【加17套中考模拟卷】湖南省武冈市第二中学2020-2021学年中考数学模拟试卷含解析

合集下载

湖南省邵阳市武冈市2020年初中学业水平考试模拟数学试题

湖南省邵阳市武冈市2020年初中学业水平考试模拟数学试题

2020年初中毕业学业水平考试模拟试卷数 学温馨提示:1.本学科考试共五道大题,只要同学们细心作答,一定会取得好成绩的!2.本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分。

3.请你将姓名、准考证号等相关信息按要求填写在答题卡上。

4.请你一定在答题卡上作答,答在本试题卷上是无效的哦! 一、选择题(本大题共10小题,每小题3分,满分30分) 1.给出﹣2,﹣1,0,13这四个数,其中最小的是( )A .13B .0C .﹣2D .﹣12.下列运算中,计算结果正确的是( ) A .a 4•a =a 4 B .a 6÷a 3=a 2C .(a 3)2=a 6D .(ab )3=a 3b3.若代数式在实数范围内有意义,则实数x 的取值范围是( ) A .x >3 B .x =3 C .x ≠0 D .x ≠34.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1075.如图所示的几何体的俯视图是( )A .B .C .D .6.如图,某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( ) A .10,15B .13,15C .13,20D .15,157.若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->--≤-)1(526)7(4123x a x x x,有且仅有三个整数解,则所有满足条件的整数a 的值之和是( )A .0B .﹣2C .﹣1D .18.如图,我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ′处,则点C 的对应点C ′的坐标为()x-31A .1)B .(2,1)C .(2D .(19.如图,在△ABC 中,AB =AC ,AD 、BE 是△ABC 的两条中线,P 是AD 上的一个动点,则下列线段的长等于CP +EP 最小值的是( ) A .ACB .ADC .BED .BC第6题图 第8题图 第9题图 第10题图10.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE +DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共8小题,每小题3分,满分24分) 11.函数y = x−1x−2中,自变量x 的取值范围是______.12.如图,直线ɑ∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∠1=27°,则∠2的度数是______.13.如图,一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形,则小鸟落在阴影方格地面上的概率为______.14.若关于x 的一元二次方程(k −1)x 2+2x −1=0有两个不相等的实数根,则k 的取值范围是______. 15.若实数m 、n 满足|m −2|+ n −4=0,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是______.16.如图,⊙O 中,CD 是切线,切点是D ,直线CO 交⊙O 于B ,A ,∠A =20°,则∠C 的度数是______ .第12题图 第13题图 第16题图17.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A 、B 两点的横坐标分别是1和3,则S △AOB =_____.18.如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,则直径CD 的长为____.第17题图 第18题图三、解答题(本大题共3小题,每小题8分,满分24分)19.计算:3tan60°﹣(13)﹣2+|2. 20先化简,再求值:(a −1+2a +1)÷(a 2+1),其中a = 2−1.21.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =110°,求∠ABE 的度数. 四、应用题(本大题共4小题,每小题8分,满分32分)22.为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“2~4小时”的有 人; (2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 .;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.23.如图,已知AB 是⊙O 的直径,CB ⊥AB ,D 为圆上一点,且AD ∥OC ,连接CD ,AC ,BD ,AC 与BD交于点M .(1)求证:CD 为⊙O 的切线;(2)若CD ,求CMMA的值.24.如图是某景区每日利润y 1(元)与当天游客人数x (人)的函数图象.为了吸引游客,该景区决定改革,改革后每张票价减少20元,运营成本减少800元.设改革后该景区每日利润为y 2(元).(注:每日利润=票价收入−运营成本)(1)解释点A 的实际意义:______; (2)分别求出y 1、y 2关于x 的函数表达式; (3)当游客人数为多少人时,改革前的日利润与改 革后的日利润相等?25.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:3,小亮在距山坡坡脚A处测得楼顶C 的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,3≈1.73)五、探究题(本大题10分)26.如图1,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),抛物线顶点为D,连接AC,BC,CD,BD,点P是x轴下方抛物线上的一个动点,作PM⊥x轴于点M,设点M的横坐标为m.(1)求抛物线的解析式及点D的坐标;(2)试探究是否存在这样的点P,使得以P,M,B为顶点的三角形与△BCD相似?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,PM交线段BC于点Q,过点P作PE∥AC交x轴于点E,交线段BC于点F,请用含m的代数式表示线段QF的长,并求出当m为何值时QF有最大值.2020年初中毕业学业水平考试模拟试卷数学答案11.x≥1且x≠2 12.18°13.92514.k>0且k≠1 15.1016.50°17.418.26(寸)三、解答题19.解:原式=9﹣7.………………8分20.解:原式=(a+1)(a−1)+2a+1⋅1a2+1=a2+1a+1⋅1a2+1=1a+1,………………6分当a=2−1时,原式=22.………………8分21.(1)证明:∵四边形ABCD是平行四边形,∴CD=AB,FDCE∠=∠,………………1分∵E为AD的中点,∴DE=AE.………………2分在△DEC和△AEF中,∠DCE=∠F∠DEC=∠AEFDE=AE,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;………………4分(2)解:由(1)可知BF=2AB,EF=EC,∵∠BCD=110°,∴∠FBC=180°−110°=70°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=12∠FBC=12×70°=35°.………………8分四、应用题22.解:(1)本次调查共随机抽取了:50÷25%=200(名)中学生,………………1.5分其中课外阅读时长“2~4小时”的有:200×20%=40(人),………………3分故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;………………5分(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.………………8分23.(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.………………4分(2)∵CD,∴可以假设AD=a,CDa,设KC=b.∵DK=KB,AO=OB,∴OK=12AD=12a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴CDOC=CKCD,∴12a b+整理得:2(ba)2+(ba)﹣4=0,解得ba,∵CK∥AD,∴CMAM=CKAD=ba=14.………………8分24.解:(1)由题意,可得点A的实际意义是:改革前某景区每日运营成本为2800元.故答案为改革前某景区每日运营成本为2800元;………………2分(2)设y1与x之间的函数表达式为y1=kx+b(k、b为常数,k≠0),根据题意,当x=0时,y1=−2800;当x=50时,y1=3200.所以b=−2800,50k+b=3200.,解得k=120,b=−2800.所以,y1与x之间的函数表达式为y1=120x−2800.………………4分根据题意,y2与x之间的函数表达式为y2=100x−2000;………………5分(3)根据题意,当y1=y2时,得120x−2800=100x−2000.解得x=40.答:当游客人数为40人时,改革前的日利润与改革后的日利润相等.……………8分25.解:如图,过点P作PE⊥OB于点E,PF⊥CO于点F,∵山坡AP的坡度为i=1:3,AP=10,∴可设PE=x,则AE=3x.在Rt△AEP 中,x2+(3x)2=102,解得x=5或x=−5(舍去),∴PE=5,则AE=53.∵∠CPF=∠PCF=45°,∴CF=PF.设CF=PF=m米,则OC=(m+5)米,OA=(m−53)米.在Rt△AOC中,tan60°=OCOA =m−53,即m−53=3,解得m=10(3+1),∴OC=10(3+1)+5≈32(米).答:该居民楼的高度约为32米.………………8分五、探究题26.解:(1)设抛物线解析式为:y=a(x+1)(x﹣3),将C(0,-3),代入可得:﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3,根据顶点坐标公式得出D的坐标为--22,4×(-3)--224∴点D的坐标为(1,﹣4);………………2分(2)由(1)知,点B、C、D的坐标分别为(3,0)、(0,﹣3)、(1,﹣4),则BC=32,CD=2,BD=20,则△BCD是直角三角形,∠BCD=90°,①当△PMB∽△BCD时,则∠MPB=∠DBC,即:tan∠MPB=tan∠DBC=CDBC =232=13,∵点M(m,0),则点P(m,m2﹣2m﹣3),tan∠MPB=MBMP =3−m−m2+2m+3=13,解得:m=2或3(舍去3),故点P(2,﹣3);②当△BMP∽△BCD时,同理可得:点P(﹣23,﹣119);故点P的坐标为:(2,﹣3)或(﹣23,﹣119);………………5分(3)设QF为y,作FH⊥PM于点H,∵OB=OC,∴∠OCB=∠OBC=45°则FH=QH=22y,∵PE∥AC,PM∥OC,则∠PEM=∠HFP=∠CAO,∴△FHP∽△AOC,则PH=3FH=322y,∴PQ=22y+322y=22y,根据点B、C的坐标求出直线BC的表达式为:y=x﹣3,则点P(m,m2﹣2m﹣3),点Q(m,m﹣3),所以PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,即:22y=﹣m2+3m,则y=222=−24m−322+9216,.∴当m=32时,QF有最大值.………………10分。

湖南省武冈市2024届中考二模数学试题含解析

湖南省武冈市2024届中考二模数学试题含解析

湖南省武冈市2024届中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣32.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°3.30cos︒的值是()A.22B.33C.12D.324.-64的立方根是( )A.-8 B.-4 C.-2 D.不存在5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45B.60C.120D.1356.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10 % 7.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数8.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定9.如图1,点P 从△ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .2410.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为2二、填空题(共7小题,每小题3分,满分21分)11.如图,AD=DF=FB,DE ∥FG ∥BC,则S Ⅰ:S Ⅱ:S Ⅲ=________.12.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.13.现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.14.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.15.如图,AB ∥CD ,∠1=62°,FG 平分∠EFD ,则∠2= .16.计算:﹣1﹣2=_____.17.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。

湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析

湖南省武冈市市级名校2021-2022学年中考数学最后一模试卷含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共10小题,每小题3分,共30分)1.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A.10 B.11 C.12 D.132.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()A.30 B.27 C.14 D.325.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m6.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .27.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )A .152元B .156元C .160元D .190元8.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ;B 、E 是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为( )A .4633π-B .8933π-C .33223π-D .8633π- 9.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC的度数为( )A .42°B .66°C .69°D .77°10.下列命题是真命题的是( )A .如果a +b =0,那么a =b =0B 16±4C .有公共顶点的两个角是对顶角D .等腰三角形两底角相等二、填空题(本大题共6个小题,每小题3分,共18分)11.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 12.a (a+b )﹣b (a+b )=_____.13.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.14.已知直角三角形的两边长分别为3、1.则第三边长为________.15.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.16.一个凸边形的内角和为720°,则这个多边形的边数是__________________三、解答题(共8题,共72分)17.(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).18.(8分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.19.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=3.(1)求∠C的度数;(2)求证:BC是⊙O的切线.20.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.21.(8分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.22.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=mx(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.2、C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.3、B【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.4、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.5、A【解析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6、D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集7、C【解析】【分析】设进价为x 元,依题意得240×0.8-x=20x℅,解方程可得. 【详解】设进价为x 元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.8、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD的长为43π,∴604 1803Rππ=解得:R=4,∴AB=AD cos30°=3,∴BC=12AB=3∴AC3BC=6,∴S△ABC=12×BC×AC=12×36=3∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =260483603ππ⨯= 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.9、C【解析】在△ABC 中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°, ∴∠BDC=180°-∠BCD-∠B=69°.故选C.10、D【解析】解:A 、如果a +b =0,那么a =b =0,或a =﹣b ,错误,为假命题;B 的平方根是±2,错误,为假命题;C 、有公共顶点且相等的两个角是对顶角,错误,为假命题;D 、等腰三角形两底角相等,正确,为真命题;故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案. 详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.12、(a+b )(a ﹣b ).【解析】先确定公因式为(a+b),然后提取公因式后整理即可.【详解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.13、1.2×10﹣1.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:12纳米=12×0.000000001米=1.2×10−1米.故答案为1.2×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、4【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3=;②长为3、35=;4.考点:3.勾股定理;4.分类思想的应用.15、15°【解析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC =AB ,又OA =OB =OC ,∴OA =OB =AB ,∴△AOB 为等边三角形.∵OF ⊥OC ,OC ∥AB ,∴OF ⊥AB ,∴∠BOF =∠AOF =30°. 由圆周角定理得1152BAF BOF ∠=∠= , 故答案为15°. 16、1【解析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可.【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=.故答案为:1.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.三、解答题(共8题,共72分)17、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题18、(1)作图见解析;(2)证明见解析;【解析】(1)①以C 为圆心,任意长为半径画弧,交CB 、CA 于E 、F ;②以A 为圆心,CE 长为半径画弧,交AB 于G ;③以G 为圆心,EF 长为半径画弧,两弧交于H ;④连接AH 并延长交BC 于D ,则∠BAD=∠C ;(2)证明△ABD ∽△CBA ,然后根据相似三角形的性质得到结论.【详解】(1)如图,∠BAD 为所作;(2)∵∠BAD=∠C ,∠B=∠B∴△ABD ∽△CBA ,∴AB :BC=BD :AB ,∴AB 2=BD•BC .【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.19、(1)60°;(2)见解析【解析】(1)连接BD ,由AD 为圆的直径,得到∠ABD 为直角,再利用30度角所对的直角边等于斜边的一半求出BD 的长,根据CD 与AB 平行,得到一对内错角相等,确定出∠CDB 为直角,在直角三角形BCD 中,利用锐角三角函数定义求出tanC 的值,即可确定出∠C 的度数;(2)连接OB ,由OA=OB ,利用等边对等角得到一对角相等,再由CD 与AB 平行,得到一对同旁内角互补,求出∠ABC 度数,由∠ABC ﹣∠ABO 度数确定出∠OBC 度数为90,即可得证;【详解】(1)如图,连接BD ,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=33BD CD == ∴∠C=60°;(2)连接OB ,∵∠A=30°,OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC为圆O的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.20、(1)详见解析;(2)详见解析.【解析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径,∴,∴,∵,∴, ∴, 又∴∽ ∴ ∴.【点睛】 本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.21、 (1)见解析;(2)m=2【解析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x 2﹣6mx+9m 2﹣9=1中,△=(﹣6m )2﹣4(9m 2﹣9)=26m 2﹣26m 2+26=26>1.∴方程有两个不相等的实数根;(2)关于x 的方程:x 2﹣6mx+9m 2﹣9=1可化为:[x ﹣(2m+2)][x ﹣(2m ﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m ﹣2,x 1>x 2,∴x 1=2m+2,x 2=2m ﹣2,又∵x 1=2x 2,∴2m+2=2(2m ﹣2)解得:m=2.【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程20?(0)ax bx c a ++=≠中,当240b ac ->时,原方程有两个不相等的实数根,当240b ac -=时,原方程有两个相等的实数根,当240b ac -<时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x 的方程x 2﹣6mx+9m 2﹣9=1的两个根是解答第2小题的关键.22、54小时【解析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题23、(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.24、(1)反比例函数的解析式为y=﹣6x;一次函数的解析式为y=﹣12x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.【解析】(1)把A(﹣2,3)代入y=mx,可得m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣6x;把点B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得23 61k bk b-+=⎧⎨+=-⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+2;(2)∵y=﹣12x+2,令y=0,则x=4,∴C(4,0),即OC=4,∴△AOB的面积=12×4×(3+1)=8;(3)∵反比例函数y=﹣6x的图象位于二、四象限,∴在每个象限内,y随x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴点M、N在第二象限,或点M、N在第四象限.【点睛】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.。

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。

中考强化练习:2022年湖南省武冈市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

中考强化练习:2022年湖南省武冈市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

2022年湖南省武冈市中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、已知4个数:()20201-,2-,()1.5--,23-,其中正数的个数有( ) A .1B .C .3D .4 2、已知线段AB 、CD ,AB <CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合 C .点B 在线段CD 的延长线上 D .点B 在线段DC 的延长线上 3、在2,1,0,-1这四个数中,比0小的数是( ) A .2 B .0 C .1 D .-1 4、一个两位数,十位上的数字是x ,个位上的数字比十位上的数字的3倍少4,这个两位数可以表示为( ) A .x (3x -4)B .x (3x +4)C .13x +4D .13x -4 ·线○封○密○外5、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为()A.4 B.3 C.2 D.16、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x的不等式kx+b>mx+n的解集是()A.x>0 B.x<0 C.x<﹣1 D.x>﹣17、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为()A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.58、若关于x的不等式组2123342x xa x x-⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y的方程2135a y a y--=+的解为负整数,则符合条件的整数a的个数为()A.1个B.2个C.3个D.4个9、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,·线任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a 的值约为( )A .10B .12C .15D .1810、下列关于整式的说法错误..的是( ) A .单项式xy -的系数是-1B .单项式222mn 的次数是3C .多项式23xy x y +是二次三项式D .单项式32ab -与ba 是同类项 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、实数a 、b 在数轴上对应点的位置如图所示,化简a b a -+的值是_________.2、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的587,则三种水果去年的种植总面积与今年的种植总面积之比为______.3、现有一列数1x ,2x ,…,2021x ,其中23x =-,75x =,3336x =-,且满足任意相邻三个数的和为相等的常数,则122021x x x +++的值为______.4、2x x =的根为____________.5、在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.三、解答题(5小题,每小题10分,共计50分)1、(1)解方程:2240x x --=(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.2、如图,在Rt ABC △中,90C ∠=︒,5AB =,4AC =.动点P 从点A 出发,沿AB 以每秒4个单位长度的速度向终点B 运动.过点P 作PQ AB ⊥交AC 或BC 于点Q ,分别过点P 、Q 作AC 、AB 的平行线交于点M .设PQM 与ABC 重叠部分的面积为S ,点P 运动的时间为()0t t >秒.(1)当点Q 在AC 上时,CQ 的长为______(用含t 的代数式表示).(2)当点M 落在BC 上时,求t 的值.(3)当PQM 与ABC 的重合部分为三角形时,求S 与t 之间的函数关系式.(4)点N 为PM 中点,直接写出点N 到ABC 的两个顶点的距离相等时t 的值.3、如图,在平面直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >1),连接BC ,以线段BC 为边在第四象限内作等边△CBD ,连接DA 并延长交y 轴于点E .·线○封(1)求证:△OBC ≌△ABD .(2)在点C 的运动过程中,∠CAD 的度数是否会变化?如果不变,请求出∠CAD 的度数;如果变化,请说明理由.(3)当点C 运动到什么位置时,以A ,E ,C 为顶点的三角形是等腰三角形?4、百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?5、解方程:157369x +=+.-参考答案-一、单选题1、C【分析】化简后根据正数的定义判断即可.【详解】解:()20201-=1是正数,2-=2是正数,()1.5--=1.5是正数,23-=-9是负数,故选C .【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.2、A【分析】根据叠合法比较大小的方法始点重合,看终点可得点B 在线段CD 上,可判断A ,点B 与点D 重合,可得线段AB =CD ,可判断B ,利用AB >CD ,点B 在线段CD 的延长线上,可判断C, 点B 在线段DC 的延长线上,没有将AB 移动到CD 的位置,无法比较大小可判断D .【详解】解:将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,如图,点B 在线段CD 上(C 、D 之间),故选项A 正确,点B 与点D 重合,则有AB =CD 与AB <CD 不符合,故选项B 不正确;点B 在线段CD 的延长线上,则有AB >CD ,与AB <CD 不符合,故选项C 不正确;点B 在线段DC 的延长线上,没有将AB 移动到CD 的位置,故选项D 不正确.故选:A .【点睛】本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.3、D【分析】根据正数大于零,零大于负数,即可求解. 【详解】 解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键. 4、D 【分析】·线○封因为两位数10=⨯十位数字+个位数字,所以求得个位数字是34x -,可得这个两位数可表示为1034x x +-.【详解】解:十位上的数字是x ,个位上的数字比十位上的数字的3倍少4,∴个位数字是34x -,这个两位数可表示为1034134x x x +-=-,故选:D .【点睛】本题考查了列代数式,解题的关键是掌握两位数的表示方法.5、B【分析】由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x =-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.【详解】解:由图象可知,a >0,b <0,∴ab <0,①正确;因与x 轴交于点(−1,0)和(x ,0),且1<x <2,所以对称轴为直线−2b a<1, ∴−b <2a ,∴2a +b >0,②错误;由图象可知x =−1,y =a −b +c =0,又2a >−b ,2a +a +c >−b +a +c ,∴3a +c >0,③正确;由增减性可知m <−1,am 2+bm +c >0,当x =1时,a+b+c <0,即a +b <am 2+bm ,④正确.综上,正确的有①③④,共3个,故选:B .【点睛】本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键. 7、C 【分析】根据题意画出图形,再分点C 在线段AB 上或线段AB 的延长线上两种情况进行讨论. 【详解】 解:点C 在线段AB 上时,如图: ∵AB =7,AC ∶BC =4∶3,∴AC =4,BC =3,∵点D 为线段AC 的中点,·线○封∴AD =DC =2,∴BD =DC +BC =5;点C 在线段AB 的延长线上时,∵AB =7,AC ∶BC =4∶3,设BC =3x ,则AC =4x ,∴AC -BC =AB ,即4x -3x =7,解得x =7,∴BC =21,则AC =28,∵点D 为线段AC 的中点,∴AD =DC =14,∴BD =AD -AB =7;综上,线段BD 的长为5或7.故选:C .【点睛】本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC 、BC 的长是解题关键,要分类讨论,以防遗漏.8、C【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可.【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩, ∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, 解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…, ∴符合条件的整数a 为:-13,-11,-9,共3个, 故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解. 9、C 【分析】 在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可. 【详解】 解:由题意可得, ·线○封○60.4a=, 解得,a =15.经检验,a =15是原方程的解故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.10、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A 、单项式xy -的系数是-1,说法正确,不符合题意;B 、单项式222mn 的次数是3,说法正确,不符合题意;C 、多项式23xy x y +是三次二项式,说法错误,符合题意;D 、单项式32ab -与ba 是同类项,说法正确,不符合题意; 故选C .【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.二、填空题1、b【分析】根据数轴,b >0,a <0,则a -b <0,化简绝对值即可.【详解】∵b >0,a <0,∴a -b <0, ∴a b a -+=b -a +a=b ,故答案为:b .【点睛】 本题考查了绝对值的化简,正确确定字母的属性是化简的关键. 2、5:7##【分析】设去年甲、乙、丙三种水果的种植面积分别为:5,3,2,x x x 设去年甲、乙、丙三种水果的平均亩产量分别为:6,3,5,a a a 设今年的种植面积分别为:,,,m n f 再根据题中相等关系列方程:93 3.6a m a n ①, 3.6655a n a f ②,求解: 1.2,0.6,m n f n 再利用丙品种水果增加的产量占今年水果总产量的587,列方程55529 3.65,87a f a x a m a n a f 求解1,5x n 从而可得答案. 【详解】 解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为:5,3,2,x x x ·线○封去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为:6,3,5,a a a则今年甲品种水果的平均亩产量为:6150%9,a a乙品种水果的平均亩产量为:3120%3.6,a a 丙品种的平均亩产量为5,a设今年的种植面积分别为:,,,m n f 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5, 93 3.6a m a n ①,3.6655a na f ②, 解得: 1.2,0.6,m n f n又丙品种水果增加的产量占今年水果总产量的587, 55529 3.65,87a f a xa m a n a f 8750.6875245 1.21815,a n a x a n an an解得:1,5x n 所以三种水果去年的种植总面积与今年的种植总面积之比为:1025.1.20.67xn m n f n n n 故答案为:5:7.【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.3、-2690【分析】先根据任意相邻三个数的和为相等的常数可推出x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,由此可求x 1+x 2+x 3+…+x 2021的值.【详解】解:∵x 1+x 2+x 3=x 2+x 3+x 4,∴x 1=x 4,同理可得:x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,∴x 1+x 2+x 3=-4,∵2021=673×3+2,∴x 1+x 2+x 3+…+x 2021 =(-4)×673+(5-3) =-2692+2=-2690.故答案为:-2690.【点睛】 本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案. 4、10x , 【分析】 移项后再因式分解求得两个可能的根. 【详解】 ·线○封○解:20x x -=,()10x x -=,x =0或x -1=0,解得10x =,21x =,故答案为:10x =,21x =.【点睛】本题考查一元二次方程解法中的因式分解法,掌握因式分解是本题关键.5、4或254【分析】点B 在x 轴上,所以90AOB ∠≠︒ ,分别讨论,90∠=︒ABO 和90OAB ∠=︒两种情况,设(),0B x ,根据勾股定理求出x 的值,即可得到OB 的长.【详解】解:∵B 在x 轴上,∴设(),0B x ,∵()4,3A ,∴5OA ,①当90∠=︒ABO 时,B 点横坐标与A 点横坐标相同,∴4x = ,∴()14,0B ,∴4OB = ,②当90OAB ∠=︒时,222OA AB OB += ,∵点A 坐标为()4,3,(),0B x ,∴()222243825AB x x x =-+=-+ ,∴2225825x x x +-+= , 解得:254x = , ∴225,04B ⎛⎫ ⎪⎝⎭ , ∴254OB = , 故答案为:4或254. 【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.三、解答题·线○封1、(1)11x =21x =(2)120平方步【分析】(1)利用配方法,即可求解;(2)利用扇形的面积公式,即可求解.【详解】解:(1)224x x -=,2215x x -+=,配方,得()215x -=,∴1x =∴11x =21x =(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步, ∴这块田的面积1163012022S =⨯⨯=(平方步). 【点睛】 本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于12 乘以弧长再乘以扇形的半径是解题的关键.2、(1)45t -;(2)2041t =;(3)当20041t <≤,26S t =;当4554t ≤<时,25122563275153S t t =-+(4)12057t =,2512t =,358t =. 【分析】(1)根据∠C =90°,AB =5,AC =4,得cos A =45,即45AP AQ =,又因为AP =4t ,AQ =5t ,即可得答案; (2)由AQ ∥PM ,AP ∥QM ,可得4AP QM t ==,证△CQM ∽△CAB ,可得答案;(3)当20041t <≤时,根据勾股定理和三角形面积可得26S t =;当204415t ,△PQM 与△ABC 的重合部分不为三角形;当4554t ≤<时,由S =S △PQB -S △BPH 计算得25122563275153S t t =-+; (4)分3中情况考虑,①当N 到A 、C 距离相等时,过N 作NE ⊥AC 于E ,过P 作PF ⊥AC 于F ,在Rt △APF 中,cosA =AF AP ,解得t =2057 ,②当N 到A 、B 距离相等时,过N 作NG ⊥AB 于G ,同理解得t =512,③当N 到B 、C 距离相等时,可证明AP =BP =12AB =52,可得答案. 【详解】(1)如下图:∵∠C =90°,AB =5,AC =4, ∴cos A =45AC AB = ∵PQ ⊥AB , ∴cos A =45AP AQ = ∵动点P 从点A 出发,沿AB 以每秒4个单位长度的速度向终点B 运动,点P 运动的时间为t (t >0)秒, ∴AP =4t , ∴445t AQ∴AQ =5t , ∴CQ =AC -AQ =4-5t , ·线○封故答案为:4-5t ;(2)∵AQ ∥PM ,AP ∥QM ,∴四边形AQMP 是平行四边形.∴4AP QM t ==.当点M 落在BC 上时,∵AP ∥QM ,∴CQM CAB ∠=∠.∵C C ∠=∠,∴△CQM ∽△CAB , ∴CQ QM AC AB=. ∴45445t t -=. ∴2041t =. ∴当点M 落在BC 上时,2041t =; (3)当20041t <≤时,此时△PQM 与△ABC 的重合部分为三角形, 由(1)(2)知:5AQ t =,4AP QM t ==, ∴PQ3t ,∵∠PQM =∠QPA =90° ∴21134622S QM PQ t t t =⨯⨯=⨯⨯=, 当Q 与C 重合时,CQ =0,即4-5t =0, ∴45t = 当204415t ,△PQM 与△ABC 的重合部分不为三角形, 当4554t ≤<时,如下图:∵4AP t =, ∴PB =5-4t ,∵PM ∥AC ·线○封∴PH BH PB AC BC AB ,即54435PH BH t ∴45435455()(),t t PH BH , ∵tan AC PQ B BC PB , ∴4354PQ t ,∴4543()t PQ , ∴S =S △PQB -S △BPH ,1122PB PQ BH PH 145413544545423255()()()()t t t t 25122563275153t t =-+. 综上所述:当20041t <≤,26S t =;当4554t ≤<时,25122563275153S t t =-+ (4)①当N 到A 、C 距离相等时,过N 作NE ⊥AC 于E ,过P 作PF ⊥AC 于F ,如图:∵N 到A 、C 距离相等,NE ⊥AC ,∴NE 是AC 垂直平分线,∴AE =12AC = 2,∵N 是PM 中点,∴PN=12PM=12AQ=52t∴AF=AE- EF=2- 5 2 t在Rt△APF中,cosA =AF AP∴4245 54tt-=解得t =20 57②当N到A、B距离相等时,过N作NG⊥AB于G,如图:∴AG=12AB=52∴PG=AG-AP=52-4t∴cos∠NPG=cos A=4 5∴45 PG PN=而PN=12PM=12AQ=52t∴544 255 2tt-=·线○封解得t =5 12③当N到B、C距离相等时,连接CP,如图:∵PM∥AC,AC⊥BC∴PM⊥BC,∴N到B、C距离相等,∴N在BC的垂直平分线上,即PM是BC的垂直平分线,∴PB= PC,∴∠PCB=∠PBC,∴90°-∠PCB= 90°-∠PBC,即∠PCA=∠PAC,∴PC= PA,∴AP=BP=12AB=52,∴t=5 48 AP综上所述,t的值为2057或512或58【点睛】本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程.3、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.【分析】(1)先根据等边三角形的性质得∠OBA =∠CBD =60°,OB =BA ,BC =BD ,则∠OBC =∠ABD ,然后可根据“SAS ”可判定△OBC ≌△ABD ;(2)由△AOB 是等边三角形知∠BOA =∠OAB =60°,再由△OBC ≌△ABD 知∠BAD =∠BOC =60°,根据∠CAD =180°-∠OAB -∠BAD 可得结论;(3)由(2)易求得∠EAC =120°,进而得出以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰,最后根据Rt △AOE 中,OA =1,∠OEA =30°,求得AC =AE =2,据此得到OC =1+2=3,即可得出点C 的位置.【详解】解:(1)∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC ,∴∠OBC =∠ABD ,在△OBC 和△ABD 中,∵OB AB OBC ABD CB DB =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD (SAS );(2)点C 在运动过程中,∠CAD 的度数不会发生变化,理由如下:∵△AOB 是等边三角形, ∴∠BOA =∠OAB =60°, ∵△OBC ≌△ABD , ∴∠BAD =∠BOC =60°, ∴∠CAD =180°-∠OAB -∠BAD =60°; ·线○封(3)由(2)得∠CAD =60°,∴∠EAC =180°-∠CAD =120°,∴∠OEA =∠EAC -90°=30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰,在Rt △AOE 中,OA =1,∠OEA =30°,∴AE =2,∴AC =AE =2,∴OC =1+2=3,∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.【点睛】本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C 的坐标.4、10元或20元【分析】设每件童装应降价x 元,根据题意列出一元二次方程,解方程求解即可【详解】解:设每件童装应降价x 元根据题意,得(40)(303)1800x x -+=解这个方程,得1210,20x x ==答:每件童装应降价10元或20元.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.5、2318 x=【分析】先移项,再计算即可求解.【详解】解:157369 x+=+571693x=+-,解得:2318x=.【点睛】本题主要考查了解方程,熟练掌握解方程的基本步骤是解题的关键.。

【精准解析】湖南省邵阳市武冈市第二中学2021届高三下学期5月模拟考试数学试题 含解析

【精准解析】湖南省邵阳市武冈市第二中学2021届高三下学期5月模拟考试数学试题 含解析

2021年湖南省邵阳市武冈二中高考数学模拟试卷(5月份)一、选择题(共8小题,每小题5分,共40分).1.设集合A={0,2,4},B={x|x2﹣mx+n=0},若A∪B={0,1,2,3,4},则m+n的值是()A.1B.3C.5D.72.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.0.72B.0.8C.D.0.93.设a,b,m为实数,给出下列三个条件:①a3>b3;②am2>bm2;③,其中使a >b成立的充分不必要条件是()A.①B.②C.③D.①②③4.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.如图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)代表1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位、十位和百位这三组中随机选择往下拨1粒上珠,且往上拨2粒下珠,则算盘表示的数的个数为()A.9B.18C.27D.365.F1、F2分别是双曲线的左、右焦点,过F1的直线分别交该双曲线的左、右两支于A、B两点,若AF2⊥BF2,|AF2|=|BF2|,则|AF2|=()A.2B.C.4D.6.已知,设函数,当时,f(t)取得最小值,则在方向上的投影为()A.B.C.D.7.已知(1+x)7=a0+a1(x﹣1)1+a2(x﹣1)2+…+a7(x﹣1)7,则a0+a3=()A.688B .161C.129D.228.已知a=13x,b=13x⎛⎫⎪⎝⎭,c=13log x,则下列说法正确的是()A.当a=b时,c<a B.当b=c时,a<cC.当a=c时,b<a D.当c=0时,a<b二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)9.关于函数,的结论正确的是()A.f(x)在定义域内单调递减B.f(x)的值域为RC .f(x)在定义域内有两个零点D.是奇函数10.设复数z1,z2满足z1+z2=0,则()A.B.|z1|=|z2|C.若z1(2﹣i)=3+i,则z1z2=﹣2iD.若,则1≤|z2|≤311.已知函数f(x)=e x+a cos x,f′(x)是f(x)的导函数,则下列说法正确的是()A.当a=﹣1时,f(x)在(0,+∞)单调递增B.当a=﹣1时,f(x)在(0,f(0))处的切线为x轴C.当a=1时,f′(x)在[0,+∞)上无零点D.当a=1时,f(x)在存在唯一极小值点12.在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为菱形,AB=2,AA1=1,∠BAD=,则下列结论正确的是()A.直线AC1⊥平面A1BDB.直线DB1与平面C1CDD1所成角的正切值为C.过A1D作与AC1平行的平面A1DG,则平面A1DG截直四棱柱ABCD﹣A1B1C1D1的截面面积为D.点E为棱B1C1上任意一点,直线AA1与直线BE所成角的正切值的取值范围是[0,2]三、填空题(本大题共4小题,每小题5分,共20分)13.若圆锥的侧面展开图是半径为4的半圆,则此圆锥的体积为.14.已知,则sin2α+cos2α=.15.已知函数f(x)=lnx,数列{a n}是公差为2的等差数列,且a n=f(x n),若x1+x2+x3+…+x10=e,则ln(x11+x12+x13+…+x20)=.16.函数f(x)的定义域为D,对D内的任意x1、x2,当x1<x2时,恒有f(x1)≤f(x2),则称f(x)为非减函数.已知f(x)是定义域为[0,1]的非减函数,且满足:①对任意x∈[0,1],f(1﹣x)+f(x)=2.②对任意x∈[0,],f(x)≥4x.则f()+f()的值为.四、解答题(本大题共6小题,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的)17.已知数列{a n}的前n项和S n=n2+n,数列{b n}满足b1=1,b n+1﹣b n=2•3n﹣1.(1)求数列{a n}与数列{b n}的通项公式;(2)记c n=),求数列{c n}的前n项和T n.18.△ABC的内角A、B、C的对边分别为a、b、c,其面积为S,且b(a sin A+c sin C﹣b sin B)=3S.(1)求cos B的值;(2)若a、b、c成等比数列,且△ABC的面积是,求△ABC的周长.19.如图,在多面体ABCDEF中,ABCD是正方形,AB=2,DE=BF,BF∥DE,M为棱AE的中点.(1)求证:平面BMD∥平面EFC;(2)若ED⊥平面ABCD,BM⊥CF,求二面角E﹣AF﹣B的余弦值.20.某地一公司的市场研究人员为了解公司生产的某产品的使用情况,从两个方面进行了调查统计,一是产品的质量参数x,二是产品的使用时间t(单位:千小时),经统计分析,质量参数x服从正态分布N(0.8,0.0152),使用时间t与质量参数x之间有如下关系:0.650.700.750.800.850.900.95质量参数x使用时间t 2.60 2.81 3.05 3.10 3.25 3.35 3.54(1)该地监管部门对该公司的该产品进行检查,要求质量参数在0.785以上的产品为合格产品.现抽取20件该产品进行校验,求合格产品的件数的数学期望;(2)该公司研究人员根据最小二乘法求得线性回归方程为t=2.92x+0.76,请用相关系数说明使用时间t与质量参数x之间的关系是否可用线性回归模型拟合.附:参考数据:.若ξ~N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6828,P(μ﹣2σ<ξ≤μ+2σ)=0.9544参考公式:相关系数;回归直线方程为,其中.21.已知椭圆,A是椭圆的右顶点,B是椭圆的上顶点,直线l:y=kx+b(k>0)与椭圆交于M、N两点,且M点位于第一象限.(1)若b=0,证明:直线AM和AN的斜率之积为定值;(2)若,求四边形AMBN的面积的最大值.22.已知函数f(x)=(x+1)lnx.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求证:.参考答案一、选择题(共8小题,每小题5分,共40分).1.设集合A={0,2,4},B={x|x2﹣mx+n=0},若A∪B={0,1,2,3,4},则m+n的值是()A.1B.3C.5D.7解:∵A={0,2,4},B={x|x2﹣mx+n=0},A∪B={0,1,2,3,4},∴B={1,3},∴x=1,3是方程x2﹣mx+n=0的两实根,∴根据韦达定理,,∴m+n=7.故选:D.2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.0.72B.0.8C.D.0.9解:设一批种子的发芽率为事件A,则P(A)=0.9,出芽后的幼苗成活率为事件B,则P(B)=0.8,∴这粒种子能成长为幼苗的概率P=P(A)P(B)=0.9×0.8=0.72.故选:A.3.设a,b,m为实数,给出下列三个条件:①a3>b3;②am2>bm2;③,其中使a >b成立的充分不必要条件是()A.①B.②C.③D.①②③解:a3>b3⇔a>b,∴①错误,由am2>bm2能推出a>b,但是由a>b当m=0时,则推不出am2>bm2,故②正确,当a=﹣2,b=4时,则<成立,但a>b不成立,∴<不是a>b的充分不必要条件,∴③错误,故选:B.4.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具.“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.如图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)代表1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位、十位和百位这三组中随机选择往下拨1粒上珠,且往上拨2粒下珠,则算盘表示的数的个数为()A.9B.18C.27D.36解:根据珠算的运算法则以及题干中描述的操作,从个、十、百上珠中选1粒往下拨,则有种,下珠往上拨分两种情况,全部来自个、十、百,即种,或者来自个、十、百中的两个,即种,故算盘表示的数的个数为(+)=18.故选:B.5.F1、F2分别是双曲线的左、右焦点,过F1的直线分别交该双曲线的左、右两支于A、B两点,若AF2⊥BF2,|AF2|=|BF2|,则|AF2|=()A.2B.C.4D.解:双曲线的左,右焦点分别为F1,F2,过F1的直线分别交双曲线的左,右两支于点A,B.若AF2⊥BF2,且|AF2|=|BF2|,如图:设|AF2|=|BF2|=m,由定义|BF1|=m+2=+|AF1|,|AF1|=m﹣2,所以m=4,所以|AF2|=4,故选:C .6.已知,设函数,当时,f (t)取得最小值,则在方向上的投影为()A.B .C .D .解:因为,所以,当时,f2(t)=||2=,当t==,即=﹣时,f2(t)取得最小值,于是f(t)取得最小值,所以在方向上的投影为==﹣,故选:D.7.已知(1+x)7=a0+a1(x﹣1)1+a2(x﹣1)2+…+a7(x﹣1)7,则a0+a3=()A.688B.161C.129D.22解:∵(1+x)7=a0+a1(x﹣1)1+a2(x﹣1)2+…+a7(x﹣1)7,即[2+(x﹣1)]7=a0+a1(x﹣1)1+a2(x﹣1)2+…+a7(x﹣1)7,令x=1可得:a0=27=128,a3=×24=560,∴a0+a3=688,故选:A.8.已知a=13x,b=13x⎛⎫⎪⎝⎭,c=13log x,则下列说法正确的是()A.当a=b时,c<a B.当b=c时,a<c C.当a=c时,b<a D.当c=0时,a<b解:分别作出a =13x ,b =13x⎛⎫⎪⎝⎭,c =13log x 的图像,对于A ,当a =b 时,13x =13x⎛⎫⎪⎝⎭,交点为P ,此时c =13log x 在上方,c >a ,错误;对于B ,当b =c 时,13x⎛⎫⎪⎝⎭=13log x ,交点为R ,此时a =13x 在上方,a >c ,错误;对于C ,当a =c 时,13x =13log x ,交点为Q ,此时b =13x⎛⎫⎪⎝⎭在下方,b <a ,正确;对于D ,当c =0时,为S 点,此时a =13x在b =13x⎛⎫⎪⎝⎭上方,错误.故选:C .二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分) 9.关于函数,的结论正确的是( )A .f (x )在定义域内单调递减B .f (x )的值域为RC .f (x )在定义域内有两个零点D .是奇函数解:f (x )=的定义域为(﹣∞,﹣1)∪(﹣1,0)∪(0,+∞),而和在各段定义域内均为减函数,故f (x )在各段上为减函数,但不能说在定义域内单调递减,故A 错误;当x<﹣1时,x→﹣∞时,有f(x)=→0,因为f(x)单调递减,故f(x)在x<﹣1时的值域(﹣∞,0);当x∈(﹣1,0)时,有f(﹣)=0,因为f(x)单调递减,故f(x)在﹣1<x<0时的值域R;当x>0时,x→+∞时,f(x)→0,因为f(x)单调递减,故f(x)在x>0时的值域(0,+∞);所以f(x)的值域为R,故B正确;令f(x)==0,可得x=﹣,所以f(x)在定义域内有一个零点,故C错误;,令g(x)=,易知x≠±,此时定义域关于原点对称,且g(﹣x)==﹣g(x),故g(x)为奇函数,所以是奇函数,故D正确,故选:BD.10.设复数z1,z2满足z1+z2=0,则()A.B.|z1|=|z2|C.若z1(2﹣i)=3+i,则z1z2=﹣2iD.若,则1≤|z2|≤3解:设复数z1=a+bi,z2=c+di,(a,b,c,d∈R),∵z1+z2=0,∴a+c+(b+d)i=0,∴a=﹣c,b=﹣d,∴=a﹣bi=﹣c+di≠z2,|z1|===|z2|,因此A不正确,B正确.z1(2﹣i)=3+i,z1====1+i,∴z2=﹣1﹣i,则z1z2=(1+i)(﹣1﹣i)=﹣2i.因此C正确.∵,∴z1对应的点Z1的轨迹是以C(1,)为圆心,1为半径的圆,|OC|==2,∴2﹣1≤|z2|≤2+1,即1≤|z2|≤3.因此D正确.故选:BCD.11.已知函数f(x)=e x+a cos x,f′(x)是f(x)的导函数,则下列说法正确的是()A.当a=﹣1时,f(x)在(0,+∞)单调递增B.当a=﹣1时,f(x)在(0,f(0))处的切线为x轴C.当a=1时,f′(x)在[0,+∞)上无零点D.当a=1时,f(x)在存在唯一极小值点解:当a=﹣1时,f(x)=e x﹣cos x,则f′(x)=e x+sin x,∵当x∈(0,+∞)时,e x>1,﹣1≤sin x≤1,则f(x)=e x+sin x>0恒成立,故函数f(x)在(0,+∞)上单调递增,故A正确;f(0)=e0+sin0=1,f′(0)=0,故f(x)在(0,f(0))处的切线方程为:y=x,故B错误;当a=1时,f(x)=e x+cos x,故f′(x)=e x﹣sin x,令φ(x)=e x﹣sin x,则φ′(x)=e x﹣cos x>0,故φ(x)=e x﹣sin x在[0,+∞)单调递增,即f′(x)在[0,+∞)上单调递增,f′(x)≥f′(0)=1,故f′(x)在[0,+∞)上无零点,故C正确,当x∈(﹣,﹣π)时,f′(x)在(﹣,﹣π)递增,又f′(﹣)=﹣1<0,而f′(﹣π)=e﹣π>0,由零点存在定理得:存在唯一x0∈(﹣,﹣π),使得f′(x0)=0,当x∈(﹣,x0)时,f′(x0)<0,故函数f(x)在(﹣,﹣π)递减,当x∈(x0,﹣π)时,f′(x0)>0,故函数f(x)在(x0,﹣π)递增,从而f(x)在(﹣,﹣π)上存在唯一的极小值点x0,故D正确;故选:ACD.12.在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为菱形,AB=2,AA1=1,∠BAD=,则下列结论正确的是()A.直线AC1⊥平面A1BDB.直线DB1与平面C1CDD1所成角的正切值为C.过A1D作与AC1平行的平面A1DG,则平面A1DG截直四棱柱ABCD﹣A1B1C1D1的截面面积为D.点E为棱B1C1上任意一点,直线AA1与直线BE所成角的正切值的取值范围是[0,2]解:连接AC,BD交于点O,连接A1C1,B1D1交于点O1,∵四边形ABCD为菱形,∴AC⊥BD,又四棱柱ABCD﹣A1B1C1D1为直四棱柱,∴OO1⊥平面ABCD,以O为坐标原点,的正方向为x,y,z轴建立如图空间直角坐标系:则,B(0,1,0),,D(0,﹣1,0),,B1(0,1,1),,∵,,∴,即AC1不垂直于A1B,∴AC1与平面A1BD不垂直,故选项A错误;,,,设平面CC1D1D的法向量为,则,令x=1,则,∴,设直线DB1与平面C1CDD1所成角为θ,则,∴,故选项B正确;连接A1D交AD1与M,取C1D1中点H,连接MH,由直四棱柱特点知:四边形ADD1A1为矩形,∴M为AD1中点,∴MH∥AC1,又MH⊂面A1DH,AC1⊄面A1DH,∴AC1∥面A1DH,过A1D作平面A1DG∥AC1,面A1DG截直四棱柱ABCD﹣A1B1C1D1所得的截面为A1DH,在△A1DH中,由余弦定理得:,∴,又,,∴,∴A1D⊥DH,∴,即所求截面面积为,故选项C正确;设E(x,y,1),且,又,,∴,∴,设直线AA1与BE所成角为θ,∴=,∴tanθ=2λ,又因为λ∈[0,1],∴tanθ∈[0,2],故选项D正确.故选:BCD.三、填空题(本大题共4小题,每小题5分,共20分)13.若圆锥的侧面展开图是半径为4的半圆,则此圆锥的体积为π.解:圆锥的侧面展开恰为一个半径为4的半圆,所以圆锥的底面周长为:4π,底面半径为:2,圆锥的高为:2;圆锥的体积为:π•22×2=π.故答案为:π.14.已知,则sin2α+cos2α=.解:因为,所以cos(+2α)=1﹣2sin2(﹣α)=1﹣2×=,又cos(+2α)=(sin2α+cos2α)=,所以sin2α+cos2α=.故答案为:.15.已知函数f(x)=lnx,数列{a n}是公差为2的等差数列,且a n=f(x n),若x1+x2+x3+…+x10=e,则ln(x11+x12+x13+…+x20)=21.解:因为a n=f(x n)=lnx n,所以x n=,==e2,所以数列{x n}是公比为e2的等比数列,若x1+x2+x3+…+x10=e,则ln(x11+x12+x13+…+x20)=lne21=21.故答案为:21.16.函数f(x)的定义域为D,对D内的任意x1、x2,当x1<x2时,恒有f(x1)≤f(x2),则称f(x)为非减函数.已知f(x)是定义域为[0,1]的非减函数,且满足:①对任意x∈[0,1],f(1﹣x)+f(x)=2.②对任意x∈[0,],f(x)≥4x.则f()+f()的值为2.解:∵对任意x∈[0,1],f(1﹣x)+f(x)=2,∴f(1﹣)+f()=2f()=2,得f()=1,当x=时,f(1﹣)+f()=f()+f()=2,∵对任意x∈[0,],f(x)≥4x∴当x=时,f()≥4×=1,∵已知f(x)是定义域为[0,1]的非减函数,∴当x1<x2时,恒有f(x1)≤f(x2),当≤x≤时,f()≤f(x)≤f()=1,即此时f(x)=1为常数函数,则f()=1,f()=1,则f()=2﹣f()=1,f()=2﹣f()=2﹣1=1,则f()+f()=1+1=2.故答案为:2四、解答题(本大题共6小题,共70分.在每小题给出的四个选项中,只有一项是符合题目要求的)17.已知数列{a n}的前n项和S n=n2+n,数列{b n}满足b1=1,b n+1﹣b n=2•3n﹣1.(1)求数列{a n}与数列{b n}的通项公式;(2)记c n=),求数列{c n}的前n项和T n.解:(1)∵S n=n2+n,∴a1=S1=2,n≥2时,a n=S n﹣S n﹣1=n2+n﹣[(n﹣1)2+n﹣1]=2n,n=1时符合上式通项,∴a n=2n,又b n+1﹣b n=2•3n﹣1,∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+⋯+(b2﹣b1)+b1=2•3n﹣2+2•3n﹣3+⋯+2•30+1=3n﹣1,即;(2)∵c n=),∴=,∴+=,即数列{c n}的前n项和T n=.18.△ABC的内角A、B、C的对边分别为a、b、c,其面积为S,且b(a sin A+c sin C﹣b sin B)=3S.(1)求cos B的值;(2)若a、b、c成等比数列,且△ABC的面积是,求△ABC的周长.解:(1)因为b(a sin A+c sin C﹣b sin B)=3S=3,所以b(a2+c2﹣b2)=3×acb,即a2+c2﹣b2=,由余弦定理得cos B==;(2)由题意得b2=ac,S====,所以ac=4,b=2,又a2+c2﹣b2==6,所以a2+c2=10,所以(a+c)2﹣2ac=10,所以a+c=3,△ABC的周长a+b+c=3.19.如图,在多面体ABCDEF中,ABCD是正方形,AB=2,DE=BF,BF∥DE,M为棱AE的中点.(1)求证:平面BMD∥平面EFC;(2)若ED⊥平面ABCD,BM⊥CF,求二面角E﹣AF﹣B的余弦值.解:(1)证明:连接AC交BD于O,连接MO.∵ABCD为正方形,∴O是AC的中点,又M是AE的中点,∴在△AEC中,MO∥EC,又BF∥DE且BF=DE,∴四边形BDEF是平行四边形,∴BD∥EF,∴平面BMD∥平面EFC.(2)∵ED⊥平面ABCD,ABCD是正方形,∴以D为空间坐标系原点,DA,DC,DE分别为x,y,z轴,建立空间直角坐标D﹣xyz,设DE=BF=t,则B(2,2,0),M(1,0,),C(0,2,0),F(2,2,t),=(﹣1,﹣2,),=(2,0,t),∵BM⊥CF,∴=﹣2+=0,解得t=2,∴E(0,0,2),F(2,2,2),A(2,0,0),B(2,2,0),=(0,2,2),=(﹣2,0,2),=(0,2,0),设平面AEF的一个法向量为=(x,y,z),则,取x=1,得=(1,﹣1,1),平面ABF的法向量=(1,0,0),设二面角E﹣AF﹣B的平面角为θ,则cosθ===,∴二面角E﹣AF﹣B的余弦值为.20.某地一公司的市场研究人员为了解公司生产的某产品的使用情况,从两个方面进行了调查统计,一是产品的质量参数x,二是产品的使用时间t(单位:千小时),经统计分析,质量参数x服从正态分布N(0.8,0.0152),使用时间t与质量参数x之间有如下关系:0.650.700.750.800.850.900.95质量参数x使用时间t 2.60 2.81 3.05 3.10 3.25 3.35 3.54(1)该地监管部门对该公司的该产品进行检查,要求质量参数在0.785以上的产品为合格产品.现抽取20件该产品进行校验,求合格产品的件数的数学期望;(2)该公司研究人员根据最小二乘法求得线性回归方程为t=2.92x+0.76,请用相关系数说明使用时间t与质量参数x之间的关系是否可用线性回归模型拟合.附:参考数据:.若ξ~N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6828,P(μ﹣2σ<ξ≤μ+2σ)=0.9544参考公式:相关系数;回归直线方程为,其中.解:(1)一件产品的质量参数在0.785以上的概率=0.8414,设抽取20件该产品中为合格产品的件数为X,则X~B(20,0.8414),所以E(X)=20×0.8414=16.828;(2)由题意,,=4.55﹣2×0.8×7×0.8+7×0.82=0.07,同理,所以=,因为r接近1,故时间t与x之间可以用线性回归拟合.21.已知椭圆,A是椭圆的右顶点,B是椭圆的上顶点,直线l:y=kx+b(k>0)与椭圆交于M、N两点,且M点位于第一象限.(1)若b=0,证明:直线AM和AN的斜率之积为定值;(2)若,求四边形AMBN的面积的最大值.【解答】(1)证明:设M(x1,y1),则N(−x1,−y1),∵A(4,0),B(0,3),∴,∵M(x1,y1)在椭圆上,∴,∴为定值.(2)解:设,依题意:k>0,M点在第一象限,∴﹣3<b<3,联立:得:9x2+12bx+8b2−72=0,∴,设A到l的距离为d1,B到l的距离为d2,∴,∴.又∵(当b=0 时取等号),∴.故四边形AMBN的面积的最大值为.22.已知函数f(x)=(x+1)lnx.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求证:.解:(1)函数f(x)=(x+1)lnx,f(1)=0,f′(x)=lnx+,f′(1)=2,∴曲线y=f(x)在x=1处的切线方程为:y﹣0=2(x﹣1),∴y=2(x﹣1);(2)证明:令h(x)=(x+1)lnx﹣2(x﹣1),x∈(0,+∞),则h′(x)=lnx+﹣2=lnx+﹣1=u(x),u′(x)=﹣=>0,∴函数u(x)在x∈(1,+∞)单调递增,∴h′(x)=u(x)>u(1)=0,∴函数h(x)在x∈(1,+∞)单调递增,∴h(x)>h(1)=0.∴当x>1时:(x+1)lnx>2(x﹣1),令x=n2﹣2,则化为:>=﹣,∴>1﹣,>﹣,>﹣,……,>=﹣,∴+++…+>1+﹣﹣>﹣,n≥2,n∈N*,∴.21。

湖南省武冈市第二中学2020-2021学年八年级上学期入学考试数学试题

湖南省武冈市第二中学2020-2021学年八年级上学期入学考试数学试题

湖南省武冈市第二中学2020-2021学年八年级上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在Rt △ABC 中,∠C =90°,∠A =70°,则∠B 的度数为( )A .20°B .30°C .40°D .70° 2.△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,最短边BC=4cm ,最长边AB 的长是( ) A .5cm B .6cm C .7cm D .8cm 3.下列图形是中心对称图形的是( )A .B .C .D . 4.在ABCD 中,∠A ∶∠B ∶∠C ∶∠D 可能是( )A .1∶2∶2∶1B .1∶2∶3∶4C .2∶1∶1∶2D .2∶1∶2∶1 5.分别以下列各组数为一个三角形的三边长,不能组成直角三角形的一组数是( ) A .3,4,5 B .4,6,8 C .6,8,10 D .5,12,13 6.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三边的中垂线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点. 7.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A .1260°B .1080°C .900°D .720° 8.如图,在ABC 中,90︒∠=C ,AD 平分CAB ∠,12cm BC =,8cm BD =,那么点D 到直线AB 的距离是( )A .2cmB .4cmC .6cmD .10cm9.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A .AB //DC B .AC =BD C .AC ⊥BD D .AB =DC 10.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =.二、填空题11.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.12.如图,BE 、CF 分别是△ABC 的高,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是________.13.一直角三角形的两边长分别为5和12,则第三边的长是_______.14.若一个多边形内角和与外角和的比为9∶2,则这个多边形的边数是________. 15.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E 是AB 的中点,5OE cm =,则AD 的长为_____cm .16.已知菱形ABCD 的对角线AC ,BD 的长分别为6和8,则该菱形面积是_______. 17.如图,将边长为8的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长为____.18.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是_______.三、解答题19.如图,Rt △ABC 中,DC 是斜边AB 上的中线,EF 过点C 且平行于AB .若∠BCF=35°,求∠ACD 的度数.20.若a 、b 、c 为△ABC 的三边长,且a 、b 、c 满足等式22(5)(12)|13|0a b c -+-+-=,求△ABC 的面积.21.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A 偏离欲到达地点B 相距50米,结果他在水中实际游的路程比河的宽度多10米,求该河的宽度BC 为多少米?22.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.23.如图,在△ABC中,点D是BC边的中点,点F,E分别是AD及其延长线上的点,CF//BE,连接BF,CE.求证:四边形BECF是平行四边形.24.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD =BC,求证:四边形EFGH是菱形.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案1.A【分析】根据直角三角形的性质直接求解即可.【详解】解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=70°,∴∠B=20°故选:A.【点睛】此题考查了直角三角形的性质,掌握直角三角形两锐角互余是解题的关键.2.D【详解】试题解析:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,即△ABC为直角三角形,∵∠C=90°,∠A=30°,∴AB=2BC=2×4=8cm,故选D.考点:含30度角的直角三角形.3.D【分析】根据中心对称图形的定义判断即可.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、既不是轴对称图形,也不是中心对称图形,不符合题意;D、是中心对称图形,符合题意;故选:D.【点睛】本题考查了中心对称图形的识别,解题关键是抓住中心对称图形的特征,准确判断.4.D【分析】由平行四边形的对角相等得出∠A=∠C,∠B=∠D,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D可能是2∶1∶2∶1;故选:D.【点睛】本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.5.B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】解:A、∵32+42=52,∴此三角形是直角三角形,不合题意;B、∵22+32≠42,∴此三角形不是直角三角形,符合题意;C、62+82=102,∴此三角形是直角三角形,不合题意;D、52+122=132,∴此三角形是直角三角形,不合题意.故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.7.C【详解】试题分析:∵多边形从一个顶点出发可引出4条对角线,∴n﹣3=4,解得n=7,∴内角和=(7﹣2)•180°=900°.故选C.考点:1.多边形内角与外角;2.多边形的对角线.8.B【分析】过点D作DE⊥AB于E,然后根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,再代入数据求出CD,即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠CAB,∴DE=CD,∵BC=12cm,BD=8cm,∴CD=BC-BD=12-8=4cm,∴DE=4cm.故选B.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.9.C【分析】根据三角形的中位线定理和平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的判定定理解答即可.【详解】解:∵E、F、G、H分别是四边形ABCD各边中点,∴EH=12BD,EH∥BD,FG=12BD,FG∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,当AC⊥BD时,AC⊥EH,∴EH⊥EF,∴四边形EFGH为矩形,故选:C.【点睛】本题考查的是三角形的中位线定理和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10.D【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:D.【点睛】本题考查正方形的判定.掌握相关判定定理正确推理论证是解题关键.11.70°【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD,求出∠BCD=∠B即可.【详解】解:在Rt△ABC中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD是斜边AB上的中线,∴BD=CD,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠B的度数是解此题的关键.12.13.【详解】试题分析:在Rt△BCE和Rt△BCF中,根据直角三角形斜边上的中线等于斜边的一半可得EM=12BC=4,FM=12BC=4,又因EF=5,所以△EFM的周长=EM+FM+EF=4+4+5=13.考点:直角三角形斜边上的中线等于斜边的一半的性质.13.13【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13(负值舍去);(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴(负值舍去);∴第三边的长为13.故答案为:13.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.14.11【分析】根据多边形的外角和是360°,可得此多边形的内角和是93602︒⨯,再由n边形的内角和是(2)180n-⋅︒可得关于n的方程,求解后即可求出边数n.【详解】解:设这个多边形是n边形,∵多边形内角和与外角和的比为9∶2,∴2189 3602n-⋅︒︒⨯()=,解得n=11.∴此多边形的边数为11.故答案为:11.【点睛】本题考查了多边形的内角和与外角和,解题的关键是利用多边形的内角和公式将问题转化为解方程的问题解决.15.10【详解】解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=5cm,∴AD=10cm.故答案为:10.考点:平行四边形的性质;三角形中位线定理.16.24【详解】解:根据菱形的面积等于菱形两条对角线乘积的一半可得菱形面积为16824 2⨯⨯=故答案为:24.17.3【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=12BC=4,在Rt△ECN中,由勾股定理可知222=+EN EC CN,即228-16x=+(x)整理得16x=48,所以x=3.故答案为3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.18【详解】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴=考点:1.轴对称-最短路线问题;2.正方形的性质.19.∠ACD=55°.【分析】根据平行线的性质求出∠B,根据直角三角形的性质求出∠DCB,计算即可.【详解】∵AB∥EF,∴∠B=∠BCF=35°,∵DC是斜边AB上的中线,∴DC=DB,∴∠DCB=∠B=35°,∵∠ACB=90°,∴∠ACD=90°-35°=55°.【点睛】本题考查的是平行线的性质、直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.20.30【分析】首先根据非负数的性质可得a、b、c的值,再利用勾股定理逆定理证明△ABC是直角三角形,然后根据三角形的面积公式计算即可.【详解】解:∵(a-5)2+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC=12×5×12=30.【点睛】此题考查了非负数的性质,勾股定理逆定理以及三角形的面积,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21.该河的宽度BC为120米【分析】根据题意可知△ABC为直角三角形,根据勾股定理就可求出直角边BC的距离.【详解】根据题意可知AB=50米,AC=BC+10米,设BC=x,由勾股定理得AC2=AB2+BC2,即(x+10)2=502+x2,解得x=120.答:该河的宽度BC为120米.【点睛】此题考查勾股定理的实际应用,根据题意构建直角三角形及三边的数量关系是解题的关键. 22.相等,详见解析【分析】连EB、EC,根据角平分线和垂线的性质可得EF=EG,再根据中线的性质得到EB=EC,即可证明Rt△EFB≌Rt△EGC,即可得到结果;【详解】解答:相等.证明如下:连EB、EC,∵AE是∠BAC的平分线,且EF⊥AB于F,EG⊥AC于G,∴EF=EG,∵ED⊥BC于D,D是BC的中点,∴EB=EC,∴Rt△EFB≌Rt△EGC,∴BF=CG.【点睛】本题主要考查了全等三角形的应用,结合角平分线的性质、垂线性质求解是解题的关键.23.证明见解析【分析】由已知条件,据AAS很容易证得△BDE≌△CDF;则可证得CF=BE,继而证得:四边形BECF是平行四边形;【详解】证明:∵在△ABC中,D是BC边的中点,∴BD=CD,∵CF∥BE,∴∠CFD=∠BED,在△CFD和△BED中,CFD BED CD BDFDC EDB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CFD ≌△BED (AAS ),∴CF =BE ,∴四边形BFCE 是平行四边形;【点睛】此题主要考查了平行四边形的判定、全等三角形的判定与性质、平行线的性质.注意熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.24.证明见解析【分析】根据三角形中位线定理得到EF =12AD ,GH =12AD ,HE =12BC ,FG =12BC ,进而证明EF =GH =HE =FG ,根据菱形的判定定理证明即可.【详解】证明:∵E ,F 是AB ,BD 的中点,∴EF =12AD , 同理,GH =12AD ,HE =12BC ,FG =12BC , ∵AD =BC ,∴EF =GH =HE =FG ,∴四边形EFGH 是菱形.【点睛】本题考查的是三角形中位线定理、菱形的判定定理,掌握四条边相等的四边形是菱形是解题的关键.25.解:(1)证明:如图,∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF13=.∴OC=12EF=6.5.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.【详解】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省武冈市第二中学2020-2021学年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°2.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.3.下列大学的校徽图案是轴对称图形的是()A.B.C.D.4.下列各数中,无理数是()A.0 B.227C4D.π5.计算:9115()515÷⨯-得()A.-95B.-1125C.-15D.11256.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是()A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定7.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .8.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺9.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )A .12B .18C .38D .111222++ 11.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个12.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC=23,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为________.14.化简:9=______.15.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图);第二步:以B 点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为______.16.如图,正方形ABCD 的边长为422+,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB , 垂足为点F ,则EF 的长是__________.17.如图,线段AC=n+1(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;…;当AB=n 时,△AME 的面积记为S n .当n≥2时,S n ﹣S n ﹣1=▲ .18.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?20.(6分)如图,直线y=﹣x+2与反比例函数kyx(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.21.(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.22.(8分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.23.(8分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.24.(10分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM =∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.25.(10分)计算:2sin30°﹣(π﹣2)0+|3﹣1|+(12)﹣1 26.(12分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.27.(12分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T 恤衫每件进价是多少元?老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价﹣进价)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.考点:多边形内角与外角;三角形内角和定理.2、B【解析】A C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶试题解析:选项,,点,与正方体三个剪去三角形交于一个顶点符合.故选B.3、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【解析】【分析】利用无理数定义判断即可.【详解】解:π是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.5、B【解析】【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭ -1125故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.6、A【解析】【分析】根据正比例函数的增减性解答即可.【详解】∵正比例函数y =﹣k 2x (k ≠0),﹣k 2<0,∴该函数的图象中y 随x 的增大而减小,∵点M (﹣3,y 1),N (﹣4,y 2)在正比例函数y =﹣k 2x (k ≠0)图象上,﹣4<﹣3,∴y 2>y 1,故选:A .【点睛】本题考查了正比例函数图象与系数的关系:对于y =kx (k 为常数,k ≠0),当k >0时,y =kx 的图象经过一、三象限,y 随x 的增大而增大;当k <0时, y =kx 的图象经过二、四象限,y 随x 的增大而减小.7、C【解析】试题分析:由题意可得BQ=x .①0≤x≤1时,P 点在BC 边上,BP=3x ,则△BPQ 的面积=12BP•BQ ,解y=12•3x•x=232x ;故A 选项错误; ②1<x≤2时,P 点在CD 边上,则△BPQ 的面积=12BQ•BC ,解y=12•x•3=32x ;故B 选项错误; ③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误.故选C .考点:动点问题的函数图象.8、B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴ 1.5150.5x =, 解得x=45(尺),故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键. 9、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.【解答】用求根公式求得:12x x == ∵90,2a C BC ACb ∠=︒==,,∴AB =∴22224.422a ab a aAD b +-=+-=AD 的长就是方程的正根. 故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 10、B 【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可. 详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种, ∴实际这样的机会是18. 故选B .点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比. 11、B 【解析】分析:根据已知画出图象,把x =−2代入得:4a −2b +c =0,把x =−1代入得:y =a −b +c >0,根据122cx x a⋅=<-,不等式的两边都乘以a (a <0)得:c >−2a ,由4a −2b +c =0得22c a b -=-,而0<c <2,得到102c-<-<即可求出2a −b +1>0. 详解:根据二次函数y =ax 2+bx +c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x =−2代入得:4a −2b +c =0,∴①正确;把x =−1代入得:y =a −b +c >0,如图A 点,∴②错误; ∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a (a <0)得:c >−2a , ∴2a +c >0,∴③正确;④由4a −2b +c =0得22c a b -=-, 而0<c <2,∴102c-<-< ∴−1<2a −b <0 ∴2a −b +1>0, ∴④正确.所以①③④三项正确. 故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型. 12、B 【解析】 【分析】比较OP 与半径的大小即可判断. 【详解】r 5=,d OP 6==, d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、13-1. 【解析】 【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,由AB=AC=23、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE 可得出△CEG 为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC 的长度以及证明全等找出DE=FE ,设EC=x ,则BD=CF=2x ,DE=FE=6-1x ,在Rt △CEF 中利用勾股定理可得出FE=3x ,利用FE=6-1x=3x 可求出x 以及FE 的值,此题得解. 【详解】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,如图所示.∵3BAC=120°, ∴∠ACB=∠B=∠ACF=10°, ∴∠ECG=60°. ∵CF=BD=2CE , ∴CG=CE ,∴△CEG 为等边三角形, ∴EG=CG=FG , ∴∠EFG=∠FEG=12∠CGE=10°, ∴△CEF 为直角三角形. ∵∠BAC=120°,∠DAE=60°, ∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE 和△AFE 中,60AD AF DAE FAE AE AE ⎧⎪∠∠︒⎨⎪⎩====, ∴△ADE ≌△AFE (SAS ), ∴DE=FE .设EC=x ,则BD=CF=2x ,DE=FE=6-1x , 在Rt △CEF 中,∠CEF=90°,CF=2x ,EC=x ,, ∴x ,∴. 故答案为:. 【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键. 14、3 【解析】分析:根据算术平方根的概念求解即可. 详解:因为32=9故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方. 151 【解析】解:如图,点M 即为所求.连接AC 、BC .由题意知:AB =4,BC =1.∵AB 为圆的直径,∴∠ACB =90°,则AM =ACM1.1.点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.16、2【解析】【分析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【详解】设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴22+4,EF=BF=x,∴2x,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴222,解得:x=2,即EF=2.17、2n1 2【解析】连接BE,∵在线段AC 同侧作正方形ABMN 及正方形BCEF , ∴BE ∥AM .∴△AME 与△AMB 同底等高. ∴△AME 的面积=△AMB 的面积. ∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=n -1时,△AME 的面积为()2n 1S n 12=-. ∴当n≥2时,()()()22n n 11112n 1S S n n 1=n+n 1n n+1=2222---=----18、C 【解析】 【分析】先证明△BPE ∽△CDP ,再根据相似三角形对应边成比例列出式子变形可得. 【详解】由已知可知∠EPD=90°, ∴∠BPE+∠DPC=90°, ∵∠DPC+∠PDC=90°, ∴∠CDP=∠BPE , ∵∠B=∠C=90°, ∴△BPE ∽△CDP ,∴BP :CD =BE :CP ,即x:3=y:(5-x),∴y=253x x-+(0<x<5);故选C .考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元. 【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣1005x-)x﹣1100=﹣15x2+70x﹣1100=﹣15(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.20、(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(3+31,0)即:满足条件的M(−1+23,0)或(3+31,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.21、(1)50人;(2)补图见解析;(3)1 10.【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式求事件A或B的概率.22、(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】【分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值=O′A=()()221330--+-=2. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴CD=2,BC=12,DB=25.∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1),∴OA=1,CO=1.∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ 为直角三角形,CO ⊥AQ ,∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△ACQ ∽△DCB .∴CD ACBD AQ=,即21025=,解得:AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.23、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为11317-或2.【解析】【分析】(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=113172如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m2.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.24、(1) y=(x-12)2-2;(2)△POE的面积为115或13;(3)点Q的坐标为(-54,32)或(,2)或,2).【解析】【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-32,2)代入y=a(x-12)2-2,解得a=1,∴抛物线的表达式为y=(x-12)2-2,(2)由y=(x-12)2-2知A(12,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得122322k bk b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得21 kb=-⎧⎨=-⎩,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-74),M(-12,0),若∠OPM =∠MAF ,∴OP ∥AF ,∴△OPE ∽△FAE , ∴OP OE 143FA FE 34===, ∴OP=43FA =43 221750224⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭, 设点P(t ,-2t -1),则()225t 2t 1+--=, 解得t 1=-215,t 2=-23, 由对称性知,当t 1=-215时,也满足∠OPM =∠MAF , ∴t 1=-215,t 2=-23都满足条件, ∵△POE 的面积=12OE·|t|, ∴△POE 的面积为115或13; (3)如图,若点Q 在AB 上运动,过N′作直线RS ∥y 轴,交QR 于点R ,交NE 的延长线于点S ,设Q(a ,-2a -1),则NE =-a ,QN =-2a.由翻折知QN′=QN =-2a ,N′E =NE =-a ,由∠QN′E =∠N =90°易知△QRN′∽△N′SE ,∴QR N S '=RN ES'=QN EN '',即QR 1==2a 12a ES a ---=-=2, ∴QR =2,ES =2a 12-- , 由NE +ES =NS =QR 可得-a +2a 12--=2,解得a=-54,∴Q(-54,32),如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=5,SE=5-a.在Rt△SEN′中,(5-a)2+12=a2,解得a=355,∴Q(-35,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5 a.在Rt△SEN′中,5a)2+12=a2,解得a =35, ∴Q(35,2). 综上,点Q 的坐标为(-54,32)或(-355,2)或(355,2). 【点睛】 本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.25、1+3【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.详解:原式=2×12-1+3-1+2=1+3.点睛:此题主要考查了实数运算,正确化简各数是解题关键.26、(1)50人;(2)补全图形见解析,表示A 组的扇形统计图的圆心角的度数为108°;(3)12. 【解析】分析:(1)、根据B 的人数和百分比得出样本容量;(2)、根据总人数求出C 组的人数,根据A 组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.详解:(1)被调查的总人数为19÷38%=50人; (2)C 组的人数为50﹣(15+19+4)=12(人),补全图形如下:表示A 组的扇形统计图的圆心角的度数为360°×1550=108°; (3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, ∴P (恰好选中甲)=61122=. 点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.27、(1)第一批T 恤衫每件的进价是90元;(2)剩余的T 恤衫每件售价至少要80元.【解析】【分析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T 恤衫每件售价y 元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.2020-2021中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

相关文档
最新文档