分式的概念及基本性质

合集下载

分式的概念与运算

分式的概念与运算

分式的概念与运算分式,也可称为有理数的形式,是表示两个整数之间关系的一种数学表达式。

它由一个分子和一个分母组成,分子表示除法的被除数,分母表示除法的除数。

在数学中,分式广泛应用于各种实际问题的求解与计算中。

本文将介绍分式的概念、基本性质,以及分式的加减乘除运算。

一、分式的概念分式的本质是一个数的表达方式,它可以表示两个整数之间的比例关系。

例如,$\frac{1}{2}$表示整数1与整数2之间的比值,读作“1除以2”。

在分式中,分子和分母可以是任意整数,并且分母不能为零。

当分子为0时,分式的值为0。

二、分式的基本性质1. 分式的值可以是一个整数、一个真分数或带分数。

当分子大于分母时,分式的值大于1;当分子小于分母时,分式的值小于1。

2. 分式可以进行化简。

也就是说,可以约分分式中的分子和分母,将它们的公约数约掉,使得分子和分母互质。

例如,$\frac{2}{4}$可以化简为$\frac{1}{2}$。

3. 分式可以进行扩展。

也就是说,可以将分子和分母同时乘以一个非零整数,得到等价的分式。

例如,$\frac{3}{5}$可以扩展为$\frac{6}{10}$。

三、分式的加减乘除运算1. 分式的加法和减法分式的加法和减法遵循公式:$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$其中$a$、$b$、$c$和$d$为任意整数。

具体来说,对于分式$\frac{a}{b}$和$\frac{c}{d}$,只需将两个分式的分母取公倍数得到新的分母,然后将分子相应操作后得到新的分子,即可得到结果。

示例:$$\frac{3}{5} + \frac{2}{3} = \frac{9}{15} + \frac{10}{15} =\frac{19}{15}$$$$\frac{7}{8} - \frac{1}{4} = \frac{7}{8} - \frac{2}{8} = \frac{5}{8} $$2. 分式的乘法和除法分式的乘法和除法遵循公式:$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} =\frac{ad}{bc}$$其中$a$、$b$、$c$和$d$为任意整数。

分式及分式的基本性质

分式及分式的基本性质
分式及分式如A/B(A,B是整式,且B中含有字母,B≠0)的式子叫分式。
2、分式有意义的条件:当B≠0时,分式有意义)。
3、分式的值为零的条件:当A=0,B≠0时,分式值为0。
4、有理式:整式和分式统称为有理式。
5、分式的基本性质:分式的分子、分母同乘以或除以一个不为0的整式,分式的值不变。
注:(1)约分和通分的依据都是分式的基本性质
(2)分式的约分和通分都是互逆运算过程。
①约分——最简分式②通分——最简公分母
6、分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
7、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。
8、分式的通分步骤:
先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。
注:最简公分母的确定方法:
系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。

16.1 分式及其基本性质 课件-华师版数学八年级下册

16.1 分式及其基本性质 课件-华师版数学八年级下册
而与分式的分子是否为 0 无关 .
感悟新知
知2-练
例2 x 满足什么条件时下列分式有意义?
(1)
2 x+1 5 x-3
;(2)
x
2 -1
;(3)
x+1 x2+3
;(4)
x-2
x-2 x+4
.
解题秘方:分母的值不等于0 时,分式有意义.
感悟新知
知2-练
(1)
2 x+1 5 x-3
;
解:当5x-3 ≠ 0,即x ≠
4 m
,-2
x
2, 3 5+y
,2 5
,x
2+y 6
2
,p2 p
,1 4
3
x-y
பைடு நூலகம்
,
2
x
x 3+3
,3a+b
2
, a-b a+b+c
.
知1-练
感悟新知
知1-练
解题秘方:利用分式的三要素判断即可,关键是分
母中是否含有字母.
解:分式有 4 , 3 ,p2 , a-b ; m 5+y p a+b+c
整式有-2x2,2,x2+y2 ,1 3x-y,3a+b .
第十六章 分式
16.1 分式及其基本性质
学习目标
1 课时讲解
分式的概念 分式有意义和无意义的条件 分式的值为 0 的条件 分式的基本性质 分式的约分 分式的通分
感悟新知
知识点 1 分式的概念
知1-讲
1. 定义:形如AB (A, B是整式,且B中含有字母, B≠ 0)
的式子,叫做分式 . 其中 A 叫做分式的分子, B 叫做
;
-3n (2) ;
8m
-3n - 3n ; 8m 8m

分式(1)(分式概念、基本性质)

分式(1)(分式概念、基本性质)

分式(1)(分式概念、基本性质) 一、基础知识梳理:1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA做分式。

A 叫做分子,B 叫做分母. 分式的概念要注意以下几点:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;(3)分式有意义的条件是分母不能为0.2.分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的整式,分式的值不变.3.分式的约分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. 4.最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 二、针对性练习: (一)、填空题: 1.对于分式122x x -+(1)当________时,分式的值为0 ;(2)当________时,分式的值为1;(3)当________时,分式无意义; (4)当________时,分式有意义.2.填充分子,使等式成立;()222(2)a a a -=++; ()22233x x x -=-+- 3.填充分母,使等式成立:()2223434254x x x x -+-=--- ; ()21a a a c ++=(a ≠0). 4.化简:233812a b c a bc =_______;6425633224a b c a b c = ;224488a ba b-=- ;223265a a a a ++=++ ;()()x y a y x a --322= . 5.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数:0.010.50.30.04x y x y -=+ ;y x y x 6.02125.054-+= ;=-+b a ba 41323121 . 6.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是正数:(1)2211x x x y +++-= ; (2)343223324x x x x -+---= .7.(1)已知:34y x =,则2222352235x xy y x xy y-++-= . (2)已知0345x y m==≠,则x y m x y m +++-= . 8.若||x x x x -+-=+123132成立,则x 的取值范围是 . (二)、选择题:9.在下列有理式221121a x x m n x y x y ya b ,,,,++-+-()()中,分式的个数是( ) A. 1B. 2C. 3D. 410.把分式xx y+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变 11.下列等式正确的是 ( )A .22b b a a =B .1a b a b -+=--C .0a b a b +=+D .0.10.330.22a b a ba b a b--=++12.与分式a ba b-+--相等的是 ( )A .a b a b +- B .a b a b -+ C .a b a b +-- D a ba b--+ 13.下列等式从左到右的变形正确的是 ( )A .b a =11b a ++B b bm a am =C .2ab b a a= D .22b b a a =14.不改变分式的值,使21233xx x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )A .22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .22133x x x --+ 15.将分式253xyx y -+的分子和分母中的各项系数都化为整数,应为 ( )A .235x y x y -+ B .151535x y x y -+ C .1530610x y x y -+ D .253x yx y-+16.下列各式正确的是 ( )A .c c a b a b -=-++ B .c c a b b a -=-+- C .c c a b a b -=-++ D .c ca b a b-=-+- 17.不改变分式的值,分式22923a a a ---可变形为 ( )A .31a a ++ B .31a a -- C .31a a +- D .31a a -+ 18.不改变分式的值,把分式23427431a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中最高项系数为正,正确的变形是 ( )A .23437431a a a a a a -++-+- B .23347413a a a a a a -+--++C .23434731a a a a a a +-+--+-D .23347413a a a a a a -++--++19.已知a b ,为有理数,要使分式ab的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00, B. a b ≤<00,C. a b ≥>00,D. a b ≥>00,,或a b ≤<00,20.已知113a b-=,求2322a ab b a ab b ----的值( ) A. 12 B. 23 C. 95D. 4(三)、解答题:21.已知:3x y -=20,求x xy y x xy y 2222323-++-的值.22.已知:x x 210--=,求x x441+的值. 23.化简:x x x x x x 32325396512++-++-. 24.把分式1882483222a b ab a b++++化为一个整式和一个分子为常数的分式的和,并且求出这个整式与分式的乘积等于多少?25. 已知:x y y y +=--=22402,,求y xy-的值.26. 已知:a b c ++=0,求a b c b c a c a b()()()1111113++++++的值. 27.已知:,ac zc b y b a x -=-=-求z y x ++的值.28.已知:,0,1=++=++z cy b x a c z b y a x 求222222cz b y a x ++的值.。

分式的基本概念及性质

分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。

分式的意义和性质

分式的意义和性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------分式的意义和性质分式的意义和性质一、分式的概念 1、用 A、 B 表示两个整式, AB 可以表示成的形式,其中 A 叫做分式的分子, B 叫做分式的分母,如果除式 B 中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子 A 可取任意数值,但分母 B 不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3、(1)分式:,当 B=0 时,分式无意义。

(2)分式:,当 B0 时,分式有意义。

(3)分式:,当时,分式的值为零。

(4)分式:,当时,分式的值为 1。

(5)分式:1 / 10,当时,即或时,为正数。

(6)分式:,当时,即或时,为负数。

(7)分式:,当时或时,为非负数。

二、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:(M 为不等于零的整式) 3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法则的依据是分式的基本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。

三、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

初二数学分式知识点

初二数学分式知识点

初二数学分式知识点一、引言分式是初中数学中的重要概念,它在代数运算、方程求解以及后续的高中数学学习中都扮演着关键角色。

本文旨在总结初二数学中分式的基本概念、性质、运算规则以及应用实例,帮助学生掌握分式相关知识点。

二、分式的定义1. 分式:形如 \(\frac{a}{b}\) 的代数式,其中 \(a\) 称为分子,\(b\) 称为分母,\(b \neq 0\)。

2. 条件:分母不能为零,因为除以零没有定义。

三、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。

2. 符号规则:分式的符号由分子和分母的符号决定,分子分母同号结果为正,异号结果为负。

3. 约分:通过找出分子和分母的最大公约数并约去,简化分式。

4. 通分:将多个分式转化为具有相同分母的分式,便于进行加减运算。

四、分式的运算规则1. 加减法:- 同分母分式相加减:分子相加减,分母不变。

- 异分母分式相加减:先通分,再按照同分母分式进行加减。

2. 乘法:- 分式的乘法:分子乘分子,分母乘分母。

3. 除法:- 分式的除法:将除数的分式取倒数,然后进行乘法运算。

4. 乘方:- 分式的乘方:分子和分母分别取方。

五、分式的解方程1. 一元一次方程:通过移项和化简分式,求解未知数。

2. 一元二次方程:在解一元二次方程时,要注意分式的化简和检验根。

六、分式的应用题1. 比例问题:利用分式表示比例关系,解决实际问题。

2. 工作问题:通过分式方程解决工作效率和工作时间的问题。

3. 浓度问题:使用分式计算溶液的稀释和浓缩。

七、常见题型与解题技巧1. 化简求值:熟练掌握分式的化简方法,准确求出分式的值。

2. 分式方程:注意检验解的有效性,避免出现除以零的情况。

3. 应用题:理解题意,找出等量关系,建立分式方程求解。

八、总结分式是初中数学的重要内容,掌握分式的性质和运算规则对于提高数学成绩至关重要。

通过不断的练习和应用,可以加深对分式概念的理解,提高解题能力。

分式归纳总结

分式归纳总结

分式归纳总结分式是数学中常见的一种表达方式,它由一个分子和一个分母组成,分子和分母都是数或者代数式。

在日常生活和学习中,我们经常遇到各种各样的分式,学会对分式进行归纳总结,可以帮助我们更好地理解和应用分式。

一、分式的基本概念和性质1. 分式的定义:分式是由分子和分母用横线分隔表示的数或者代数式。

2. 分式的性质:分式可以进行加、减、乘、除等运算。

分式可以化简为最简形式,即分子与分母没有公因数。

二、分式的分类和举例1. 真分式:分子的绝对值小于分母的绝对值,如1/2、3/4等。

2. 假分式:分子的绝对值大于等于分母的绝对值,如5/4、7/2等。

3. 显分式:分子为非零数,如3/1、4/1等。

4. 隐分式:分子为零,如0/5、0/9等。

三、分式的运算与应用1. 分式的加法和减法:对于相同分母的分式,可以直接对分子进行加或减。

对于不同分母的分式,需要先通分再进行运算。

例如:1/2 + 1/3 = 3/6 + 2/6 = 5/63/4 - 1/5 = 15/20 - 4/20 = 11/202. 分式的乘法和除法:将分子与分母分别相乘或相除。

例如:(2/3) * (3/4) = 6/12 = 1/2(4/5) / (2/3) = (4/5) * (3/2) = 12/10 = 6/53. 分式的应用:分式在实际生活中有很多应用,如比例、百分数、利润分成等问题。

例如:根据工资比例计算两人的收入比例:小明工资是2000元,小红工资是3000元,求两人工资的比例。

小明的工资比例为:2000 / (2000+3000) = 2000 / 5000 = 2/5小红的工资比例为:3000 / (2000+3000) = 3000 / 5000 = 3/5四、分式的化简与扩展1. 分式的化简:通过约分化简一个分式,使得分子与分母互质。

例如:8/12 = 2/3,可以将分式8/12化简为2/3。

2. 分式的扩展:将一个分式拆分为多个分式的和或差,扩展了分式的表达形式。

分式的知识点总结

分式的知识点总结

分式的知识点总结分式是数学中的一个重要概念,广泛应用于各个领域。

掌握分式的知识对于数学学习以及实际生活中的应用都具有重要意义。

本文将总结分式的相关概念、性质以及常见的运算方法,以帮助读者更好地理解和应用分式。

一、分式的基本概念分式由分子和分母两部分组成,用分数线隔开,分母不能为零。

分式可以表示一个有理数或未知数的比例关系。

通常表示为:a/b,其中a称为分子,b称为分母。

二、分式的类型1. 真分式:分式的分子小于分母的分式,例如:2/3。

2. 假分式:分式的分子大于等于分母的分式,例如:5/4。

3. 带分数:由整数和真分式组成的分数,例如:1 3/5。

三、分式的化简与约分化简分式是将分子和分母中的公因式约去,使得分子和分母没有其他公因式的过程。

约分是将分子和分母中的公因式约去,使得分子和分母互质的过程。

四、分式的运算1. 分式的加法和减法:分式的加法和减法的运算方法相同:①将分式化为通分分式;②对分子进行加、减运算,分母保持不变;③化简结果(如果需要)。

2. 分式的乘法:两个分式相乘时,将分子乘以分子,分母乘以分母,然后化简结果(如果需要)。

3. 分式的除法:两个分式相除时,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子,然后化简结果(如果需要)。

五、分式方程的解法1. 清除分母法:将方程两边的分式的分母去掉,得到一个整式方程;解这个整式方程,找到方程的解;检验这些解是否满足原方程。

2. 相乘法:将方程中的分式两边同时乘以一个适当的整式,消去分式得到一个整式方程;解这个整式方程,找到方程的解;检验这些解是否满足原方程。

六、分式在实际生活中的应用1. 财务计算:分式用于计算各种财务比例,如股息率、盈利能力等;2. 比例问题:分式用于解决比例关系的各种问题,如物件的分配、速度比较等;3. 科学计算:分式用于科学实验和研究中的测量、计算等;4. 经济学:分式用于解决经济学中的各种问题,如经济增长率、通货膨胀率等。

分式的定义和基本性质

分式的定义和基本性质

分式的定义和基本性质分式是数学中一个重要的概念,它在各个领域都有广泛的应用。

本文将介绍分式的定义和基本性质,并通过例题详细说明。

一、分式的定义在数学中,分式是指一个数的形式为a/b的表达式,其中a和b都是整数,b不等于0。

其中a称为分子,b称为分母。

分式也可以写成带分数的形式,如n(a/b),其中n是非负整数,a和b都是整数,b不等于0。

分式可以表示一个数,也可以表示一个比率或比例关系。

在代数中,分式可以用来表示一种运算,称为除法。

二、分式的基本性质1. 乘法性质:两个分式相乘,分子和分母分别相乘。

例如,(a/b) * (c/d) = (a * c) / (b * d)2. 除法性质:一个分式除以另一个分式,相当于将被除分式的倒数乘以除数分式。

例如,(a/b) / (c/d) = (a * d) / (b * c)3. 加法性质:两个分式相加,要求它们的分母相同,分子相加即可。

例如,(a/b) + (c/b) = (a + c) / b4. 减法性质:两个分式相减,要求它们的分母相同,分子相减即可。

例如,(a/b) - (c/b) = (a - c) / b5. 约分性质:分式可以进行约分,即分子和分母同时除以一个相同的非零整数。

例如,(4/8)可以约分为(1/2),(12/18)可以约分为(2/3)。

三、例题解析1. 计算下列分式的值:(3/5) + (7/10)解:首先找到两个分式的最小公倍数,即5和10的最小公倍数为10。

将两个分式的分子和分母按照最小公倍数进行扩展,得到:(3/5) + (7/10) = (3 * 2/5 * 2) + (7 * 1/10 * 1) = 6/10 + 7/10 = 13/102. 计算下列分式的值:(2/3) * (4/5)解:直接按照乘法性质相乘,得到:(2/3) * (4/5) = (2 * 4) / (3 * 5) = 8/153. 约分下列分式:(12/18)解:分子和分母同时除以它们的最大公约数,即12和18的最大公约数为6。

分式的概念及基本性质 分式的运算

分式的概念及基本性质 分式的运算

分式的概念及根本性质分式的运算一. 知识精讲及例题分析〔一〕知识梳理1. 分式的概念形如AB〔A、B是整式,且B中含有字母,B≠0〕的式子叫做分式。

其中A叫分式的分子,B叫分式的分母。

注:〔1〕分式的分母中必须含有字母〔2〕分式的分母的值不能为零,否则分式无意义2. 有理式的分类3. 分式的根本性质分式的分子与分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变。

A BA MB M=⨯⨯,ABA MB M=÷÷〔M为整式,且M≠0〕4. 分式的约分与通分〔1〕约分:把一个分式的分子与分母的公因式约去,叫分式的约分。

步骤:①分式的分子、分母都是单项式时②分子、分母是多项式时〔2〕通分:把n个异分母的分式分别化为与原来的分式相等的同分母的分式,为进行分式加减奠定根底。

通分的关键是精确求出各个分式中分母的最简公分母,即各分母全部因式的X次幂的积。

求最简公分母的步骤:①各分母是单项式时②各分母是多项式时5. 分式的运算〔1〕乘除运算〔2〕分式的乘方〔3〕分式的加减运算〔4〕分式的混合运算【典型例题】例1. 以下有理式中,哪些是整式,哪些是分式。

ab a 2,1x,a3,--xx y,x+1π,14()x y-,1ya b()+,12a-例2. 以下分式何时有意义〔1〕xx-+12〔2〕11||x-〔3〕412xx-〔4〕xx x22+例3. 以下分式何时值为零以下各式中x为何值时,分式的值为零?〔1〕433xx+〔2〕xx-12〔3〕212--+||()()xx x1. 填空。

〔1〕x x xy y +=≠10()() 〔2〕3222xy x xx -=-()〔3〕x y x y x y x y -+=--≠()()22〔4〕a ab ab a b2-=-()2. 不改变分式的值,将以下分式的分子、分母中的系数化为整数。

〔1〕0300205...x yx y+-〔2〕13141223x yx y -+ 例5. 约分〔1〕-215635210a b ca b d〔2〕31263ab a b a b a ()()-- 〔3〕x x x 22444-+-〔4〕()()()()32322532222a a a a a a a a ---+-+ 例6. 通分:〔1〕345612222a b b c ac ,,- 〔2〕x x x x x x++---22223842,,例7. 分式运算1. 计算:〔1〕-⨯-a b c cd ab 22365(); 〔2〕a a a a a a 2327844324+--⨯-+ 〔3〕x xy y xy y xy y x xy y 22222222++-÷+-+ 〔4〕()ab b a b a b -÷-+2222. 计算:〔1〕()()()-⋅-⋅-a b a b 8761; 〔2〕()()()-⋅-÷--x yy x y x 22234 3. 计算:1111212x x x --+-+ 4. 计算:111a a +-- 5. 计算:()a a a aa a a +-+-÷+-+141233222 6. 计算:14413212222-++÷-⋅++-x x x x x x x () 7. 计算:11122x yx y x y -÷++-() 例8. 能力提高题1. 已知x x 2310-+=,求x x221+的值。

七年级下册数学分式

七年级下册数学分式

七年级下册数学分式
一、分式的基本概念与性质
1.分式的定义:分式是指一个含有两个数的表达式,其中分母不能为零。

分式的形式为a/b,其中a称为分子,b称为分母。

2.分式的基本性质:
(1)分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。

(2)分式的分子与分母同时加减同一个整式,分式的值不变。

(3)分式的分子与分母同时乘以(或除以)同一个有理数,分式的值不变。

二、分式的运算
1.分式加减法:分式加减法实质上是通分后的同分母分式的加减运算。

首先确定最简公分母,然后将各分式的分子按照最简公分母进行变换,最后进行加减运算。

2.分式乘除法:分式乘除法实质上是分子与分母的乘除运算。

分子与分母的乘法遵循分配律,除法则是分子与分母的乘法的逆运算。

3.乘法公式在分式中的应用:平方差公式、完全平方公式等乘法公式在分式运算中同样适用。

三、分式方程与不等式
1.分式方程的解法:先将分式方程转化为整式方程,然后求解整式方程,最后验根。

2.分式不等式的解法:与分式方程类似,先将分式不等式转化为整式不等式,然后解整式不等式,最后验根。

四、分式应用题
1.实际问题与分式的联系:许多实际问题都可以用分式来表示,如速度与时间的关系、单价与数量的关系等。

2.解题策略与方法:分析题目中的数量关系,将未知数用分式表示,然后建立分式方程或不等式,最后求解。

分式是七年级下册数学的重要内容,掌握分式的基本概念、运算方法、方程与不等式的解法以及应用题的解题策略,有助于提高我们的数学素养。

七年级上分式的概念及性质

七年级上分式的概念及性质

第一节 分式的概念、性质及运算一、基础知识 1、分式的概念分式概念:一般地,用A 、B 表示两个整式(其中B ≠0),A ÷B 就可以表示为BA的形式,如果B 中含有字母,式子BA叫做分式。

A 叫做分式的分子,B 叫做分式的分母。

分式有意义、无意义,分式的值为零的条件: ① 分式有意义的条件是分式的分母不为0;② 分式无意义的条件是分式的分母为0; ③ 分式的值为0的条件是分子为0,且分母不为0.2、分式性质:若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;即A A M A N B B MB N ∙÷==∙÷,其中M 、N 为整式,且0,0,0B M N ≠≠≠.例:()()339315535x x x x ==分式的约分:把一个分式的分子与分母的公因式约去的过程叫约分;注意:分式约分前经常需要先因式分解.最简分式:如果一个分式的分子与分母没有公因式(1除外),这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算式 (1)分式的乘除法法则:两个分式相乘,将两个分式的分子的乘积作为分子,分母相乘的积作为分母。

即:.BDAC D C B A =⋅ 两个分式相除时,将除式的分子和分母颠倒位置后,再与被除式相乘。

即:BCAD C D B A D C B A =⋅=÷.注:计算结果要化为最简分式。

分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.例:22()x y(2)分式加减法法则:同分母分式相加减,分母不变,分子相加减。

即;cba cbc a ±=±异分母分数相加减,先将它们化为同分母分式,然后再相加减。

bdbcad bd bc bd ad d c b a ±=±=±。

将几个异分母分式化为与原分式值相等的同分母分式的过程叫通分。

分式的概念与基本性质

分式的概念与基本性质

分式的概念当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式. 一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义. 如:分式1x,当0x ≠时,分式有意义;当0x =时,分式无意义. 分式的值为零分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a am b bm =,a a mb b m÷=÷(0m ≠).注意:①在运用分式的基本性质时,基于的前提是0m ≠;②强调“同时",分子分母都要乘以或者除以同一个“非零”的数字或者整式; ③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】 在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +【考点】分式的基本概念【解析】根据分式的概念可知,分式的分母中必然含有字母,由此可知1t,2211x x x -+-,24x x +,21321x x x +--,323a a a +为分式.(2)x x +,5a ,2m ,3x-为整式.【答案】1t,1x -,24x x +,21321x x x +--,3a 为分式(2)3x x +,52a ,2m ,3πx-为整式.【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个 C 。

分式概念知识点总结

分式概念知识点总结

分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。

分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。

分数的分母表示被分成的份数,分子表示取了多少份。

例如,2/3 表示整体被分成了3份,取了其中的2份。

二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。

2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。

3. 显分式:分式中的分子和分母都是已知的数。

4. 隐分式:未知数出现在分子或分母中。

三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。

2. 若分数中含有开平方,可将分子或分母的平方根提出来。

3. 若分数中含有负号,可将负号移到分子或分母。

五、分式的运算1. 分式的四则运算:包括加、减、乘、除。

2. 分式的化简:将分数化成最简形式。

3. 分式的混合运算:结合整数和分数进行运算。

六、分式方程1. 单分式方程:方程中只有一个分式。

2. 复分式方程:方程中含有多个分式。

七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。

2. 百分比问题:将百分数化成分式,进行计算和比较。

3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。

八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。

2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。

九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。

01分式的概念和性质

01分式的概念和性质

分式章分式的概念和性质北京四中龚剑钧知识要点:一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.说明:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况. (3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:(其中M是不等于零的整式).四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.根据分式的基本性质有根据有理数除法的符号法则有分式与互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.例题分析:1、指出下列各式中的整式与分式:4.、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.5.下列分式变形正确的是()6. (1)约分:(2)通分:。

分式的定义分式有意义的条件分式的基本性质

分式的定义分式有意义的条件分式的基本性质

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

分式有意义的条件:(1)分式有意义条件:分母不为0;(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。

分式的区别概念:分式与分数的区别与联系:a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无限不循环小数也是无理式无理式和有理式统称代数式分式的基本性质是什么分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。

分式知识点总结

分式知识点总结

分式知识点总结分式是小学数学中一个重要的知识点,也是高中数学的基础。

分式的概念和应用广泛,是解决实际问题中常用的方法之一。

本文将从分式的定义、基本性质、运算法则以及应用等方面进行总结。

一、分式的定义分式是两个整数的比,由分子和分母两部分构成。

分子表示被除数,分母表示除数。

通常用a/b的形式表示,其中a为分子,b为分母。

二、分式的基本性质1. 分式的值可以是整数、小数、真分数或假分数,分式可以化简为最简形式。

2. 分式的值与分子和分母的关系密切相关,当分子增大而分母不变时,分式的值增大;当分子减小而分母不变时,分式的值减小。

3. 分式的值可以用图形来表示,例如在数轴上表示为一个点。

三、分式的运算法则1. 分式的加法和减法:分式的加法和减法归结为求他们的公共分母,将分子相加或相减即可。

例如:a/b + c/d = (ad+bc)/bda/b - c/d = (ad-bc)/bd2. 分式的乘法和除法:分式的乘法和除法的规则较为简单,直接将分子相乘或相除,分母相乘或相除即可。

例如:(a/b) × (c/d) = ac/bd(a/b) ÷ (c/d) = ad/bc3. 分式的混合运算:分式的混合运算可以结合加减乘除的运算法则来进行。

在计算过程中,首先进行括号内的运算,然后进行乘除运算,最后进行加减运算。

四、分式的应用分式可以应用于实际问题中,例如在计算比例、百分比、利润和折扣等方面。

1. 比例问题:比例可以表示为分式的形式,通过求解分式可以得到两个量的比值。

例如:甲乙两个人的身高比为3/5,已知甲的身高为150cm,求乙的身高。

2. 百分比问题:百分比可以表示为分式的形式,通过分式可以求解出百分比的具体数值。

例如:某商店举办打折促销活动,原价为120元的商品现在打8折,求折后的价格。

3. 利润和折扣问题:利润和折扣可以表示为分式的形式,通过求解分式可以得到具体的数值。

例如:某商品的进价为180元,利润率为20%,求售价;或者某商店举办折扣促销活动,折扣率为30%,求折后价格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1分式及其基本性质(第一课时)
小河中学刘四一
2017年5月5日授课班级701班
一、教学目标:
知识与技能
1、了解分式的概念,明确分式与整式的区别,能用分式表示现实情境中的数量关系。

2、掌握识别分式是否有意义,分式的值是否等于零的方法。

过程与方法
启发学生会观察、分析、寻找解题途径,提高他们分析问题、解决问题的能力。

情感、态度与价值观
通过分数与分式的比较,培养学生良好的类比联想的思维习惯和思想方法,并培养学生严谨的科学态度。

二、教学重难点
重点:分式的概念的理解。

难点:分式有无意义,分式的值为零的条件。

三、教学方法和手段
借助多媒体辅助教学,采用类比、探究、合作交流等方法。

四、教材分析
本节先通过两个实例引出分式的概念,进而归纳出有理式的概念,然后通过例题来讲解分式是否有意义,分式的值是否等于零的方法。

最后通过小练习进行巩固。

五、教学设计
【一】创设情境,新课导入
借助多媒体展示教材P89问题1、2.
问题1: 有两块稻田,第一块是4hm2,每公顷收水稻10500kg;第二块是3hm2,每公顷收水稻9000gh,这两块稻田平均每公顷收水稻_____kg
如果第一块是mhm2,每公顷收水稻akg;第二块是nhm2,每公顷收水稻bkg,则这两块稻田平均每公顷收水稻___kg。

问题2: 一个长方形的面积为Sm 2,如果它的长为am,那么它的宽为__m
此问题由学生根据题意独立思考完成。

(1)n m bn am ++(2)a
s 【二】新课讲解
(一)教师引导学生观察上述两代数式,同时让学生阅读P89,多媒体展示
如下问题
1、上述两代数式有什么共同的特征?与整式有什么不同?
2、什么叫分式?分式的分子?分式的分母?
3、什么叫有理式?
(二)学生尝试判断下列哪些为分式,哪些为整式。

(1)a 1 (2) 2x+31 (3)y x -4 (4) -52㎡y (5)x y x +-4 (6)π
13-x (三)师生共识分式、有理式概念
分式的定义:一般地,如果a 、b 表示两个整式,并且b 中含有字母,那么式子b
a 就叫做分式,其中a 叫分式的分子,
b 叫分式的分母。

类比有理数定义得:
有理式定义:整式和分式统称有理式。

(四)分式的强调(学生阅读、教师讲解) 分式概念注意事项:
(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数
线则可以理解为除号,还有括号的作用,如 y
x +1 表示1÷(x+y); (2)分式的分子可以含有字母,也可以不含有字母,但是分母必须含有字
母,这是分式区别与整式的重要特征。

(3)要明确分母不为零是分式概念的组成部分,分母不为零分式才有意义。

(4)判断一个代数式是否是分式,应看原式,而不能看运算结果,如a
ab 是分式而不是整式。

(五)练一练
判断下列代数式哪些是分式?哪些是整式?(课后小练习1)
21;3a ;y x +1;2x -;ab b a +;22-+x x ;π
3。

(六)例题讲解
例1 (1)当x 取何值时,分式
2
4-x 有意义? (2)当x 是什么数时,分式3
24-+x x 的值为零? (七)小结及尝试
1、分式无意义的条件是:
2、分式有意义的条件是:
3、分式的值为零的条件是:
4、当x 时,分式 3
2-+x x 有意义。

(课后小练习2) 5、当x 时,分式 1
41+-x x 没有意义; 6、当x 时,分式 1
41+-x x 的值为零。

(八)巩固强化训练
1.指出下列有理式中,哪些是整式,哪些是分式? x 5;)(21y x +;3x ;n m -2;53-+x x ;13
34y x + 2.当x 取什么数时,下列分式有意义?
(1) 13-x x (2)1+x x (3)1
5.03-x 3.在下列各分式中,当x 等于什么数时,分式的值是零?当x 等于什么数时,分式
没有意义? (1)x x -+212;(2)1
35.02+-x x (九)小结:找学生谈谈本节课的收获及疑惑。

(十)作业:1、必做题:P93,习题9.1第1、2题;
2、选做题:当x 取何值时,下列分式的值为零?
(1)33||3+--x x x (2)9
3--x x 3、基训9.1平台一; 4、预习分式基本性质。

相关文档
最新文档