量子力学2 2017回忆版 南开大学
量子力学教程(二版)习题答案
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。
证明:由普朗克黑体辐射公式:ννπνρννd e ch d kT h 11833-=, 及λνc =、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k #1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
2017年北京大学理论物理量子力学(612)真题回忆版
2017年北京大学理论物理量子力学(612)真题回忆版
2017年北京大学理论物理之量子力学(612)真题回忆版
一、
1)宽度为L 2的无限深势阱,范围为L x L -<<,求能量本征态和相应的本征值
2)已知t 0=时处于基态,势阱宽度突然变为L 4,范围为22L x L -<<,求随时间变化的波函数表达式)(t ?,求处于变化后体系本征能量的概率,求体系的能量平均值)(t E 二、一个二维谐振子,哈密顿量为222211?2222
y x x y p p H m x m y m m ωω=+++ 1)若4
3=y x ωω,求第一个和第二个简并能级 2)若y x ωω=,有两个自旋为
21的全同粒子处于此谐振子势场中,求体系最低三个能级,并给出简并度
三、
1)在z σ表象下,x σ、y σ、z σ的矩阵表示及其归一化本征态,本征值
2)在x σ表象下,y σ和z σ的归一化本征态
四、体系哈密顿量为()1221?+= H ,1和2为体系两个正交归一的本征态。
在t=0
时,算符22113?-=O
的平均值为1-,求体系初始状态及0>t 的体系最快转化为1的时间
五、考虑氢原子核不是点电荷,而是均匀带电的球体
1)体系能量基态本征函数为a r
Ne -=ψ,求归一化系数N 和不确定度2)(x ?和()2
r ?
2)用微扰求出这种效应对氢原子能量基态能量的一级修正六、一维粒子由右边入射,收到的势能为20()()02x V x g x a x m
δ∞ ?? 1)若能量0E >,求反射波与入射波之间的相位差,及相位差在低能和高能下的表现 2求存在束缚态的条件。
南开大学《量子力学》考研真题详解
南开大学《量子力学》考研真题详解2021年南开大学《量子力学》考研全套目录•南开大学陈省身数学研究所《量子力学》历年考研真题汇编•全国名校量子力学考研真题汇编•2021年量子力学考研真题精解精析50题说明:本科目考研真题不对外公布(暂时难以获得),通过分析参考教材知识点,精选了有类似考点的其他院校相关考研真题,以供参考。
2.教材教辅•曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解•[预售]曾谨言《量子力学教程》(第3版)配套题库【考研真题精选+章节题库】说明:以上为本科目参考教材配套的辅导资料。
•试看部分内容波函数与Schrödi nger方程1.1 复习笔记一、波函数的统计诠释1实物粒子的波动性de Broglie(1923)提出了实物粒子(静质量m≠0的粒子,如电子)也具有波粒二象性(wave-p article duality)的假设,即与动量为p和能量为E的粒子相应的波的波长λ和频率ν为并称之为物质波(matter wave).2波粒二象性的分析(1)包括波动力学创始人Schrödi nger,de Brogli e等在内的一些人,他们曾经把电子波理解为电子的某种实际结构,即看成三维空间中连续分布的某种物质波包.物质波包的观点显然夸大了波动性一面,而实质上抹杀了粒子性一面,是带有片面性的.(2)与物质波包相反的另一种看法是:波动性是由于有大量电子分布于空间而形成的疏密波.它夸大了粒子性一面,而实质上抹杀了粒子的波动性一面,也带有片面性.然而,电子究竟是什么东西?是粒子?还是波?电子既是粒子,也是波,它是粒子和波动两重性矛盾的统一.但这个波不再是经典概念下的波,粒子也不再是经典概念中的粒子.3概率波,多粒子体系的波函数把粒子性与波动性统一起来.更确切地说,把微观粒子的“原子性”与波的“相干叠加性”统一起来的是M.Bo rn(1926)提出的概率波.表征在r点处的体积元中找到粒子的概率.这就是Born提出的波函数的概率诠释.它是量子力学的基本原理之一.根据波函数的统计诠释,很自然要求该粒子(不产生,不湮没)在空间各点的概率之总和为1,即要求波函数ψ(r)满足下列条件这称为波函数的归一化(normalization)条件.归一化条件就可以简单表示为(ψ,ψ)=14动量分布概率动量分布概率密度即.5不确定性原理与不确定度关系不管粒子处于什么量子态下,它的位置(坐标)和动量不能同时具有完全确定的值,这就是Hei senberg的不确定性原理,上式是它的数学表示式,它是波粒二象性的反映.6力学量的平均值与算符的引进令称为动量算符.l是一个矢量算符.它的三个分量可以表示为一般说来,粒子的力学量A的平均值可如下求出是与力学量A相应的算符.如波函数未归一化,则与经典Hamilton量H=T+V相应的算符表示为7统计诠释对波函数提出的要求统计诠释赋予了波函数确切的物理含义.根据统计诠释,究竟应对波函数ψ(r)提出哪些要求?(1)根据统计诠释,要求|ψ(r)|2取有限值似乎是必要的,即要求ψ(r)取有限值.(2)按照统计诠释,一个真实的波函数需要满足归一化条件(平方可积)但概率描述中实质的问题是相对概率.因此,在量子力学中并不排除使用某些不能归一化的理想的波函数.(3)按照统计诠释,要求|ψ(r)|2单值.是否由此可得出要求ψ(r)单值?否.(4)波函数ψ(r)及其各阶微商的连续性.2021年量子力学考研真题精解精析50题1当前冷原子物理研究非常活跃,在实验中,粒子常常是被束缚在谐振子势中,因此其哈密顿量为。
《量子力学教程》第二版答案周世勋原著
《量子力学教程》第二版答案周世勋原著量子力学,这一神秘而又令人着迷的科学领域,对于许多学习者来说,既是挑战,也是机遇。
周世勋先生的《量子力学教程》作为经典教材,为我们开启了探索量子世界的大门。
而与之配套的第二版答案,则像是一把解锁知识宝库的钥匙。
在深入探讨这份答案之前,我们先来简单了解一下量子力学的重要性。
量子力学是现代物理学的基石之一,它不仅改变了我们对微观世界的理解,还在众多领域引发了革命性的变革,如半导体技术、激光物理、量子计算等。
可以说,没有量子力学的发展,我们的现代科技将难以达到如今的高度。
周世勋先生的《量子力学教程》以其清晰的逻辑和系统的阐述,深受广大师生的喜爱。
然而,对于学习者来说,在学习过程中难免会遇到一些难题,这时候答案的作用就显得尤为重要。
这份第二版答案的第一个显著特点是准确性。
每一道题目的解答都经过了精心的推导和论证,确保了答案的正确性。
这对于学习者来说是至关重要的,因为错误的答案可能会导致对概念的误解,进而影响后续的学习。
其次,答案的解析过程详细而清晰。
它不仅仅给出了最终的结果,更重要的是展示了如何从问题出发,运用所学的量子力学知识和方法,逐步推导出答案。
这种详细的解析有助于学习者理解解题的思路和技巧,从而提高自己的解题能力。
比如说,在处理一些复杂的波函数问题时,答案会详细地说明如何进行变量分离、如何运用边界条件,以及如何根据物理意义进行合理的假设和简化。
这让学习者能够明白每一个步骤的依据和目的,而不是仅仅记住一个机械的解题过程。
此外,答案还注重对知识点的总结和归纳。
在解答完一组相关的题目后,会对涉及到的重要概念和方法进行总结,帮助学习者加深对这些知识点的理解和记忆。
这对于构建完整的量子力学知识体系非常有帮助。
以量子态的叠加原理为例,答案在解答相关题目后,会总结叠加原理的适用条件、常见的应用场景以及与其他原理的联系和区别。
这样的总结能够让学习者更好地把握这一重要概念的本质。
周世勋《量子力学教程》(第2版)笔记和课后习题(含考研真题)详解(第4章 态和力学量的表象——第6章
n
中,以 Sn 为矩阵元的矩阵 S 称为变换矩阵。设态 在 A,B 表象中的矩阵表示分别为 a,
b,S 为两表象之间的幺正变换,则态在两表象之间的变换为
b S 1a ,算符在两表象之间的变换为 F ' S 1FS 。
1
(2) 2
动量本征函数,则
C( p,t) 即为该态在动量表象中的波函数。 C( p,t) 的物理意义为: C( p.t) 2 dp 表示在该态
中,测量粒子的动量所得结果在 p 到 p+dp 范围内的几率。
二、幺正变换
1.变换矩阵
满足 S S 1 的矩阵称为幺正矩阵,幺正矩阵不是厄米矩阵。由幺正矩阵所表示的变
1 / 50
圣才电子书 十万种考研考证电子书、题库视频学习平台
a1
(t
)
a2 (t) 函数,则 (x,t) 在力学量 Q 表象中矩阵表示可写为: 。
a
n (t
)
aq (t)
3.算符 F 在 Q 表象中的矩阵表示.
算符 F 在 Q 表象中对应一个矩阵(方阵),矩阵元是 Fnm un* Fumdx ,平均值公式是
3.其他常用关系式
(1)粒子数算符本征方程 N | n n | n ;
(2)哈密顿量本征方程
H
p ( x)
1
i px
1e
(2 ) 2
本征方程
p p'
p ' p'
C( p,t) ( p' p) p ( p p' ) p' ( p p' )
5.一个典型的例子分析
大学物理量子物理二
h
mv
0
h
2h 2 (15-13) 0 sin 由(1)、(2a)、(2b)解得: m0 c 2 其中m0为 电子静止质量, c=h /m0c 称为康普顿波长。 表明: 0与散射角有关,与散射物质无关。
康普顿效应说明:
0
h
cos +mvcos
(2a)
0
h
sin mvsin
(2b)
(1) 光子确实有一定的质量、动量和能量;
(2) 在微观粒子的相互作用过程中,严格 遵守相对论及能量和动量守恒定律。
例3 已知X射线光子能量为0.6MeV,若在康普顿散射中散射 光子的波长变化了20%,试求反冲电子的动能。 解: 散射前电子为静止自由电子 则反冲电子的动能为: k=入射光子与散射光子能量之差 E
第十五章
量子物理
(第二讲)
作业:P390 15-16 15-17 15-21 15-25 15-27
回顾康普顿效应: 光子和电子的相对论能量和动量守恒 h0+m0c2 = h +mc2 (1)
或:h0 h = mc2 m0c2 h h n0 n mv (2) (1)
(n=k+1,k+2,) (15-17)
——广义巴耳末公式
二.里兹并合原理
~ T ( k ) T ( n)
参变量k, n为正整数 (n>k); T(k)、T(n) — 称为光谱项。
对氢原子光谱: T(k)=R/k2, T(n) =R/n2
对碱金属光谱: T(k)=R/(k+)2,T(n) =R/(n+)2
周世勋《量子力学教程》(第2版)-绪论笔记和课后习题(含考研真题)详解(圣才出品)
子由能量为 Em 的定态跃迁到能量为 En 的定态时所吸收或发射的辐射频率 满足:
四、微粒的波粒二象性
1.玻尔理论所遇到的困难说明探索微观粒子运动规律的迫切性
在光的波粒二象性的启示下,德布罗意提出微粒具有波粒二象性的假设。
微粒的粒子性(E,p)与波动性( , 或,k )的关系满足
E h
p
h
n
k
这公式称为德布罗意公式,或德布罗意关系。
戴维孙-革末的电子衍射实验 该实验充分说明电子具有波动性,验证了德布罗意波的存在。
vd
v
8hv 3 c3
1
hv
dv ,
e kT 1
以及
(1)
v c ,
(2)
v dv d ,
(3)
有
dv d
v
()
d
d
c
v () 2
c
8 hc 1
5
hc
ekT 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,
的,这样则有
mT
hc xk
把 x 以及三个物理常量代入到上式便知
b mT 2.9 103 m K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较
高等教育出版社量子力学教程第二版课后答案周世勋陈灏着
λmT
=
hc xk
把 x 以及三个物理常量代入到上式便知
λmT = 2.9 × 10−3 m ⋅ K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰 值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定 温度的高低。
1.2 在 0K 附近,钠的价电子能量约为 3eV,求其德布罗意波长。
∫ pdq = nh
其中 q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿 运动轨道积一圈,n 是正整数。
(1)设一维谐振子的劲度常数为 k,谐振子质量为μ,于是有
E = p 2 + 1 kx 2 2µ 2
这样,便有
p = ± 2µ(E − 1 kx 2 ) 2
这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好 表示一个来回,运动了一圈。此外,根据
面波。 rr
解: J1和J 2只有r分量
在球坐标中
∇
=
r r0
∂ ∂r
+
r eθ
1 r
∂ ∂θ
+
r eϕ
1 r sinθ
∂ ∂ϕ
8
(1)
r J1
=
ih 2m
(ψ
1∇ψ
* 1
−ψ1*∇ψ1 )
=
ih [1 2m r
eikr
∂ ∂r
(1 r
e −ikr
)
−
1 r
e −ikr
∂ ∂r
(1 eikr r
r )]r0
1.3 氦原子的动能是 E = 3 kT (k 为玻耳兹曼常数),求 T=1K 时,氦原子的德 2
《量子力学教程》第二版答案周世勋原著
《量子力学教程》第二版答案周世勋原著量子力学,这一神秘而又充满魅力的科学领域,对于许多学习者来说,既是挑战,也是探索未知的奇妙之旅。
周世勋先生的《量子力学教程》第二版无疑是众多教材中的经典之作。
而与之配套的答案,更是帮助我们在学习的道路上拨开迷雾、找准方向的重要工具。
在学习量子力学的过程中,理解那些抽象的概念和复杂的数学推导并非易事。
这本书的答案就像是一位耐心的导师,在我们困惑时给予指引。
它不仅告诉我们每一道题目的最终结果,更重要的是展示了得出结论的思维过程和推导步骤。
以波函数这一重要概念为例。
在书中的题目中,常常会涉及到波函数的求解和性质的探讨。
答案中会清晰地展示如何根据给定的条件,运用薛定谔方程逐步求解波函数。
通过答案的解析,我们能够明白为什么要采用特定的方法,以及每一步操作的背后原理。
这使得我们不仅仅是机械地记住解题方法,而是真正理解了波函数的本质和其在量子力学中的重要意义。
再来看量子力学中的算符。
算符的运算和性质是学习的重点也是难点。
答案对于涉及算符的题目,会详细地解释每一个算符的作用和运算规则,以及如何将其应用到具体的问题中。
比如,对于动量算符和能量算符,答案会展示如何通过它们来描述粒子的运动状态和能量特征。
这种详细的解释帮助我们建立起对算符的直观认识,从而更好地掌握量子力学的核心内容。
在处理态叠加原理的题目时,答案会通过具体的例子,让我们清楚地看到不同态之间是如何叠加的,以及叠加后的结果所代表的物理意义。
这对于我们理解微观粒子的不确定性和量子态的多样性具有重要的指导作用。
然而,仅仅依赖答案并不能让我们真正掌握量子力学。
答案只是辅助我们学习的工具,我们需要通过自己的思考和努力,去理解每一个概念和方法。
在参考答案的过程中,我们要学会举一反三,思考如果题目条件发生变化,应该如何运用所学的知识去解决问题。
同时,对于答案中的每一个步骤,我们都要认真思考其合理性和逻辑性。
如果有不明白的地方,要及时查阅教材和相关的参考资料,或者与同学、老师进行讨论。
南开大学量子力学导论考研真题资料含答案解析
南开大学量子力学导论考研真题资料含答案解析南开大学量子力学导论考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师,缺一不可。
在所有的专业课资料当中,真题的重要性无疑是第一位。
分析历年真题,我们可以找到报考学校的命题规律、题型考点、分值分布、难易程度、重点章节、重要知识点等,从而使我们的复习备考更具有针对性和侧重点,提高复习备考效率。
真题的主要意义在于,它可以让你更直观地接触到考研,让你亲身体验考研的过程,让你在做题过程中慢慢对考研试题形成大致的轮廓,这样一来,你对考研的"畏惧感"便会小很多。
下面是给大家找出来的南开大学量子力学导论考研真题解析含答案部分。
1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长λm与温度T成反比,即λmT=b (常量):并近似计算b的数值,准确到二位有效数字。
1.2在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
1.3氦原子的动能是E=3kT/2(k为玻尔兹曼常数),求T=1K时,氦原子的德布罗意波长。
1.4利用波尔-索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场H=10特拉斯,玻尔磁子MB=9*10-24焦耳/特拉斯,试计算动能的量子化间隔ΔE,并与T=4K及T=100K的热运动能量相比较。
以上真题答案解析都是来自:“南开大学物理学院光学专业(光学+量子力学导论)考研红宝书”资料。
这套资料中不仅包含历年真题的答案解析,纵向讲解近数年的真题,同时真题试题的讲解过程中要糅合进相应的知识点,通过分析真题带领考生掌握历年命题规律,预测下一年的考试重点。
还包含专业动向介绍、本科授课课件讲义和期末模拟试卷、非常详细的为大家讲解每个章节的重点,政治、英语、数学的辅导材料都是赠送的。
大家可以参考一下。
研究南开大学量子力学导论考研真题,重点是要训练自己解答分析题的能力,做完以后,考生一定要将自己的答案和参考答案进行比较,得出之间的差别,然后对参考答案的答题角度进行分析,最终总结出自己的解答方法,自己慢慢体会,如果你能把一道题举一反三,那你的复习效果就能达到事半功倍。
量子力学(第二版)周世勋原著课后习题整理版
证明在定态中,几率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。
2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。
解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。
粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。
量子力学(二)习题参考答案
ψ 1 (− a ) = ψ 2 (− a ) → −C sin ka = A1e −α a
比较以上两式可以得到
B2 = − A1
A1eα x , x < − a 于是有 ψ 0 ( x) = C sin kx, −a < x < a − A e −α x , x > a 1
——奇宇称态!
+∞
( p x x − Et )
4) 、由归一化条件 ψ * ( x)ψ p ' ( x )dx = δ ( p ' − p '' ) 可定出归一化常数 p'
−∞
∫
A= 1
2π h h2 d 2 ,U = 0 2 I dϕ 2
µ =− 4、平面转子(见教科书)—— H
其解为: E m =
m2 h2 , m = 0, ±1, ±2 …… 2I 1 imϕ e , 2π
比较得到:
B2 = A1
于是得
A1eα x , x < − a ψ e ( x) = C cos kx, − a < x < a −α x A1e , x > a
——偶宇称态!
(23)
其中的 C,A1 可由归一化条件和连续性条件定出。 7、 δ 形势—— U ( x ) = f ( x )δ ( x) U(x) E 1 0 2 x (1)
①
②
由①和②消去 B
→ 2 A = (1 +
2k1 k2 k +k )C = 1 2 C → C = A k1 k1 k1 + k 2
③
由①和②消去 C
→
A − B k2 = → A + B k1
量子力学教程答案(第二版)
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有p h =λ nmm m E c hc Eh e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
南开大学陈省身数学研究所《802量子力学》(数学所)历年考研真题专业课考试试题
【6】质量为m的粒子在宽度为L的一维无限深势阱中运动,基态能 是:______
A. B. C. D.
【7】质量为m的粒子在宽度为一维无限深势阱中运动,基态波 函数是:______
A. B. C. D.
【8】对一维无限深势阱问题,解定态薛定谔方程,解出能量本征值 是 ,对应的本征函数是 ,以下哪个波函数表示的是所谓“定 态”:______
2006年南开大学量子力学考研真题
2005年南开大学量子力学考研真题
2004年南开大学量子力学考研真题
2003年南开大学量子力学考研真题
2002年南开大学量子力学考研真题
2001年南开大学量子力学考研真题
2000年南开大学量子力学考研真题
1999年南开大学量子力学考研真题
2.在量子力学中,力学量用______描述。力学量算符必为______ 算符,以保证其______为实数。两个力学量同时具有确定值得条件是两 个力学量算符______。
3.全同粒子体系的波函数的交换对称性与粒子的自旋有确定的关 系。例如光子和 介子,其自旋为 的______倍,波函数对两个粒子交 换总是对称的,被称为______;而电子、质子以及中子,它们的自旋是
目 录
第一部分 南开大学量子力学(数学所)考研真题 2007年南开大学705量子力学导论考研真题 一、填空题(每空2分,共20分) 二、证明题(每题5分,共15分) 三、(10分) 四、(10分) 五、(15分) 六、(20分) 七、(25分) 八、(25分) 九、(10分) 2006年南开大学量子力学考研真题 2005年南开大学量子力学考研真题 2004年南开大学量子力学考研真题 2003年南开大学量子力学考研真题 2002年南开大学量子力学考研真题 2001年南开大学量子力学考研真题