平均碰撞间隔时间t越小,迁移率越小2.晶体缺陷越多,………………电子的平均自由程n为电子的密度2金属导电机制:载流子为自由电子。
经典理论:所有自由电子都对导电做出贡献。
所以有n为电子的平均速度m为电子的质量量子理论,两点基本改进:nef表示单位体积内实际参加热传导的电子数,即费米面能级附近参加电传导的电子数m某为电子的有效质量,考虑晶体点阵对电场作用的结果2eff某f实际导电的载流子为费米面附近的自由电子!nelmvnelmv产生电阻的根本原因:当电子波通过一个理想晶体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子波才会受到散射(不相干散射)。
理想晶体中晶体点阵的周期性受到破坏时,才产生阻碍电子运动的条件。
(1)晶格热振动(温度引起的离子运动振幅的变化)(2)杂质的引入,位错及点缺陷在电子电导的材料中,电子与点阵的非弹性碰撞引起电子波的散射是电子运动受阻的本质原因。
材料物理性能期末复习考点
材料物理性能期末复习考点
1.力学性能
-弹性模量:描述材料在受力后能恢复原状的能力。
-抗拉强度和屈服强度:材料在受拉力作用下能够承受的最大应力。
-强度和硬度:表示材料对外界力量的抵抗能力。
-延展性和韧性:描述材料在受力下发生塑性变形时的能力。
-蠕变:材料在长期静态载荷下发生塑性变形的现象。
2.电学性能
-电导率:描述材料导电的能力。
-电阻率:描述材料导电困难程度的量。
-介电常数和介电损耗:材料在电场中储存和散失电能的能力。
-铁电性和压电性:描述材料在外加电场或机械压力下产生极化效应的能力。
-半导体性能:半导体材料的导电性能受温度、光照等因素的影响。
3.热学性能
-热导率:描述材料传热能力的指标。
-线热膨胀系数:描述材料在温度变化下线膨胀或收缩的程度。
-热膨胀系数:描述材料在温度变化下体积膨胀或收缩的程度。
-比热容:描述单位质量材料在温度变化下吸收或释放热能的能力。
-崩裂温度:材料在受热时失去结构稳定性的温度。
4.光学性能
-折射率:描述光在材料中传播速度的比值。
-透射率和反射率:描述光在材料中透过或反射的比例。
-吸收率:光在材料中被吸收而转化为热能的比例。
-发光性能:描述材料能否发光以及发光的颜色和亮度。
-线性和非线性光学效应:描述材料在光场中的响应特性。
以上是材料物理性能期末复习的一些考点,希望能帮助到你。
但需要注意的是,这只是一部分重点,你还需要结合教材和课堂笔记,全面复习和理解这些概念和原理。
祝你考试顺利!。
材料物理性能考点总结汇总
<<材料物理性能>>基本要求一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。
材料物理性能考试重点
材料物理性能考试重点材料物理性能考试重点篇一:材料物理性能考试重点、复习题1. 格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波。
2. 色散关系:频率和波矢的关系3. 声子:晶格振动中的独立简谐振子的能量量子4. 热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
5. 两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
6. 热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀7. 固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。
8. 温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。
材料声子热容C在低温下与温度T3成正比。
声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。
实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。
在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。
在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。
材料物理性能考试重点
第一章无机材料的受力形变1.形变:材料在外力的作用下发生形状与尺寸的变化2.影响弹性模量大小的因素?①化学键(本质):共价键、离子键结合力强,弹性模量大。
分子键结合力弱,弹性模量小。
②原子间距:正应力使原子间距减小,弹性模量增大;张应力使原子间距增大,弹性模量减小。
温度升高,原子间距增大,弹性模量降低。
3.弹性模量的测定⏹静态法:采用常规三点弯曲试验加载方式;在正式读数前,在低载荷进行几次反复加载、卸载;试样尺寸有要求。
误差较大⏹动态法:三点弯曲受力,外加载荷周期性性变化,产生谐振;弯曲振动测E,扭曲振动测G;试样尺寸有要求。
误差较小4.塑性:材料在外力去除后仍保持部分应变而不能恢复的特性5.延展性:材料发生塑性形变而不断裂(破坏)的能力6.晶体塑性形变两种基本形式:•滑移是指在剪切应力作用下晶体一部分相对于另部分发生平移滑动。
在显微镜下可观察到晶体表面出现宏观裂纹,并构成滑移带。
•孪晶是晶体材料中原子格点排列一部分与另部分呈镜像对称的现象。
镜界两侧的晶格常数可能相同、也可能不同。
7.晶体滑移的条件几何条件:滑移一般发生在晶面指数小、原子密度大的晶面(主要晶面)和晶面指数小的晶向(主要晶向)上:由于晶面指数小的面,面间距越大,原子间的作用力越小,易产生相对滑动;晶面指数小的面,原子的面密度大,滑过滑动平面使结构复原所需的位移量最小,即柏氏矢量小,也易于产生相对滑动。
静电作用因素:同号离子存在巨大的斥力,如果在滑动过程中相遇,滑动将无法实现。
8.粘度定义:使相距一定距离的两个平行平面以一定速度相对移动所需的力。
单位:Pa· s,9.影响粘度的因素?温度:一般温度升高,粘度下降。
时间:从高温状态冷却到退火点,再加热其粘度随时间增加而增加;而预先在退火点以下保持一定时间后,其粘度随时间增加而降低,但时间大大缩短。
组成:改性阳离子不同,粘度变化不同;但改性阳离子的加入,在任何温度下总会使粘度降低。
材料物理性能部分知识点
1. 名义应力:真实应力:正应力——伸长或缩短的量——正应变,用ζ表示;剪切应力——畸变或转动的量——剪切应变,用η表示。
名义应变:真实应变:正应变:xx,yy,zz;剪切应变:xy,yz,zx。
2. 材料受力形变的三个阶段:弹性形变:当外力去除后,能恢复到原来形状和尺寸的形变。
塑性形变:外力去除后,形状或尺寸不能恢复的形变。
断裂。
3. 根据受力形变特征,材料可分为:脆性材料(非金属材料):只有弹性形变,无塑性,形变或塑性形变很小。
延性材料(金属材料):有弹性形变和塑性形变。
弹性材料(橡胶):弹性变形很大,没有残余形变(无塑性形变)。
4. 结论:弹性形变的物理本质:原子间结合力抵抗外力的宏观表现。
弹性系数ks和弹性模量E是反映原子间结合强度的标志。
5. 影响弹性模量的因素即影响原子间结合力的因素。
(1)键合方式:共价键和离子键结合力强,弹性模量E较大;金属键和分子键结合力弱,E较低。
(2)晶体结构因材料的方向不同差别很大,排列越致密的方向结合越紧密,E越大。
(3)温度大部分固体,受热后渐渐开始膨胀、变软,原子间结合力减弱,弹性常数降低。
(4)复相的弹性模量在二相系统中,总模量介于高模量成分和低模量成分间,类似于二相系统的热膨胀系数,通过假定材料有许多层组成,这些层平行或垂直于作用单轴应力,找出最宽的可能界限。
6. 一些非晶体有时甚至多晶体在比较小的应力作用下可同时表现出弹性和粘性,称为粘弹性。
理想弹性体受应力作用立即产生应变,与时间无关。
一旦应力撤除,应变也随之立即消除。
实际固体材料的应变产生与消除需要有限时间,这种与时间有关的弹性称为滞弹性。
7. 应变蠕变固体材料在恒定荷载下,变形随时间延续而缓慢增加的不平衡过程,或材料受力后内部原子由不平衡到平衡的过程,也叫徐变。
当外力除去后,徐变变形不能立即消失。
应力弛豫在持续外力作用下,发生变形着的物体,在总的变形值保持不变的情况下,由于徐变变形渐增,弹性变形相应的减小,由此使物体的内部应力随时间延续而逐渐减少的现象。
材料物理性能期末考试复习重点(非常全-可缩印)
word格式-可编辑-感谢下载支持热容是物体温度升高1K所需要增加的能量。
它反映材料从周围环境中吸收热量的能力。
是分子热运动的能量随温度而变化的一个物理量。
不同环境下,物体的热容不同。
热容是随温度而变化的,在不发生相变的条件下,多数物质的摩尔热容测量表明,定容热容C和温度的关系与定压热容有相似的规律。
(1)在高温区:定压热容Cv的变化平缓;(2)低温区:Cv与「3成正比;(3)温度接近0K时,Cv与T成正比;(4)0K时,Cv=0;热容的来源:受热后点阵离子的振动加剧和体积膨胀对外做功,此外还和电子贡献有关,后者在温度极高(接近熔点)或极低(接近OK)的范围内影响较大,在一般温度下则影响很小。
晶态固体热容的经验定律和经典理论:(1)元素的热容定律—杜隆一珀替定律:热容是与温度T无关的常数。
恒压下元素的原子热容为25J/(k・mol);(2)化合物的热容定律一奈曼—柯普定律:化合物分子热容等于构成该化合物各元素原子热容之和。
德拜模型:考虑了晶体中原子的相互作用。
晶体中点阵结构对热容的主要贡献是弹性波振动,波长较长的声频支在低温下的振动占主导地位,并且声频波的波长远大于晶体的晶格常数,可以把晶体近似为连续介质,声频支的振动近似为连续,具有0〜smax的谱带的振动。
可导出定压热容的公式:Cv,m二12/5兀4R(T/6)3D由上式可以得到如下的结论:(1)当温度较高时,即处于高温区定压热容=3Nk=3R,即杜隆—珀替定律,与实验结果吻合;(2)当温度很低时,小于德拜温度时,定压热容与「3成正比,与实验结果吻合。
(3)当T-0时,C V趋于0,与实验大体相符。
但「3定律,与实验结果的T规律有差距。
德拜模型的不足:(1)由于德拜把晶体近似为连续介质,对于原子振动频率较高的部分不适用,使得对一些化合物的热容的计算与实验不符。
(2)对于金属类晶体,没有考虑自由电子的贡献,使得其在极高温和极低温区与实验不符。
(3)解释不了超导现象。
材料物理性能知识点总结汇编
材料性能的影响因素材料化学组成和显微结构不同,决定其有不同的特性;材料的内部分子层次上,原子、离子之间的相互作用和化学键合对材料性能产生决定性的影响;多晶多相材料的显微结构的不同,影响材料的大部分性能。
晶体结合类型、特征:(1)离子晶体:离子键合、高硬度、高升华热,可溶于极性溶剂、低温不导电,高温离子导电。
(2)共价晶体:共价键合、高硬度、高熔点,几乎不溶于所有溶剂,高折射率,强反射本领。
(3)金属晶体:金属键合、高密度、导电率高,延展性好,只溶于液体金属。
(4)分子晶体:范德华力结合,高热膨胀,易溶于非极性有机溶剂中,低熔点、沸点,压缩系数大,保留分子的性质。
(5)氢键:低熔点、沸点,结合力高于无氢键的类似分子。
单晶体是由一个微小的晶核各向均匀生长而成,其内部的粒子基本上按其特有的规律整齐排列。
晶体微粒(包括离子、原子团)在空间排列有一定的规律晶体性质:1.均与性;2.各向异性;3.规则的多面体外形;4.确定的熔点;5.对称性晶体可分为单晶、多晶、微晶等微晶:粒度很小的晶体组成的物质(显晶质、隐晶质、单晶、多晶)晶体和非晶体的区别如下:晶体有规则的几何外形非晶体没有一定的外形晶体有固定的熔点非晶体没有固定的熔点晶体显各向异性非晶体显各向同性按热力学观点看:晶体一般都具有最低的能量,因而较稳定非晶体一般能量较高,都处于介稳或亚稳态晶格确定步骤:1.确定基本结构单元;2.将结构基元看做一点;3.这些几何点聚焦形成点阵(面角守恒:同组晶体和对应面之间夹角恒定不变)材料应用考虑因素:使用寿命、性能、可靠性、环境适应性、性价比。
材料性能是一种用于表征材料在给定外界条件下的行为参量。
同一材料不同性能,只是相同的内部结构,在不同的外界条件下所表现出的不同行为。
材料性能的研究:材料性能的研究,既是材料开发的出发点,也是其重要归属。
材料强度、表面光洁度、绝缘性能、热导性、热膨胀系数等是衡量基板材料好坏的重要指标。
材料物理性能期末复习考点
一名词解释1.声频支振动:震动着的质点中所包含的频率甚低的格波,质点彼此之间的相位差不大,格波类似于弹性体中的应变波,称声频支振动.2。
光频支振动:格波中频率甚高的振动波,质点间的相位差很大,临近质点的运动几乎相反,频率往往在红外光区,称光频支振动。
3.格波:材料中一个质点的振动会影响到其临近质点的振动,相邻质点间的振,动会形成一定的相位差,使得晶格振动以波的形式在整个材料内传播的波。
4。
热容:材料在温度升高和降低时要时吸收或放出热量,在没有相变和化学反应的条件下,材料温度升高1K时所吸收的热量。
5。
一级相变:相变在某一温度点上完成,除体积变化外,还同时吸收和放出潜热的相变。
6.二级相变:在一定温度区间内逐步完成的,热焓无突变,仅是在靠近相变点的狭窄区域内变化加剧,其热熔在转变温度附近也发生剧烈变化,但为有限值的相变。
7。
热膨胀:物体的体积或长度随温度升高而增大的现象.8。
热膨胀分析:利用试样体积变化研究材料内部组织的变化规律的方法.9。
热传导:当材料相邻部分间存在温度差时,热量将从温度高的区域自动流向温度低的区域的现象。
10。
热稳定性(抗热震性):材料称受温度的急剧变化而不致破坏的能力.11。
热应力:由于材料的热胀冷缩而引起的内应力.12.材料的导电性:在电场作用下,材料中的带电粒子发生定向移动从而产生宏观电流13。
载流子:材料中参与传导电流的带电粒子称为载流子14.精密电阻合金:需要电阻率温度系数TRC或者α数值很小的合金,工程上称其为精密电阻合金15。
本征半导体:半导体材料中所有价电子都参与成键,并且所有键都处于饱和(原子外电子层填满)状态,这类半导体称为本征半导体。
16. n型半导体:掺杂半导体中或者所有结合键处被价电子填满后仍有部分富余的价电子的这类半导体。
17. p型半导体:在所有价电子都成键后仍有些结合键上缺少价电子,而出现一些空穴的一类半导体.18.光致电导:半导体材料材料受到适当波长的电磁波辐射时,导电性会大幅升高的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概念1、剩余磁感应强度与矫顽力?答:剩余磁感应强度:在磁滞回线中当H=0时,此时磁感应强度称为剩余磁感应强度,用Br表示。
矫顽力:当磁场增到某一数值,壁移就发生大的跳跃,以致完全吞没了正向磁畴,当反向磁畴扩大到同正向磁畴大小相等时,有效磁化强度等于零,这时的磁场强度即为矫顽力。
2、比较铁磁性与顺磁性的异同点?答:铁磁性:源于原子未被抵消的自旋磁矩和自发磁化磁化曲线为曲线铁磁性为磁畴的取向一致顺磁性:源于原子的固有磁矩磁化曲线为直线顺磁性为磁矩的取向一致3、磁化曲线、磁滞回线的特征点及其概念?答:图略第一阶段为起始磁化阶段,此时H很小,B随H的增加而增大,此阶段为可逆阶段。
第二阶段为急剧磁化阶段,此时u有最大值,B随H的增加而增大,此阶段为不可逆阶段。
第三阶段为缓慢磁化阶段,B随H的增加而缓慢增大,最终趋向于磁饱和,该阶段可逆。
Bs:饱和磁感应强度 Br:剩余磁感应强度 Hc:矫顽力4、动滞后型内耗与静滞后型内耗的区别?答:动滞后性内耗与频率有关,与振幅无关。
静滞后型内耗与振幅有关,与频率无关动滞后性内耗:应变—应力滞后回线的出现是由于试样动态性会决定的,回线的面积与振动频率的关系很大,但与振幅无关,如果试验是静态的进行,即试验时应力的施加和撤除都非常缓慢,也不会产生内耗。
静滞后型内耗:指弹性范围内与加载速度无关,应变变化落后于应力的行为,应力变化时,应变重视瞬时调整到相反的值,这种滞后回线的面积是恒定的,与振动频率无关。
5、产生热释电性的条件?答:①具有自发极化的唯一极轴②结构无对称性6、电介质的极化及超导体的两个基本特征?答:电介质的极化:电解质在电场作用下产生束缚电荷的现象称为电介质的极化超导的两个基本特征:完全导电性和完全抗磁性7、金属材料的热容由哪两部分组成?答:点阵振动热容和自由电子运动的热容8、高聚物的热容比金属和无机材料大的原因?答:因为高分子材料的比热容由化学结构决定,温度升高,是链段振动加剧,而高聚物为长链,使之改变运动状态困难,因而,需提供更多的能量。
9、杜隆-珀替定律?奈曼-柯普定律?答:杜隆-珀替定律:恒压下元素的原子热容为25J/(K*mol)奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和10、声频支振动?光频支振动?答:声频支振动:如果振动着的质点包含频率甚低的格波,质点彼此间的位相差不大,则格波类似于弹性体中的应变波,称为……光频支振动:格波中频率甚高的应变波,质点间的位相差很大,邻近质点的运动巨虎相反时,频率往往在红外光区,称为……11、固溶体的导热能力有导热机制决定?金属、无机、高分子材料靠什么导热?(自由电子、晶格振动)答:固溶体的导热主要由晶格振动的格波和自由电子的运动,来实现的。
金属:自由电子的运动我掩护非金属:晶格振动的格波包括:声子热导和光子热导。
12、差热分析对参比物的要求是什么?钢铁材料常用什么做参比物?答:要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质发生化学变化,同时参比物的比热容、热传导系数等应尽量与试样接近。
钢铁材料的常用参比物为镍12、纯金属热导率与合金相比其大小?形成固溶体后热导率如何变化?答:纯金属热导率比合金相高,形成固溶体后热导率降低,且溶质元素的质量和大小与溶剂元素相差越大,取代后结合力改变越大,对热导率影响也越大。
13、晶体中缺陷杂质对声子散射、平均自由程、热导率的影响?答:晶体中存在的各种缺陷和杂质会导致声子的散射,降低的平均自由程,是热导率变小14、金属电阻率与温度的关系以及原因?答:金属电阻率随温度的升高而增大因为:温度对有效电子数和电子平均速度几乎没有影响,然而温度升高使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。
这些因素都使电子运动的自由程减小,散射概率增加而导致电阻率的增大。
在低温(2K)时,金属的电阻由电子—电子的散射决定,在2K以上的温度,金属的电子散射由电子—声子决定。
15、冷塑性变形及压力对金属导电性有何影响?答:冷塑性变形:使金属电阻率增大原因:①由于冷加工变形使晶体点阵畸变和晶体缺陷增加,特别是空位浓度的增加,造成点阵电场的不均匀而加剧对电子散射的结果。
②冷加工塑性变形使原子间距改变,也会对电阻率产生影响。
压力:使电阻率减小。
原因:由于压应力使原子间的距离减小,离子振动的振幅减小,大多数金属在三向压力的作用下,电阻率下降16、金属原子形成固溶体后对电导率的影响(下降)?原因(两个)?答:电导率下降即电阻率升高原因:①溶质原子的溶入引起溶剂点阵的畸变,破坏了晶格市场的周期性,从而增加了电子的散射概率,是电阻率增大②由于固溶体组元间化学相互作用的加强使有效电子数减小,造成电阻率的增加。
17、金属原子形成化合物使电导率下降的原因?答:因为组成化合物后,原子间的金属键至少有一部分转化为共价键或离子键,是有效电子数减少,导致电阻率增高18、电解质在电场作用下产生极化的四种机制?答:电子、离子位移极化弛豫(松弛)极化取向极化空间电荷极化19、磁致伸缩?产生原因?答:磁致伸缩效应:铁磁体在磁场中被磁化时,其尺寸和形状都会发生变化。
原因:由于原子磁矩有序排列时,电子件的相互作用导致原子间距的自发调整而引起的。
材料的晶体结构不同,磁化时原子间距的变化情况不一样,固有不同的磁致伸缩性能。
20、材料的顺磁性、抗磁性源于什么?铁磁性产生的条件是什么?答:顺磁性源于:原子的固有磁矩抗磁性:是由于外磁场作用下电子绕核运动所产生的附加磁矩造成的。
铁磁性:源于原子未被抵消的自旋磁矩和自发磁化21、单畴颗粒的特点?在技术磁化过程中的磁化特点?(难磁化、难退磁)答:单畴颗粒不具有畴壁,整个颗粒可以在一个方向自发磁化到饱和,单畴颗粒不具有畴壁,因而在技术磁化时不会有壁移过程,而只能依靠畴的转动,畴的转动是要克服磁晶各向异性能的,所以单畴颗粒惊醒技术磁化和退磁都不容易。
单畴颗粒具有低的磁导率和高的矫顽力。
22、铁磁性材料提高剩磁Mr可采取哪两方面措施?答:①使材料的易磁化方向与外磁场方向一致,这样就不会有磁畴旋转过程使Mr~~Ms②进行磁场热处理,让材料在外磁场中从高于居里温度向低温冷却,可以造成磁畴排列的有序取向,形成所谓的磁织构23、光透过金属时刻强烈吸收,为什么?光通过电解质时透明,为什么?答:金属:因为金属的价电子处于未满带,吸收光子后即呈激发态,用不着跃迁到导带即发生碰撞而发热。
电解质:由于绝缘材料的价电子所处的能带为满带,而光子的能量又不足以使价电子跃迁到导带,因此在可见光波长范围内吸收系数很小。
24、光散射的概念?弹性散射与非弹性散射的区别及其分类?答:光散射:材料中如果有光学性能不均匀的结构,如透明的小颗粒,光性能不同的境界相,气孔和其他杂质物,都会引起一部分光束偏离原来的传播方向而想四面八方散开来,这种现象称为光的散射分类:弹性散射:延德尔散射米氏散射瑞利散射非弹性散射:布里渊散射拉曼散射弹性散射:光的波长(或光子能量)在散射前后不发生变化的成为弹性散射,非弹性散射:当光束通过介质是,入射光子与介质发生非弹性碰撞,是散射光子的波长(或频率)发生改变。
25、自发辐射与受激辐射的区别?答:区别:自发辐射过程是指,如果原子已经处于高能级,那么它就自发、独立的向低能级跃迁并发生一个光子,各个原子发射的自发辐射光子除了能量(频率)上受限制外,其发射方向和偏振态都是随机和无规律的。
受激辐射过程是,当一个能量满足hr=E2-E1的光子趋近高能级E2的原子时,入射光子诱导高能级原子发射一个和自己性质完全相同的粒子,受激辐射的光子和入射光子具有相同的频率、方向和偏振状态。
26、激光材料由基质和激活离子组成,这二者用什么材料?有什么作用?答:基质:材料:氧化物及氟化物作用:主要是为激活离子(发光重心)提供一个适合的晶格场,使之产生受激发射激活离子:材料:过渡族金属离子、三价稀土离子等作用:作为发光中心的少量掺杂离子二、问答1、热膨胀及其本质?与热容、熔点间的定性关系?答:热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀本质:热膨胀是由于原子间距增大的结果,而原子间距是晶格结点上原子振动的平衡位置间的距离,材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀,而温度升高时会导致原子间距增大。
固态晶体的熔点愈高,膨胀系数愈低,热膨胀系数与定容热容成正比2、固溶体中溶质含量对电阻有什么影响?有序乱有什么影响?答:一般情况下,形成固溶体时合金的电阻率升高,在连续固溶体中合金成分距组员越远,电阻率越高,二元合金中最大电阻率长在50%原子浓度处,而且可能比组元电阻率高几倍,铁磁性金属及强顺磁金属组成的固溶体有异常,它的电阻率最大值一般不再50%浓度处。
固溶体有序化对合金的电阻有显著的影响租用体现在两方面,一方面固溶体有序化后,其合金组元间化学作用加强,电子结合比无序固溶体强,导致电子数减少,而合金的剩余电阻增加,另一方面,晶体的离子电场自爱有序话后更对称,从而缉拿少了对电子的散射,是电阻降低,综合这两方面,通常情况下第二个因素占优势,因此有序化后,和进度电阻总体上是降低的。
2、冷塑性变形对不均匀固溶体的电阻作用?答:当形成不均匀固溶体时,在固溶体点阵中只形成原子的偏聚,偏聚区成分与固溶体的平均成分不同,原子聚集区域的集合尺寸与电子波的波长相当,故可强烈的散射电子波,提高合金电阻率,冷变形能促使固溶体中不均匀组织的破坏,获得无序态的均匀组织,使合金电阻率明显降低。
3、第一热电效应含义及其本质?答:当两种不同的导体组成一个闭合回路时,若自爱两接头处存在温度差,则回路中将有电势及电流产生,这种现象为第一热电效应(塞贝克效应)本质:回路中的电势是由接触电位差和温度电位差照成的,接触电位差是指,两种不同金属接触时,在接触点处要产生一接触电位差,接触电位差产生原因有两个,一是两种金属的电子逸出功不同,二是两种金属具有不同的自由电子密度,温度电位差,当一金属的两端温度不同时,引起热流的同时,也将造成自后电子的流动,而这种流动又会引起温差电位差,在两种不同金属组成的闭合回路何总,接触电位差与温度电位差共同作用,使回路中产生电势及电流。
4、自发磁化原因?技术磁化三个磁化阶段的特征?并用杂质理论解释。
答:铁磁性物质自发磁化是由于原子间的相互作用产生的。
两个原子相接近时,电子云相互重叠,由于3d层与4s层的电子能量相差不大,因此他们的电子可以相互交换位置,迫使相邻原子自旋磁矩产生有序排列。
特征:第一阶段的畴壁可逆迁移区第二阶段的畴壁不可逆区,第三阶段即磁畴旋转区杂质理论:在未加外电磁场时,材料自发磁化行成的两个磁畴,畴壁通过杂质颗粒,当施加较小的外磁场时,与外磁场方向相同(或相近)的磁畴将通过畴壁的移动而扩大,壁移的过程就是壁内原子磁矩依次转向的过程,由于外磁场强度较小,还不足以克服杂质对畴壁的钉扎,畴壁呈弯曲状,如果此时取消外磁场,则畴壁又会自动迁回原位,因为原位状态能量低,这就是所谓的畴壁可逆迁移阶段。