稀土发光材料研究进展
稀土发光材料的研究进展
前言当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。
我国丰富的稀土资源,约占世界已探明储量的80%以上。
稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。
稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。
稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。
就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。
由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。
由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。
在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。
稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。
稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。
随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。
进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。
所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。
稀土上转换发光材料研究进展
稀土上转换发光材料研究进展作者:张晓君来源:《科技资讯》 2011年第27期张晓君(东北电力大学化学工程学院吉林省吉林市 132012)摘要:本文简要介绍了稀土上转换发光材料的研究进展,并对其作为生物分子荧光标记探针的应用进行了探讨。
关键词:上转换材料稀土研究进展中图分类号:O482 文献标识码:A 文章编号:1672-3791(2011)09(c)-0052-01稀土上转换发光材料是指材料吸收能量较低的光子时却能够发出较高能量的光子的材料,或者也可以说是受到某种光激发时,材料可以发射比激发光波长短的荧光材料。
由此可知,上转换发光的本质是一种反Stokes发光。
一般来说,稀土离子上转换发光所用介质是晶体或玻璃态物质,通过激发态吸收或者各种能量的传递过程,稀土离子被激发至高于泵浦光子能量的能级,向下跃迁而发射上转换荧光。
早在1959年,就已经出现了利用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光的报道。
但由于早期最好的上转换材料的发光效率还不超过1‰,并且由于发光二极管的发射峰与上转换材料的激发峰匹配的不是特别理想,因此并没有达到实用化的水平。
1962年,上转换发光现象又在硒化物中得到了进一步的证实,红外辐射转换成可见光的效率达到了相当高的水平。
1966年,Auzel在研究钨酸镱钠玻璃时意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
在此后的十几年内,上转换材料就发展成为了一种把红外光转变为可见光的有效材料,并且达到了实用的水平。
例如,上转换材料与发红外光的Si-GaAs发光二极管(LED)配合,能够得到绿光,其效率可以与GaP发光二极管媲美,这可以说是很大的突破。
它还可以用于各类半导体激光器的红外检测、红外发光二极管发射光跟踪、YAG等大型激光器的校对等。
20世纪90年代初,利用上转换材料实现激光输出获得了令人振奋的成果:不仅在低温下(液氮温度),于光纤中实现了激光运转,而且在室温下,在氟化物晶体中也成功地获得了激光运转,光-光转换效率超过了1%,高达1.4%,从而使红外激发上转换材料在显示、光计算和信息处理等领域显示了广泛的实用前景。
稀土发光纳米材料发光特性的研究进展
稀土发光 纳米材料发光特性 的研究进展
郭艳 艳 吴杏 华 王殿 元2 王庆 凯
( 九 江学院机械 与材料 工程 学院; 1 2九江学院理学院 江西九 江 3 2 0 ) 3 0 5
关键词 :稀 土;发光 ;纳米材料 ;表 面界 面效应 ;小尺寸效应
中 图 分 类 号 :O4 2 3 文 献 标 识 码 :A 文 章 编 号 :17 94 (0 0 4— 15一 (4 8 . 1 64— 5 5 2 1 )0 0 0 0)
21 0 0年第 4期
No 4 , 2 0 . 01
九 江 学 院学 报 ( 自然 科 学 版 ) Ju fi agu j r t (auM si cs omM oj n n esy ntr c ne ) @ v i e
( 总第 9 1期 ) ( u o9 ) Sm N . 1
22发射光谱 变化 .
与体相 材料相 比,稀土发光 纳米材料
的发射光谱存在谱线 宽化 和峰值移 动 、出现新发光峰 、荧
光 分 支 比变 化 等 现 象 。 姚 罡 等 在 纳 米 Y O :E ” 中 , , u
发现粒径从 4 n 减小 至 1n 4m 2 m时发 射 主峰从 63 m 蓝移 1n
于 E 3 子 。 F 跃 迁 ,宋 宏 伟 等 ㈦ 在 Y O : u 纳 u 离 D 一 , B , E¨
米管 、纳米线 中发现仍是橙色发光为主 ,然而 Y dvR . aa S 等¨ 刚和严纯华 等¨ 在纳 米 Y O B :E 中发现 发射 谱 以 u 红光为主 ( 对应 于 0 F D 一 跃迁 ) 。非 常有趣 的是 ,王育 华等人 在 水热法合成 的纳米 Y O :E 3 B , u 中发现 u V光 激发时以 5 2 m 橙色 光 发射 为 主 ,强度 随粒 径减 小 而减 9n
磷灰石结构稀土发光材料研究进展
磷灰石结构稀土发光材料研究进展马欣旭;周威;王心蕊【摘要】The rare earth luminescent materials with apatite structure were chose as the research object and the development of domestic and foreign apatite materials in recent years were introduced. The advantages of apatite in structure,physical and chemical properties were explained. The different types of apatite were cited. The luminescence characteristics of apatite doped with rare earth ions were analyzed. The commonly used preparation methods and applications were summarized. The deficiency of apatite structure of rare earth luminescent materials was pointed out,and the future development trend and application prospect were discussed.%以磷灰石结构稀土发光材料作为研究对象,介绍了近年来国内外该种材料的研究情况,说明了磷灰石结构稀土发光材料在结构、理化性能上的优势,列举了不同种类的磷灰石基质,分析了磷灰石结构无机盐掺杂不同稀土离子的发光特点,总结了常用的制备方法及应用情况,指出了磷灰石结构稀土发光材料的不足,并对未来发展趋势和应用前景进行了展望.【期刊名称】《广州化工》【年(卷),期】2018(046)005【总页数】4页(P12-14,20)【关键词】磷灰石;合成方法;发光特性【作者】马欣旭;周威;王心蕊【作者单位】北京工商大学理学院化学系,北京 100048;北京工商大学理学院化学系,北京 100048;北京工商大学理学院化学系,北京 100048【正文语种】中文【中图分类】TQ17稀土发光材料由基质和激活剂组成,基质一般为无机盐类,激活剂为稀土元素,有时为了提高发光效率会加入稀土离子作为敏化剂,形成稀土离子间的能量传递。
稀土长余辉发光材料的研究进展
o 1 1O4 E f¥: 2 : u 4
D a d a 2 . n 1 . . u i . 9 7 7 — 4 2 7 y n . O4 E “[ ] J L Ⅲ n 19 , 2 7 :8 . C N. 『
2 2 第二代 长余 辉材料
盐, 硅硼 酸盐 复合 体系 。掺 杂离子 以稀 土为主 , 时配 以过 渡金 属和非 金属 元 同 素, 并 注 意掺杂 离 子本 身 的互相 匹 配。 () 2 新的应用 也是新材料 研究 的驱 动力, 了继续 扩展弱光 照明与显示 外, 除 主要 是开 拓光 电信 息功 能材 料方 面的应 用 , 特别 是二 维 、三 维 图像存 储与 显 示,高 能粒 子射 线 探 测器 。 () 3 长余辉 发光材 料 的机 理十 分复 杂, 特别 是它 有多种 尚不清 楚的 晶体结 构缺 陷参与 , 程更 加复杂 , 过 需要更 深入 于微观 结构 与 电荷 载流子 输运过 程 的 了解 。澄清 发 光机 理是 设计 新材 料 的基 础与 物理 依据 , 为此 人们 正在 从 多 方 面加强机 理研 究,所 用方法 除常用 的光谱技 术外, 大量使用 热释光 技术,研 究陷 阱深度 及其分 布 , 并 结合 电子 自旋共 振 实验判 别 陷阱类 型与填 充状 态, 也 不断利 用可 见区 与红外 激光研 究其 光释 光特性 与动 力学过 程 。值 得注 意 的 足 ,近年 来使 用同步 辐射 真空紫 外光谱 技术 研究其 基质 能带 结构及 其发光 中 心 、缺 陷 中心 间的能 量 传递, 特 别是 用 高强 度 同步辐 射 X光 研 究局域 微 结 构 及 离子价 态 , 是 极 为有 力 的工具 。 参 考 文 献
稀土材料的光学性能研究
稀土材料的光学性能研究引言稀土材料由于其特殊的电子结构和能级特性,在光学领域具有很高的应用潜力。
稀土元素的能级跃迁和荧光发射特性使得稀土材料在光通信、光电子器件、发光材料等方面发挥着重要作用。
本文将重点探讨稀土材料在光学性能方面的研究进展。
稀土材料的基本性质1.稀土元素的特殊电子结构导致了其特殊的光学特性。
稀土元素的外层电子壳层结构中含有未填满的f电子,并且这些f电子的能级结构分裂很小,从而导致能级跃迁和光学激发过程中的特殊规则。
2.稀土材料具有较宽的激发带宽度和较长的寿命,使其在光学材料方面具有良好的应用潜力。
3.稀土材料的能带结构和能级跃迁特性可以通过掺杂不同的辅助离子、调节晶体结构和形貌等方式进行改变,从而实现对其光学性能的调控。
光学性能的研究方法1.光谱分析是研究稀土材料光学性能的基本方法之一。
通过吸收光谱、荧光光谱等各种光谱测量方法可以获取稀土材料的能带结构、能级跃迁和光学特性等信息。
2.傅里叶变换红外光谱(FTIR)是研究稀土材料的另一种重要手段。
通过FTIR可以观察到稀土材料在红外波段的吸收特性,从而对其晶体结构进行表征。
3.散射性质在稀土材料的光学性能研究中也起到了重要作用。
通过散射光谱、散射强度分布曲线等测量方法可以研究稀土材料的光学散射特性。
稀土材料的光学应用1.发光材料方面,稀土材料的荧光性能使其成为了一类重要的发光材料。
稀土材料的发光可覆盖从可见光到近红外光谱范围,使其在LED照明、显示器件等领域具有广泛应用。
2.光通信方面,稀土材料的特殊光学性能使其成为了光纤通信中重要的光纤放大材料和光谱滤波器材料。
稀土材料可以实现高效的光信号放大和波长选择,提高光纤通信的传输能力和质量。
3.光电子器件方面,稀土材料的特殊电子结构使其在太阳能电池、光探测器等器件中得到广泛应用。
稀土材料可以提高器件的光电转换效率和敏感性。
稀土材料的研究进展与挑战1.稀土材料的研究进展主要集中在其发光性能和能级跃迁特性的深入理解。
红色荧光材料稀土铕配合物的研究进展(1)
最近 ,刘玲等[21] 将配合物 (19) 掺杂在成膜性能较好的高 分子材料 PVK 中经旋涂成膜 ,制备了单层有机电致发光器 件 ,得到稀土铕离子特征发射光谱 。并证明其发光机制是载 流子俘获机理 。
大可能有两方面原因 :一是与β二酮相连的苯环的对位带有 管这类配合物的溶解性和发光强度没有β- 二酮的铕配合物
推电子烷氧基 ,这些基团上的电子可通过共轭效应向与β二 好 ,但是由于它们有良好的热稳定性 ,近几年来开始被研究
酮配位的铕发生离域 ,使荧光得到增强 ;另一方面 ,可能是由 与开发[17] 。深入研究它们的空间结构与发光性质的关系 ,可
配合物 (12) 。结果表明 ,这种配合物的三氯甲烷溶液在浓度
这类配合物的羧酸配体主要是指含芳香环的羧酸和氨
为 2~4molΠL 范围内浓度淬灭现象不显著 ,溶液和薄膜的荧 基酸 ,它们在紫外区具有较大的光吸收系数 。同时 ,稀土离
光都强于铕二苯甲酰甲烷邻菲罗啉配合物 (8) 。荧光强度增 子与有机羧酸的配位能力较强 ,形成的配合物比较稳定 。尽
现了能量转移 ,红光器件的效率达到 1. 1 % ,开创了制备红光
一般认为满足 OLED 材料的基本条件就是要有高的 PL 效率 。PL 效率低的材料 ,不可能用于 OLED 器件 。然而许多 事实说明 ,具有高的 PL 效率 ,也不一定就是优良的 EL 材料 。 例如 ,在 365nm 紫外光激发下 , Eu ( TTA) 3 Phen (7) 的 PL 亮
红色荧光材料稀土铕配合物的研究进展Ξ
张 萍1 ,季彩宏2
(1. 连云港职业技术学院 ,江苏 连云港 222006 ;2. 南京工业大学 ,江苏 南京 210009)
摘 要 :稀土铕配合物是红色荧光材料的一种 ,具有有机化合物的高发光量子效率和无机化合物良好稳定性的双重优 点 ,是很有应用前景的一类发光材料 。本文从材料结构的角度出发 ,对铕配合物的配体和发光机理加以概述 ,讨论分子结构 对材料性能的影响 ,并针对目前存在的问题 ,提出相应的研究设想 。
基于稀土配合物和离子液体的新型稀土发光材料研究进展
基于稀土配合物和离子液体的新型稀土发光材料研究进展李焕荣;王天任【摘要】Rare earth organic complexes exhibit excellent luminescent properties. However,the in-herent shortcomings like low stability and poor processability severely limit their practical applica-tions. Ionic liquids (ILs) exhibit good stability and solubility,and the combination of ILs with rare earth organic complexes can overcome the abovementioned shortcomings and can afford the comple-xes more excellent properties as well as enhanced practicability. This paper presents several typical rare earth complexes/ILs luminescent materials as well as the status of ILs in the materials,and the future applications of these materials are also prospected.%稀土有机配合物具有优异的发光性能,但其内在缺陷如较低的稳定性和较差的加工性等则限制了它们的实际应用.离子液体稳定性和溶解性能均较好,将稀土配合物和离子液体结合可以有效地弥补上述不足,同时可以赋予材料更多奇特和优异的性能,从而增强它们的实用性.本文主要介绍了一些典型的含离子液体和稀土配合物的发光材料体系,阐明了离子液体在这些体系中的地位及作用,并对这类材料未来的应用及发展前景作了展望.【期刊名称】《发光学报》【年(卷),期】2018(039)004【总页数】15页(P425-439)【关键词】稀土;离子液体;杂化材料;天线效应;荧光【作者】李焕荣;王天任【作者单位】河北工业大学化工学院,天津 300130;河北工业大学化工学院,天津300130【正文语种】中文【中图分类】O611.41 引言稀土配合物是一类非常重要的光功能材料,它们具有激发态寿命长、发光色纯度高、发光效率高和发射谱线丰富(范围覆盖紫外区至红外区)等优点。
SiO2基核壳结构的稀土发光材料的研究进展
SiO2基核壳结构的稀土发光材料的研究进展
刘艳红;胡瀛寰;张波;吴宇;韩熠;刘雷
【期刊名称】《赤峰学院学报(自然科学版)》
【年(卷),期】2024(40)2
【摘要】SiO2基核-壳结构的稀土发光材料因其具有优异的性能而受到关注。
研究表明SiO2基核壳结构的稀土发光材料具有强发光效率、强光稳定性、无毒性、寿命长、价格低廉等特点。
这些特性使它们在光学设备、等离子显示器、荧光灯、生物医学领域成像、指纹和防伪标签等方面得到广泛的应用。
本文重点阐述了SiO2基核壳结构的稀土发光材料的制备方法,包括固相法、湿化学法、燃烧法等。
从核壳结构的稀土发光材料的制备方法入手探究目前的研究进展,其中溶胶凝胶法研究最多。
最后对SiO2基核壳结构的稀土材料进行了总结与展望。
【总页数】6页(P14-19)
【作者】刘艳红;胡瀛寰;张波;吴宇;韩熠;刘雷
【作者单位】赤峰学院化学与生命科学学院
【正文语种】中文
【中图分类】TQ422
【相关文献】
1.锌基荧光量子点核壳结构材料的制备及发光性能研究
2.SiO2/稀土Eu(Ⅲ)配合物核-壳复合粒子的制备及发光性能研究
3.核壳纳米结构壳中Yb离子对稀土上转换
发光温度特性的影响4.基于介孔纳米粒子模板合成兼有荧光和近红外发光的稀土核-壳结构纳米材料5.乳液法制备SiO2核壳结构复合材料的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
稀土在发光材料中的应用及研究进展
2 稀 土发 光 材 料 的 优 异 性 能
( ) 土 元 素 4 电 子 层 结 构 特 点 使 其 化 合 物 具 有 多 种 1稀 f
荧光特性 。
射 。 由于 很 多 稀 土 离 子 具 有 丰 富 的 能 级 和 它 们 的 4 电 子 跃 f 迁 特 性 , 稀 土 成 为 一个 巨 大 的 发 光 宝 库 , 高 新 技 术 提 供 使 为
了很 多 性 能 优 越 的 发 光材 料 。 () 】 +3价 稀 土 离 子 发 光 特点 。① 具 有 } 跃 迁 的稀 土发 f 光 材 料 的 发 射 光 谱 呈 线状 , 纯 度 高 ; 由 于 4 轨 道 处 于 内 色 ② f
第 2 卷第 6 3 期 21 年 1 00 1月
唐 山学 院 学 报
J u n lo n s a olg o r a fTa g h n C l e e
Vo123 N o . .6 NOV 201 . 0
稀 土在 发 光材 料 中 的应 用及 研 究进 展
葛伟 青
稀 土发 光材 料 具 有 吸 收 能 力 强 、 换 率 高 、 发 射 从 紫 转 可
下 限必 须 位 于 6 j 级 之 上 , 此 E 。 须 处 在 一 种 弱 场 、 p能 因 u 必
外 到红 外 的光 谱 、 可 见 光 区有 很 强 的发 射 能 力 且 物 理 性 能 在
之 内或 d组 态 之 间 的 跃 迁 。 具 有 未 充 满 的 4 壳 层 的 稀 土 f 原 子 或 离 子 , 光 谱 大பைடு நூலகம்约 有 3 0 其 000条 可 观 察 到 的 谱 线 , 们 它
可 以发 射 从 紫 外 光 、 见 光 到 红 外 光 区的 各 种 波 长 的 电 磁 辐 可
稀土纳米发光材料研究进展
第26卷 第3期2005年6月发 光 学 报C H I N ESE J OURNAL OF LUM I N ESCENCEV ol 126N o 13June ,2005文章编号:1000-7032(2005)03-0285-09稀土纳米发光材料研究进展张吉林,洪广言*(中国科学院稀土化学与物理重点实验室,吉林长春 130022)摘要:稀土纳米发光材料明显不同于体相发光材料的特性已经成为近年来的热点研究课题,为了更好地探索其特性,综述了稀土纳米发光材料的研究进展,特别是掺杂Eu 3+和T b 3+离子的稀土纳米发光材料。
首先,归纳总结了稀土纳米发光粒子不同于体相材料的光谱特性,如电荷迁移带的红移、发射峰谱线的宽化、猝灭浓度的升高、荧光寿命和量子效率的改变等等;其次,概述了一维稀土纳米发光材料的制备与光谱性质,介绍了二维稀土纳米发光薄膜的图案化和介孔模板组装;最后,对其未来的发展趋势进行了展望。
关 键 词:稀土;发光;纳米材料;Eu 3+;Tb 3+中图分类号:O 482.31 PACC :3250F;7860 文献标识码:A收稿日期:2004-04-20;修订日期:2004-11-05基金项目:国家自然科学基金资助项目(50473002)作者简介:张吉林(1963-),男,辽宁本溪人,副研究员,博士,主要从事无机纳米结构材料与稀土发光材料的研究。
*:通讯联系人;E-m ai:l gyhong @ciac .j.l cn,Te:l (0431)52620421 引 言纳米发光材料是指颗粒尺寸在1~100n m 的发光材料,它包括纯的和掺杂离子的纳米半导体复合发光材料和具有分立发光中心的掺杂稀土或过渡金属离子的纳米发光材料。
1994年Bhar -gava 等[1,2]首次报道了纳米ZnS B M n 的发光寿命缩短了5个数量级,而外量子效率仍高达18%。
尽管这是一个有争议的实验结果[3],但却引起了人们研究半导体纳米发光材料的极大兴趣,因为它预示了纳米发光材料可能有高的发光效率和短的荧光寿命等特性。
稀土掺杂纳米发光材料的研究发展
稀土掺杂纳米发光材料的研究开展XX:王林旭学号:5400110349 班级:经济107摘要:本文先介绍了关于稀土纳米发光材料的有关根本概念及根本用途,让读者有个根本认识。
文章重点对稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面做个简单的介绍关键词:稀土发光材料稀土磷酸盐纳米发光材料1.引言:短短半个学期的选修课学习,自己对纳米材料有了一定的了解,这篇论文的选题是“稀土掺杂纳米发光材料的研究开展〞,查阅跟搜索了相关资料后,主要从稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面给以论述。
首先,先来了解几个根本概念。
1.1什么是稀土元素?稀土元素包括钪、钇和57到71的镧系元素共17种元素。
它们在自然界中共同存在,性质非常相似。
由于这些元素发现的比较晚又难以别离出高纯状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。
稀土元素的电子组态是[Xe]4fDI15s25 ̄sao~6s2。
镧系元素离子的吸收光谱或激发光谱,来源于组态内的电子跃迁,即f—f跃迁;组态间的能级跃迁,即4f一5d,4f一6s,4f一6p等跃迁:还有电荷迁移跃迁,即配体离子的电子向离子的跃迁,从高能级向低能级的跃迁就产生相应的发射光谱。
由于稀土的这些特性,所以它可以做发光材料。
发光材料包括半导体发光材料和稀土化合物发光材料两大类…1。
稀土荧光材料以应用铕、铽、钆、钇等高纯中稀土为主要特色2。
纳米稀土发光材料是指基质粒子尺寸在1—1oo哪的发光材料l3。
纳米粒子本身具有量子尺寸效应、小尺寸效应、外表效应和宏观量子隧道效应等。
受这些构造特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学特性,从而影响其中掺杂的激活离子的发光和动力学性质,如光吸收、激发态寿命,能量传递,发光量子效应和浓度猝灭等性质。
在各种类型激发作用下能产生光发射的材料。
1.2什么是发光材料?在各种类型激发作用下能产生光发射的材料。
荧光热增强型稀土掺杂上转换发光材料研究进展
第42卷㊀第11期2021年11月发㊀光㊀学㊀报CHINESE JOURNAL OF LUMINESCENCEVol.42No.11Nov.,2021文章编号:1000-7032(2021)11-1673-13荧光热增强型稀土掺杂上转换发光材料研究进展赵皎印1,索㊀浩1∗,李磊朋1,郭崇峰2∗(1.河北大学物理科学与技术学院,河北保定㊀071002;2.西北大学光子学与光子技术研究所,陕西西安㊀710069)摘要:稀土掺杂上转换发光材料的荧光强度通常会随着温度上升而呈现明显的热猝灭现象,这对其在温度传感㊁防伪㊁显示等方面的应用产生了极大的障碍㊂最近,研究人员在实验中发现了上转换发光强度随温度升高而增强的特殊现象,并开展了大量工作揭示其内在机理以及可能影响热增强效应的因素㊂上转换热增强效应的机理探究和优化对于未来开发新型的稀土上转换发光材料提供了新颖的思路,也为稀土上转换发光材料的应用研究奠定了基础㊂本文对荧光热增强型稀土掺杂上转换发光材料的最新研究进展进行了简单总结和梳理,主要介绍了荧光热增强效应的内在机理以及潜在应用,并展望了未来研究中所面临的机遇和挑战㊂关㊀键㊀词:稀土发光材料;荧光热增强;上转换发光;纳米材料中图分类号:O482.31㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.37188/CJL.20210265Recent Advances in Rare-earth Doped UpconverisonMaterials with Thermally-enhanced EmissionsZHAO Jiao-yin1,SUO Hao1∗,LI Lei-peng1,GUO Chong-feng2∗(1.College of Physics Science&Technology,Hebei University,Baoding071002,China;2.Institute of Photonics&Photon-Technology,Northwest University,Xi an710069,China)∗Corresponding Authors,E-mail:suo@;guocf@Abstract:Rare-earth doped upconversion materials generally feature serious thermal quenching as the temperature rising,which greatly limits their applications in optical thermometry,anti-counter-feiting,and display.Recently,unique thermal enhancement phenomenon of upconversion intensity has been detected by many groups,and great efforts have been devoted to revealing the mechanism and the influential factors.Meanwhile,the theoretical exploration and optimization of thermal en-hancement effect open a novel and effective avenue for the rational design and applications of rare-earth doped upconversion materials.In this review,the recent advances in thermos-enhanced rare-earth ions doped upconversion materials are elaborately summarized from inner mechanism to possi-ble applications,with the perspective and outlook in the emerging challenges in the future research.Key words:rare-earth doped luminescence materials;thermal enhancement of luminescence;up-conversion;nano-particles㊀㊀㊀收稿日期:2021-08-07;修订日期:2021-08-17㊀㊀基金项目:国家自然科学基金(11974278,12004093);河北省自然科学基金优秀青年项目(A2021201043);河北省高等学校科学技术研究项目(QN2021018);河北大学高层次人才科研启动项目(521000981342)资助Supported by National Natural Science Foundation of China(11974278,12004093);Natural Science Foundation of Hebei Prov-ince(A2021201043);Science and Technology Project of Hebei Education Department(QN2021018);Advanced Talents Incuba-tion Program of Hebei University(521000981342)1674㊀发㊀㊀光㊀㊀学㊀㊀报第42卷1㊀引㊀㊀言荧光材料因其独特的光学性质被广泛应用在显示㊁照明㊁食品检测㊁温度传感等领域[1-4]㊂相较于有机荧光材料,稀土掺杂无机荧光材料凭借低细胞毒性以及优异的荧光特性引起了科研人员的广泛研究与关注㊂其中,稀土掺杂上转换发光材料是一种可以吸收两个或多个低能光子(近红外光)并发射出一个高能光子(可见或紫外光)的非线性光学材料[5]㊂随着纳米技术的快速发展,稀土掺杂上转换发光材料凭借尺寸可调㊁生物相容性良好㊁背景荧光干扰小㊁生物组织穿透性深㊁发光可调谐等特点,在三维显示㊁光学防伪㊁光学温度传感等光子学以及生物医学领域展现出了巨大的应用价值[6-7]㊂热猝灭一直被认为是不可避免地,且严重制约了稀土发光材料在温度传感㊁防伪㊁显示等方面的实际应用[8-11]㊂热猝灭是指在温度升高的过程中发光强度降低的现象,导致这种现象的主要原因为:随着温度不断升高,基质晶格的振动增强,导致电子-声子相互作用增强以及无辐射跃迁速率增大,从而造成发光强度以及寿命减小,这就是通常所说的热猝灭现象[12]㊂近年来,科研人员开展了大量工作以提高稀土掺杂发光材料的热稳定性,并发现了荧光发射的零猝灭现象[13-16]㊂随着研究的进一步深入,上转换发光热增强这一现象被大量报道,研究者们发现这种现象与能量传递过程密切相关[17-18]㊂然而,上转换发光热增强现象会受到很多复杂因素的影响,因此很难实现对上转换发光热增强效应的精确调控和优化,其内在机制仍然是目前亟待解决的挑战之一㊂本文主要综述了近年来荧光热增强型稀土掺杂上转换发光材料的设计合成及应用研究进展,基于能量传递过程重点介绍了上转换热增强现象可能的内在机制,阐述了荧光热增强型稀土掺杂上转换发光材料在荧光温度传感及光学防伪方面的应用进展㊂最后,探讨了该类材料目前存在的瓶颈并展望了未来的研究方向㊂2㊀荧光热增强现象的内在机制荧光热增强是指在一定的温度范围内,上转换发射随着温度升高而增强的现象㊂近年来,研究人员已经在相关研究方面开展了大量实验并实现了上转换发光的热增强,提出了对内在机理的理解,随后多个小组对内在机制进行了总结与归纳㊂我们根据基质和稀土发光中心对温度的响应,将目前所报道的上转换热增强内在机制分成三类:第一类是晶格反常变化导致的热增强,第二类是基质声子参与导致的热增强,第三类是纳米晶表面参与导致的热增强㊂2.1㊀晶格反常变化导致的热增强随着温度的升高,物质的非简谐振动会使原子间距增加,因此大部分物质具有 热胀冷缩 的性质㊂负热膨胀材料则恰好相反,它随着温度的升高会呈现体积减小的变化,其内在原理非常复杂,主要为声子振动效应或磁结构相变㊁电荷转移机制等非振动效应引起的㊂负热膨胀材料按照物质的种类可分为AM O3(A=Pb, Bi;M=Ti,Ni)㊁AM2O7(A=Th,Hf,Zr,Ti,Si;M=V,P,As)㊁AM2O8(A=Hf,Zr;M=W,Mo)㊁A2M3O12(A=Y,Lu,Yb,Sc;M=W,Mo)以及氟化物ScF3等[19]㊂正是由于负热膨胀材料这一独特的性质,稀土离子掺杂后可能会出现具有特殊温度依赖的光学性质㊂高温下基质晶格的体积减小会缩短敏化剂与激活剂之间的距离,提高离子间能量传递效率,同时晶格的扭曲也会影响高温下的发光效率㊂王锋课题组[20]首次在正交Yb2W3O12(负热膨胀系数=-6.38ˑ106K-1)中掺入了稀土离子对Yb3+-Er3+,随着温度从303K升高到573K,上转换发光总强度增加了13倍,其中绿光发射增强了29倍(图1(a))㊂此外,在Yb3+/Ho3+和Yb3+/ Tm3+掺杂体系发现了类似的热增强现象㊂通过变温XRD测试发现,随着温度的升高,Yb2W3O12的晶格体积变小,这是由于Yb2W3O12由角共享的YbO6八面体和WO4四面体组成,它们在高温下旋转并导致晶格收缩(图1(b));同时,基于荧光寿命测试发现Yb3+到Er3+的能量传递效率也随着温度升高而提高(图1(c))㊂由此他们提出了上转换热增强的原因:温度升高导致晶胞体积变小,进一步缩短了Yb3+和Er3+之间的距离,增加了Yb3+向Er3+的能量传递效率,同时也会使发光中心所处的晶格扭曲,导致高温下的发光增强现象㊂随后,他们通过热重分析发现Yb2W3O12稳定性较差,容易在空气中吸潮变质(图1(d))㊂因此,该团队进一步开发了具有优异稳定性的㊀第11期赵皎印,等:荧光热增强型稀土掺杂上转换发光材料研究进展1675㊀Sc2Mo3O12ʒYb3+-Ho3+负热膨胀发光材料(负热膨胀系数=-8.73ˑ106K-1)[21],同样在高温下发现了Ho3+离子上转换热增强的现象(图1(e))㊂除此之外,相似的上转换荧光热增强现象在具有A2M3O12构型的Y2Mo3O12[22]和Lu2W2.5Mo0.5O12[23]负热膨胀材料中相继被报道㊂2020年,王锋课题组首次在纳米尺度的负热膨胀材料ScF3(负热膨胀系数=-4.2ˑ107K-1)中报道了上转换发光热增强现象[24],与之前不同的是他们采用热注入法制备了尺寸为30nm左右的核壳结构上转换纳米晶ScF3ʒYb3+/Er3+@ScF3㊂通过包覆惰性层消除了表面猝灭效应对发光强度的影响,当温度从168K上升到248K时该材料的上转换发光增强了3.7倍(图1(f))㊂图1㊀(a)Yb2W3O12ʒEr3+的变温上转换发射光谱;(b)晶胞体积随温度的变化曲线和负热膨胀示意图;(c)不同温度下Yb3+ңEr3+能量传递效率[20];(d)Yb2W3O12和Sc2Mo3O12晶体的热重分析曲线;(e)温度依赖的Sc2Mo3O12ʒYb3+/ Ho3+上转换发射强度[21];(f)ScF3晶胞体积随温度的变化曲线和负热膨胀示意图,插图为核和核壳结构样品的TEM图[24]㊂Fig.1㊀(a)Temperature-dependent upconversion emission spectra of Yb2W3O12ʒEr3+.(b)Variation plot of sample cell volume with temperature,inset shows the schematic of the NTE mechanism.(c)Calculated Yb3+ңEr3+energy transfer rate at different temperature[20].(d)Thermogravimetric analysis curves of Yb2W3O12and Sc2Mo3O12.(e)Upconversion emis-sion intensity of Sc2Mo3O12ʒYb3+/Ho3+as a function of temperature[21].(f)Variation plot of ScF3cell volume with tem-perature,inset shows the NTE mechanism and TEM images[24].除了负热膨胀材料外,随温度变化的各向异性材料也有可能实现相似的热增强现象㊂陈大钦团队在具有层状结构的La2MoO6中也观测到了Er3+离子绿光上转换热增强现象[25]㊂通过变温XRD表征发现不同晶面衍射峰的变化程度不尽相同,说明基质晶格随着温度升高产生了各向异性的体积膨胀,抑制了掺杂离子Er3+的交叉弛豫过程(4F7/2+4I11/2ң4F9/2+4F9/2),从而促进了高温下Er3+绿光上转换强度㊂同时,该团队在类似的层状结构LaOCl㊁BiOCl材料中也发现了类似的绿光上转换热增强现象,以此证明了这种方案的可行性㊂综上所述,采用具有负热膨胀特性的基质材料可以在高温下提高掺杂离子之间的能量传递效率和引入晶格畸变,从而实现上转换发光的热增强现象㊂目前相关研究主要集中在制备方案成熟的A2M3O12构型材料,因此未来可以开发更多适合稀土或者过渡金属离子掺杂的负热膨胀材料,通过调控负热膨胀系数的方式进一步优化荧光热增强性能㊂2.2㊀基质声子参与导致的热增强稀土离子间大多数能量传递过程为非共振型,即能量供体(敏化离子)的激发态和能量受体1676㊀发㊀㊀光㊀㊀学㊀㊀报第42卷(激活离子)的激发态存在一定的能量失配,此时能量传递的发生需要能量接近的一个或者几个声子参与辅助(产生或湮灭)㊂声子是指晶体原子热振动的一种能量量子,主要用于描述基质晶格振动所产生的能量㊂温度升高将增强电子-声子相互作用,从而补充敏化离子与激活离子之间的能量失配[18]㊂一般来说,采用传统高温固相法或水热等方法制备的稀土掺杂发光材料的颗粒尺寸通常较大,并且会经过后续高温处理,其表面效应对发光的影响往往可以忽略不计㊂因此,这类材料中的荧光热增强现象与基质晶格声子的辅助作用密切相关㊂通过分析稀土离子的能级分布可以发现,Yb 3+:2F 5/2能级与Nd 3+:4F 3/2能级存在大概1000cm -1左右的能量失配,导致室温下Yb 3+到Nd 3+能量传递效率非常低,因此很难在实验中探测到Nd 3+离子在980nm 激发下的强烈上转换发射㊂正因如此,这种能量失配给基质晶格声子提供了舞台㊂2013年,张治国课题组率先在Yb 3+/Nd 3+共掺杂材料中观察到热增强现象[26]㊂随着温度从303K 升高到623K,Nd 3+在750nm (4F 7/2/4S 3/2ң4I 9/2)㊁803nm(4F 5/2/2H 9/2ң4I 9/2)和863nm(4F 3/2ң4I 9/2)处的发射分别增加了187,50,8倍㊂究其原因,Yb 3+到Nd 3+是声子辅助的电子转移,所以Nd 3+的4F 3/2能级布居数量增加,导致863nm 处的发射增强㊂通过进一步分析发现4F 3/2与4F 7/2/4S 3/2㊁4F 3/2与4F 5/2/2H 9/2以及4F 7/2/4S 3/2与4F 5/2/2H 9/2之间的能级差很小,温度升高促使电子从低能级跃迁到高能级,进一步增加了750nm 以及803nm 处的发射倍数㊂最近,我们课题组采用水热法制备了具有海胆状的LaPO 4ʒNd 3+/Yb 3+纳米粒子[27],随后通过高温处理提高了980nm 激发下Nd 3+离子的上转换发射㊂有趣的是,我们肉眼观测到了Nd 3+上转换发光的荧光热增强现象(图2(a)),其中4F 7/2,4F 5/2,4F 3/2ң4I 9/2跃迁强度分别增加了大约1052,43,9倍㊂通过测试样品的荧光寿命发图2㊀(a)LaPO 4ʒYb 3+/Nd 3+的变温上转换发射光谱以及相应的荧光照片;(b)不同温度下Yb 3+ңNd 3+的能量传递效率,插图为能量传递示意图[27];(c)Y 2O 3ʒYb 3+/Er 3+/Ho 3+的变温发射光谱,插图为能量传递示意图[28];(d)Ca-WO 4ʒYb 3+/Er 3+的变温上转换发射光谱,插图为热耦合能级示意图[33]㊂Fig.2㊀(a)Temperature-dependent up-conversion emission spectra of LaPO 4ʒYb 3+/Nd 3+and the corresponding luminescenceimages.(b)Plot of Yb 3+ңNd 3+energy transfer rate at different temperature,inset shows the schematic energy dia-gram [27].(c)Temperature-dependent emission spectra of Y 2O 3ʒYb 3+/Er 3+/Ho 3+,inset shows the schematic energy transfer process [28].(d)Temperature-dependent up-conversion emission spectra of CaWO 4ʒYb 3+/Er 3+,inset shows the schematic thermal coupled levels [33].㊀第11期赵皎印,等:荧光热增强型稀土掺杂上转换发光材料研究进展1677㊀现,随着温度升高至490K,Yb3+到Nd3+的能量传递效率由常温的10%快速增加至19%,这也进一步证明晶格声子在高温下可以提供更多能量用于弥补供体和受体之间的能量失配,从而促进Nd3+的上转换发光(图2(b))㊂同时,4F7/2㊁4F5/2和4F3/23个能级之间的粒子布居满足玻尔兹曼分布,因此在高温下低能级的粒子会在晶格声子的辅助下激发至高能级4F7/2,导致了4F7/2ң4I9/2跃迁强度1000倍以上的热增强效应㊂除了能量传递过程,声子也会通过无辐射弛豫过程影响不同温度下的发光性质㊂付作岭课题组在Yb3+/Er3+/Ho3+三掺杂氧化物体系中观测到了Er3+近红外Ⅱ区发射的小幅荧光热增强现象(图2(c))[28]㊂通过分析稀土离子之间的能量传递过程可以发现,敏化离子Yb3+首先获得980 nm激光器的激发能量,一部分通过共振能量传递至Er3+:4I11/2能级,随后无辐射跃迁至4I13/2能级产生中心波长在1550nm附近的近红外发射;另一部分能量通过声子辅助能量传递(声子产生)至Ho3+:5I6能级直接发射出中心位于1190nm 近红外光㊂随着环境温度的升高,增强的电子-声子耦合作用可以通过无辐射跃迁通道促进Er3+:4I11/2能级的布局,从而观测到了Er3+离子的近红外荧光热增强现象㊂此外,源自稀土离子的热耦合能级上转换发射也会出现荧光热增强现象[29-32],例如Er3+:2H11/2和4S3/2能级,但是由于增强幅度较小往往被忽视㊂热耦合能级的能量间隔通常位于200~2000cm-1之间,它们之间的布居符合玻尔兹曼分布律:随着温度的升高,位于下能级的粒子会在声子的辅助作用下跃迁至上能级,这也为荧光热增强现象提供了新的途径㊂例如,张治国课题组成功观测到了980nm激发下Er3+离子在800nm附近的上转换发光[33],其归属于4I9/2ң4I15/2电子跃迁㊂他们还观测到了接近约29倍的近红外荧光热增强现象,这主要归因于高温下4I11/2能级对4I9/2能级的热布居作用(图2(d))㊂最近,研究人员通过Tb3+㊁Eu3+㊁Pr3+和Nd3+等稀土离子的激发态吸收(ESA)代替基态吸收过程(GSA)实现了可见至近红外波段范围的荧光热增强现象[34-37],这也同样是利用了下能级(基态)到近邻上能级(第一激发态)的热布居作用㊂综上所述,温度升高会导致基质晶格的振动加剧,从而凸显了基质声子在稀土离子无辐射跃迁㊁热布居以及非共振能量传递中的重要作用,其在体材料的上转换发光热增强现象中扮演着至关重要的角色㊂2.3㊀纳米晶表面参与导致的热增强采用液相法制备的上转换纳米颗粒由于较大的比表面积,其表面通常会存在较多的晶体缺陷以及具有高能振动的吸附物(水分子㊁有机基团等),这些猝灭中心会对常温下的上转换发光产生不利的影响[38]㊂最近,多个研究组[39-41]在纳米颗粒中观测到了相似的上转换发光热增强现象,且增强效果均与纳米颗粒尺寸(比表面积)相关,这也凸显了表面吸附物的重要作用,为设计荧光热增强型的上转换纳米颗粒提供了新思路㊂2.3.1㊀表面配体辅助导致的热增强除了基质晶格声子,纳米颗粒在油相法制备中表面吸附的配体也可以为稀土离子间的非共振能量传递提供额外的能量,从而弥补敏化离子以及激活离子之间的能量失配㊂2018年,金大勇课题组报道了NaYF4ʒYb3+/Tm3+纳米粒子上转换蓝光发射近2000倍的热增强现象[39],在高温下原本发光很弱的 Tm 图案展现出肉眼可见的强烈蓝光㊂此外,相较于Yb3+/Er3+或Yb3+/Ho3+共掺杂体系,Tm3+离子的上转换发射展现了更强的热增强效果㊂通过分析Yb3+与3种发光离子的能级匹配度,并表征样品的傅里叶变换红外光谱和拉曼光谱,他们提出了热增强现象的主要机制:位于470~620cm-1区间的峰可以归属于表面配体与稀土离子形成的配位[RE O],它具有比NaYF4基质更高的声子能量,温度升高会增加表面声子的密度,这部分能量可以很好地弥补Yb3+与激活离子间的能量差,从而促进高温下的上转换发射(图3(a)~(c))㊂这也很好地解释了尺寸依赖的热增强效应:随着纳米颗粒尺寸的下降,表面更多的[RE O]会参与至能量传递过程,因此上转换发光的热增强系数不断变大㊂尽管对热增强现象的解释仍不完善,比如无法解释敏化离子Yb3+寿命和近红外发光随温度升高的现象,但这种发生在纳米颗粒中的上转换热增强效应引起了多个研究组[9,42-43]的关注㊂1678㊀发㊀㊀光㊀㊀学㊀㊀报第42卷图3㊀(a)温度为303K 和453K 时,NaYF 4ʒYb 3+/Tm 3+的上转换发射光谱和发光照片;(b)油酸包覆样品的傅里叶变换红外光谱和拉曼光谱;(c)Yb 3+ңTm 3+能量传递过程示意图[39];(d)不同尺寸纳米粒子的变温上转换发射强度,插图为对应样品的TEM 图;(e)NaGdF 4ʒYb 3+/Ho 3+的变温上转换发射光谱以及在氩气㊁氩气/水中样品的温度依赖发射强度;(f)表面水分子吸附脱附导致的上转换热增强机理示意图[40]㊂Fig.3㊀(a)Upconversion emission spectra of NaYF 4ʒYb 3+/Tm 3+with the luminescent images in 303K and 453K.(b)Fouriertransform infraredy and Raman spectrum of oleic acid capped nanoparticles.(c)Schematic of Yb 3+ңTm 3+energy trans-fer process [39].(d)Temperature-dependent upconversion emission intensities of different sizes nanoparticles,inset shows the corresponding TEM images.(e)Temperature-dependent upconversion emission spectra of NaGdF 4ʒYb 3+/Ho 3+in airalong with the calculated integrated intensity in argon,argon /water conditions.(f)Schematic diagram of thermos-en-hanced emissions related with surface-absorbed H 2O [40].2.3.2㊀抑制表面猝灭导致的热增强水分子中羟基基团的拉伸振动在900~1300nm 处显示出较宽的吸收,与Yb 3+能级间隔(2F 5/2-2F 7/2)匹配得很好,这意味着迁移至表面的能量会被羟基以无辐射弛豫的方式猝灭,产生上转换发光的表面猝灭现象[44]㊂因此,通过抑制高温下的表面猝灭效应以减小能量损耗,同样可能实现纳米尺寸依赖的上转换热增强现象㊂邵起越团队近几年针对荧光热增强现象开展了一系列机理和应用探究[40-41,45],并报道了Yb 3+敏化的不同发光中心的上转换发光热增强现象㊂如图3(d)所示,随着纳米颗粒尺寸下降(比表面积变大),来自Er 3+离子的上转换发光由热猝灭转变为热增强,且增强系数逐渐增大㊂如图3(e)所示,小尺寸样品在空气环境以及含水的氩气环境中的上转换发射强度随着温度升高有明显的增强,但是在纯氩气环境中却表现为热猝灭㊂同时,他们发现敏化离子Yb 3+的近红外寿命和下转换发光随着温度的升高而不断增加,而2.3.1节所讨论的机制却不能解释这种现象㊂因此,他们认为表面水分子在热增强现象中扮演着关键的角色:常温下纳米离子表面吸附的水分子可以显著猝灭上转换发光,温度升高会使表面水分子蒸发,从而抑制无辐射跃迁和表面猝灭效应,导致高温下上转换发光强度增强,同时也很好地解释了Yb 3+近红外寿命和下转换发光的增强现象(图3(f))[40]㊂这种观点随后被Andries Meijerink 课题组进一步证实[29],他们在NaY (WO 4)2ʒYb 3+/Er 3+纳米粒子中观测到了类似的上转换发光热增强现象㊂通过监测样品在干燥氮气环境中的循环变温发光行为,他们发现热增强现象只出现在第一次升温过程,这是由于变温测试已经把样品表面的水分子全部蒸发,因此样品在后续测试中均表现为热猝灭现象㊂基于差热-热重和傅里叶红外测试结果,㊀第11期赵皎印,等:荧光热增强型稀土掺杂上转换发光材料研究进展1679㊀他们进一步扩充了有关热增强机制的解释:上转换纳米颗粒表面H2O分子在常温和高温时发生吸附和脱附行为是产生上转换热增强的关键因素㊂与此同时,王元生课题组在上转换发光热增强领域也开展了大量有意义的研究[18,43,46-47],他们也在Yb3+-RE3+(RE=Eu,Er,Tb,Tm)掺杂上转换发光纳米颗粒中观察到了荧光热增强现象㊂实验结果表明,纳米颗粒尺寸的增加或惰性层的包覆会使热增强现象逐渐消失㊂他们也将这种热增强现象归因于高温下表面猝灭的抑制,这可以很好地解释Yb3+近红外寿命和发光随着温度升高增加的实验结果㊂不同的是,他们认为表面猝灭在高温时被抑制主要是由于晶格的热膨胀所导致㊂纳米颗粒普遍具有较大的晶格热膨胀系数,温度的升高会引起明显的晶格膨胀,这会增加敏化离子间的距离,使内部敏化离子到晶粒表面的能量迁移效率降低,从而减小由表面猝灭造成的能量损耗㊂上转换纳米晶的变温XRD数据很好地支持了他们有关热增强现象的机理解释㊂随后该课题组通过设计惰性核@活性壳㊁不等价取代引入缺陷等方案,进一步优化了上转换纳米晶的荧光热增强性能[46-47]㊂综上所述,目前提出的纳米尺度上转换热增强机理主要分为两类,即高温时能量传递效率的增加以及能量损耗的抑制㊂其中,上转换纳米颗粒的表面缺陷和吸附物在荧光热增强中扮演着至关重要的作用㊂因此,荧光热增强性质极易受到纳米颗粒的尺寸(比表面积)㊁制备方法以及测试条件的影响,这也是热增强机制存在一定争议的原因之一㊂2.4㊀综合因素导致的热增强通过上面的总结可以发现,上转换纳米颗粒的荧光热增强现象极有可能不是某种单一因素所导致的,而是由多种因素共同作用的结果㊂最近,金大勇团队在NaYF4ʒYb3+/Nd3+纳米颗粒中对上转换热增强现象的影响因素进行了分析[48],定量地印证了基质晶格㊁表面缺陷和吸附物在荧光热增强效应中的共同作用,加深了对热增强机理的理解(图4(a))㊂首先,经过煅烧或包覆处理的样品仍然具有相似的上转换热增强效应,由此证明了基质固有声子对热增强的贡献;其次,具有较大比表面积的样品(尺寸大约10nm)表现出更强烈的热增强特性,这说明表面吸附物(水分子和油酸)对热增强也具有一定的作用;最后,他们通过表面处理去掉油酸,以及在无水环境中测试等方式进行了一系列对照实验,定量地给出了基质声子㊁表面油酸以及水分子分别对热增强系数的贡献(图4(b)~(c)):在该体系中,基质声子在热增强效应中占据主导地位,而表面吸附物起到较小的作用㊂他们还通过变温循环测试发现了强度的滞后效应,这也进一步促进了表面在加热-冷却循环过程中水分子的脱附和再吸附过程(图4(d))㊂白功勋等将具有能量失配的Yb3+/Nd3+图4㊀(a)上转换纳米颗粒基质和表面声子对热增强效应的贡献示意图;(b)~(c)尺寸为25nm和10nm的NaYF4ʒYb3+/Nd3+的TEM图,以及基质声子㊁表面声子(OA辅助)和水分子对热增强效应的定量作用;(d)样品的加热-冷却循环测试[48]㊂Fig.4㊀(a)Schematic diagram of phonon assistance from both host lattice and active surface.(b)-(c)TEM images of NaYF4ʒYb3+/Nd3+with size of25nm and10nm,and the quantitative analysis of host phonon,surface phonon(OA-assisted) and water release on the thermal enhancement.(d)Heating-cooling cycle tests of the sample[48].1680㊀发㊀㊀光㊀㊀学㊀㊀报第42卷离子对掺杂进入负热膨胀材料Yb 2Mo 3O 12中[49],利用高温下基质体积缩小的性质,在原有声子辅助能量传递的基础上进一步提高Yb 3+到Nd 3+的能量传递效率,获得了热增强性能优异的发光材料㊂随着对热增强机制理解的不断加深,研究者可以通过多种途径实现上转换发光的热增强现象,并合理优化各个途径的协同作用,是未来提高热增强性能的有效途径㊂3㊀应用前景热猝灭是指高温下荧光强度下降的现象,主要是由于非辐射弛豫概率增加所致,这也极大地限制了稀土掺杂上转换发光材料在高温下的应用前景[11]㊂因此,荧光热增强的实现可以很好地保证材料在高温区的信噪比,在众多领域具有重要的应用价值,特别是在荧光温度传感以及光学防伪等领域㊂3.1㊀荧光温度计作为热力学参量的一种,温度是诸多物质活动不可忽略的参数,它的准确测量在生产科研和日常生活中占据重要地位㊂相较于传统测温方案,基于荧光强度比(FIR)技术的非接触测温方案凭借快速响应㊁实时探测㊁高灵敏度和高空间分辨率等优势迅速成为了研究热点㊂它主要是通过监测温度依赖的两个不同波长的荧光强度比值变化实现的,这种方案可以有效减少外界环境及信号强度的浮动对测量结果的影响[50-51]㊂目前,荧光强度比技术的测温机制主要有两种:一是基于单发光中心的热耦合能级发光,二是基于具有不同温度响应的双发光中心发光㊂衡量测温性能的关键参数是测温灵敏度,它又细分为绝对灵敏度(S a )和相对灵敏度(S r ),分别代表荧光强度比值随温度的绝对和相对变化率㊂无论哪种测温方案都面临着不利的荧光热猝灭现象,这直接制约了温度监测的范围,特别是在深层生物组织内㊂因此,实现荧光发射的零热猝灭甚至热增强现象成为了温度传感领域的研究热点㊂王锋课题组在一系列负热膨胀材料中报道了基于稀土离子的荧光强度比温度传感㊂他们首先在Yb 2W 3O 12ʒEr 3+[20]和Sc 2Mo 3O 12ʒYb 3+/Ho 3+[21]中分别实现了基于Er 3+和Ho 3+离子红绿发射的图5㊀(a)Y 2Mo 3O 12ʒEr 3+/Yb 3+的变温上转换发射光谱以及荧光照片;不同温度下的FIR(b)㊁S a 以及S r 值(c)[22];(d)NaYF 4ʒYb 3+/Nd 3+@NaYF 4@NaYF 4ʒYb 3+/Er 3+的变温上转换发射光谱以及TEM 图;(e)荧光强度比技术实时探测微电子设备示意图以及温度依赖的相对灵敏度;(f)不同功率范围内,所测得3个不同区域内的温度,插图为不同通道下的荧光成像[52]㊂Fig.5㊀(a)Temperature-dependent upconversion emission spectra of Y 2Mo 3O 12ʒEr 3+/Yb 3+and luminescence images.Tempera-ture-dependent FIR(b ),S a and S r value (c )[22].(d )Temperature-dependent upconversion emission spectra of the NaYF 4ʒYb 3+/Nd 3+@NaYF 4@NaYF 4ʒYb 3+/Er 3+and the corresponding TEM images.(e)Schematic of FIR-based thermometry in microelectronic devices.(f)Measured temperature in three different regions of microelectronic devicesunder different device power,inset shows dual-channel luminescence imaging [52].。
稀土发光材料的制备及其应用研究
稀土发光材料的制备及其应用研究稀土元素在光电子学、化学、材料科学等领域具有着重要的应用。
发光是稀土元素普遍的特性,利用这个特性开发出来的各种发光材料,便成为现代科学技术中不可或缺的一部分。
稀土发光材料具有色彩鲜艳、高亮度、可调谐性和长寿命等特点,在现代生活中得到了越来越广泛的应用。
本文将会介绍稀土发光材料的制备及其应用研究现状。
一、稀土发光材料的制备稀土发光材料的制备可以采用物理、化学或其它手段。
其中,最常用的制备方法是溶液浸渍、共淀法、燃烧合成法和水热法。
这些方法可以通过改变溶剂、酸碱度、混合物浓度和反应温度等参数来调节材料的结构和性质。
1. 溶液浸渍法溶液浸渍法是指将一定质量的基体浸泡在含有稀土离子的溶液中,维持一定的时间后从溶液中取出基体,用清水冲净并烘干,最后进行 calcination 处理。
这样,稀土元素会均匀地分布在基体内,从而达到制备稀土发光材料的目的。
2. 共淀法共淀法,也称共析法,指不同溶液中溶解某些化合物,然后通过混合两者的溶液,以共成碳酸盐或氢氧化物的方法将所需成分淀出来。
此法适用于制备混合稀土材料。
3. 燃烧合成法燃烧合成法是指将稀土盐、燃烧助剂和 Oxidizer等混合物在惰性气氛或空气中混合均匀,然后在高温下进行爆炸燃烧,制备出具有稀土发光性质的材料。
4. 水热法水热法是利用水热反应的原理,将所需的原料在一定的温度、压力和时间下在水相或溶液中进行反应,制备出稀土发光材料。
二、稀土发光材料的应用研究1. 稀土发光材料在白光 LED 中的应用随着照明行业的经济、技术和环保要求的不断提高,白光 LED 从传统照明的替代品逐渐发展成为未来照明的主要方式。
稀土发光材料在白光 LED 中的应用是一种新兴的领域。
目前,稀土发光剂可以将发光蓝光转换成发绿、黄和红光,从而达到调节 LED 光谱、改变色温、增加亮度等效果。
稀土发光材料的应用还可以减少电力消耗、节能减排、提高 LED 光落度和扩大 LED 工作温度等方面发挥重要作用。
稀土发光材料的合成与发光机理研究
稀土发光材料的合成与发光机理研究稀土发光材料的合成与发光机制研究稀土元素由于其独特的4f电子结构而在光电领域具有广泛的应用。
稀土发光材料不仅在照明、显示、生物医药和激光等领域发挥着重要作用,还被广泛应用于稀土离子中心的发光机理研究。
本文将讨论稀土发光材料的合成方法以及其发光机理的研究进展。
稀土发光材料的合成方法多种多样,常见的包括溶胶-凝胶法、水热法、共沉淀法、熔盐法等。
溶胶-凝胶法是一种常用的合成方法,通过溶胶的形成和凝胶的分离纯化,最终得到稀土发光材料。
水热法利用高温高压的环境条件,溶液中的稀土离子与其他原料反应形成稀土发光材料。
共沉淀法是指将多个溶液混合,通过溶液反应产生沉淀,最终得到稀土发光材料。
熔盐法则是以熔盐为媒介,在高温下进行反应合成稀土发光材料。
这些合成方法各有特点,可以根据需要选择合适的方法来合成稀土发光材料。
稀土发光材料的发光机理涉及到稀土离子的能级结构和能量转移过程。
稀土离子的能级结构与其4f电子能级有关,通过外层电子的激发和跃迁引发发光现象。
而能量转移过程包括吸收能量、激发态、退激发态以及光子的发射。
稀土离子的能级结构和能量转移过程控制了稀土发光材料的发光性能,其研究对于理解和优化发光材料的性能至关重要。
在稀土发光材料的研究中,有两个主要的方向:发光机理研究和材料性能优化。
发光机理研究主要是通过光谱分析、荧光寿命测量等方法探索稀土离子的能级结构和能量转移过程。
这些研究有助于揭示发光材料的发光机制,为进一步的研究提供理论基础。
材料性能优化方面,通过调节合成条件、改变材料组分以及通过复合材料的设计等手段实现对稀土发光材料的性能优化。
这些工作使稀土发光材料在照明、显示和激光等领域的应用更加广泛。
除了合成方法和发光机理的研究,稀土发光材料的应用领域也是研究的重点之一。
稀土发光材料在LED照明中有广泛应用,其发光效率高、发光波长可调节,可以用于白光LED的制备。
此外,在显示技术领域,稀土发光材料可以用于增强色彩的显示,提高显示设备的色彩还原度。
福建物构所稀土掺杂半导体纳米发光材料研究取得新进展
半导体 纳米 晶的激 子玻尔半 径要大 得多 ,因此量 比之下 ,铜 的含 量十分 丰富 ,可 比铟 或者 银充足 一千 余倍 , 米 晶相 比, 价格 也 要便 宜大概 1 0倍 ,每千 克仅为 9 元 。 0 美 子 限域 效 应对 掺杂 半导 体 纳米 晶 发光性 能 的影 响变得 很显
目前威 利参 与创建的 “ 米熔 炉”公司 已开始制造可商 “ 人计 划 ” 纳 百 、福 建省 杰青 项 目等支 持下 ,中科 院福 建 物质
米 粒子
日本北陆尖端科学 技术大学 院大学 日前宣布 ,该 校研究
潜力 ,亦 能 帮助 科学 家 构建 可折 叠 的 电子产 品 并提升 太 阳 人员研制 出金银纳米粒子 ,它可用于制作 高灵敏度生物传感
能 电池 的性 能 ,目前 已进入 商业 制造 阶段 。 关研究 报告 发 器 ,以帮助 医生 检查患者 的血液 、尿液或者基 因诊断等 。 相
三 薄膜 。 由于铜纳 米线 经常聚集 在一 起 ,当时制 成的薄膜 性 径 差异 大 ,电荷 不匹配 , 价稀 土离子 一般很难 以替代 晶格 但 能 还未 达 到实 际应 用 的标 准 ,而此 次 采用 的新 方法 则解 决 位 置的 形式掺入 半导体 ( Z O和 Ti )纳米 晶 中。目前 , 如 n O,
福建物构所稀土掺杂半导体纳米发光材
料研 究取 得新 进展
稀 土 离子和 半导 体纳 米 晶 ( 或量 子点 )本 身都是 很好
今年, 第一 款屏幕 由银 纳米线 制成 的手机将 会 面市 。 银与 的发光 材 料 ,二者 的有 效 结合 能否 生 出新型 高 效发光 或激 但
铟 类似 ,仍 然十分 昂贵 ,每 千克 价格 可达 l 0 4 0美元 。而相 光 器件 这 一 问题一 直受 到 国 内外学 者 的关注 。与绝缘 体纳
稀土离子掺杂的发光材料制备及应用
稀土离子掺杂的发光材料制备及应用概述自从稀土离子发现以来,稀土离子掺杂的发光材料就开始进入人们的视野。
随着技术的不断发展,在现代科技领域,稀土离子掺杂的发光材料广泛应用于激光、显示器、LED灯等领域。
本文将着重探讨稀土离子掺杂的发光材料制备及其应用方面的研究进展与现状。
制备方法稀土离子掺杂的发光材料制备方法主要有物理法、化学法和生物法等几种。
物理法:包括溅射法、熔盐法、高能球磨法等。
其中,溅射法是一种常用的物理方法,它通过将目标材料置于真空室中,然后用氩气离子束轰击目标表面,使目标表面材料溅射到基底上形成薄膜。
化学法:包括共沉淀法、水热法、溶胶-凝胶法等。
其中,共沉淀法是一种常用的化学方法,它通过在水溶液中混合沉淀剂和稀土盐,沉淀后经过退火,就可以得到稀土离子掺杂的材料。
生物法:包括生物合成法和生物转化法。
其中,生物合成法是一种常用的生物方法,它利用微生物或植物生长在含稀土离子的培养基中,通过代谢作用将稀土离子载入有机物质的体内,最终形成稀土离子掺杂的发光材料。
应用领域稀土离子掺杂的发光材料广泛应用于激光、显示器、LED灯等领域。
激光:激光器是利用能将许多光子促发出的光子放大程度达到相位同步的原理实现的。
而稀土离子掺杂的发光材料正是制造激光器材料的首选,例如铈离子掺杂锆石矾解淀粉体材料就是发展高功率激光器的材料之一。
显示器:随着显示技术的不断发展,液晶显示器、有机发光二极体显示器等已经逐渐成为人们眼中的主流显示技术。
而Luminescent Display Technology中需要的稀土离子掺杂的发光材料,能够将灯显直流电压转换成红、绿、蓝不同的光谱成分,现在广泛应用在大屏幕高清晰度电视、显示广告牌等场合。
LED灯:LED灯作为新一代照明技术,逐渐被大众所接受。
而使用稀土离子掺杂的发光材料能够使LED灯光谱更加均匀,提高其色纯度,同时还能提高光效和寿命。
结论稀土离子掺杂的发光材料是目前应用广泛的发光材料,其制备方法虽然有所不同,但无论是物理化学法还是生物法,都对提高人类生活带来了诸多实惠。
稀土高分子发光材料的研究进展
料、 特种功能材料 、 生物 、 医学等领域的应用前景 愈来愈引起化学家 、 材料学家的重视 ,本文就上述 问题进行了评述 .
作者简介 : 陈仲清 (1963 - ) ,男 ,湖南衡阳人 , 南华大学化学化工学院高级工程师 , 湖南大学化学化工学院硕士研 究生 . 主要研究方向 : 稀土高分子发光材料的研究 .
第 18 卷第 4 期 2004 年 12 月
南华大学学报 ( 自然科学版) Journal of Nanhua University( Science and Technology)
Vol. 18 No. 4 Dec. 2004
文章编号 :1673 - 0062 (2004) 04 - 0049 - 04
50
南华大学学报 ( 自然科学版) 2004 年 12 月
1 稀土高分子发光材料的合成
1. 1 掺杂型稀土高分子材料的制备
把有机小分子稀土配合物通过溶剂溶解或熔 融共混的方式掺杂于高分子体系中 ,一方面可以提 高配合物的稳定性 ,另一方面可以改善稀土的荧光 性能 ,制备的材料具有良好的发光性能. 20 世纪 80 [5 ] 年代初 ,美国 Okamoto Y 等 采用该方法制备出了 几个系列的发光稀土高分子配合物 ,所用高分子化 合物包括含羧基或磺酸基的聚合物 ( 如苯乙烯 - 丙 烯酸、 甲基丙烯酸甲酯 - 甲基丙烯酸、 苯乙烯 - 马 来酸 ( PSM) 等共聚物 ,部分羧化或磺化的聚苯乙烯 ( CPS 或 SPS) ) ;含β二酮结构的聚合物 (如聚芳基β 二酮) ;部分被羧芳酰基 ( 如 2 - 羧基苯甲酰基、 3) 羧基 - 2 - 萘甲酰基等 取代的聚苯乙烯等 . 研究结 果表明 ,掺杂型稀土高分子配合物的荧光强度随稀 土离子含量的增加而增强 ,达到某一最大值后 ,则 呈现明显的减弱趋势 ,即出现浓度猝灭现象 . 对于 3+ 掺杂型铕高分子配合物 ,除 PSM 配合物 Eu 的质 3+ 量分数可达 15 % ,CPS 和 SPS 配合物 Eu 的质量分 数可达 8 %外 , 其余配合物在 Eu 的质量分数达 4 %~5 %时即发生浓度猝灭现象 . 这是因为稀土离 子具有丰富的 5d 和 4f 轨道 ,配位数较高 ,以这种掺 杂方式合成的稀土高分子配合物中稀土离子的配 位数得不到满足 ,因而发生稀土离子聚集 ,而且稀 土离子浓度越高 ,就有越多的配位结构单元和多重 稀土离子聚集成离子簇 ,使稀土离子相对集中 ,稀 土离子间的距离减少 ,其相互作用加强 ,造成稀土 的荧光猝灭 . [6 ] 王洪祚等 以丙烯酸丁酯 - 丙烯酸共聚物 ( 聚 合 物 中 羧 基 摩 尔 分 数 占 13. 5 % , 中 和 度 3+ 100 %) 制备的稀土高分子配合物 , 其 Tb 的摩尔 分数为 3 %~ 4 % , Eu 的摩尔分数为 4 % ~ 5 % 时 ,稀土高分子配合物荧光强度达到极大值 ,摩尔 分数再升高则发生浓度猝灭现象 . 掺杂型稀土高分子材料的制备工艺较简单 , 生产成本较低 ,在许多方面应用广泛 . 但由于稀土 配合物在聚合物基质中存在分散性不佳 、 易与基 质发生相分离等缺点 , 因而导致掺杂型稀土高分 子材料稳定性差 ,荧光分子间发生浓度猝灭 ,荧光 强度降低 ,荧光寿命下降 .
稀土发光材料的制备与性能研究
目录
01 一、稀土发光材料的 制备
02
二、稀土发光材料的 性能
03 三、研究方法
04 四、研究结果
05 五、结论与展望
06 参考内容
稀土发光材料是一类具有独特性能的材料,在照明、显示、激光等领域具有 广泛的应用前景。本次演示将介绍稀土发光材料的制备方法、工艺和流程,以及 材料的性能特点和应用领域,以期为相关领域的研究提供一定的参考。
2、优化材料结构
优化材料结构是提高稀土发光材料发光效率的重要途径。例如,通过掺杂、 合金化、纳米结构设计等方法,可以调节材料的能级结构、载流子输运性质等, 从而提高材料的发光效率。
3、表面修饰
表面修饰是一种有效提高稀土发光材料发光效率的方法。通过表面修饰,可 以改变材料的表面性质,如亲水性、疏水性等,从而提高材料的分散性、稳定性 和光学性能。
三、研究方法
为了更好地研究稀土发光材料的性能,我们采用实验方案对其进行了研究。 首先,我们选取了不同的稀土离子作为掺杂剂,探究了其对硅酸盐材料发光性能 的影响。同时,我们还研究了硅酸盐基质中其他离子取代对材料性能的影响。
在实验过程中,我们先制备了一系列不同掺杂剂和离子取代的硅酸盐材料样 品。然后,通过X射线衍射、荧光光谱等方法对样品的结构和性能进行了详细表 征。最后,结合实验数据,我们采用origin软件对数据进行处理和分析,得出结 论。
结论
稀土发光材料作为一种重要的功能材料,具有广泛的应用前景。本次演示介 绍了稀土发光材料的发光机理及其在显示技术、医疗诊断、化学传感器等领域的 应用,并探讨了提高稀土发光材料发光效率的途径。随着科技的不断发展,相信 稀土发光材料在未来的应用领域将更加广泛,同时其性能也将得到进一步的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀土发光材料的研究进展XX(XXXXXXXXXXX,XX,XXXXXX)摘要:稀土发光材料是信息显示、照明、光源、光电器件不可缺少的原料。
目前我国传统显像管CRT,节能灯用稀土荧光粉的产量居全球首位。
白光、LED、也在发展,这些已经逼近了国外的水平。
我国拥有巨大的照明工业和照明市场,LED技术的快速进步和新的运用,不仅代表照明革命性的变化,而且代表原材料装备信息、汽车等相关行业的发展,改善了人民生活环境与质量[1]。
本文主要论述了稀土发光材料的兴起发展、发光性能、制备工艺、产业优势以及进惠普的发展动向、发展趋势。
关键字:稀土;发光;发光材料;纳米;制备方法一、稀土发光材料的兴起与发展发光现象是指物体内部以某种方式吸收能量后转化为光辐射的过程,或者物质在各种类型激发作用下能发光的现象,其可以分为如白炽灯、火焰等的物质受热产生热辐射而发光,“夜明珠”、LED等的受外界激发吸收能力而跃迁至激发态再返回基态时,以光形式释放能量发光以及固体化合物受到光子、带电粒子、电场或电离辐射点激发,发生的能量吸收、存储、传递和转换而进行的固体发光[2]。
发光材料发光属于第二种发光方式,辐射的光能取决于电子跃迁前后电子所在能级的能量差,两个能级之间的能量差越大,发射的波长越短,稀土离子具有4f能级,吸收能量的能力强,转换效率高而且具有发射可见光能力强而且稳定等优点,受到人们的青睐。
上世纪六十年代是稀土离子发光及其发光材料基础研究和应用发展的划时代转折点。
国外学者进行二价稀土离子的4f-4f能级跃迁、4f5d能态及电荷转移态的基础研究,发现上转换现象,完成二价稀土离子位于5000cm-1以下的4f电子组态能级的能量位置基础工作,所有二价稀土离子的发光和激光均起源十这些能级,这些能级间的跃迁产生从紫外至近红外荧光光谱。
稀土离子的光学光谱学、晶体场理论及能量传递机理等研究口益深入和完善,新的现象和新概念不断被揭示和提出,新材料不断被研制。
1964年,在国际上由十稀土分离技术的突破,导致高效YVO4:Eu和Y203:Eu红色荧光粉的发明,紧接着,1968年又发明另一种高效的Y2O2S:Eu3+红色荧光粉。
尽管它们昂贵,但很快被应用十电子射线管(CRT)彩色电视中,使彩电发生质的变化,同时导致现代高纯稀土分离和高纯氧化物工业生产的兴起。
由十有上述研究和工业基础,步入七十年代,无论是基础研究,还是新材料研制及其开发应用都进入百花齐放的时期。
人们系统地认识二价和二价稀土离子的光学特性,包括二价稀土离子的4f5d-4f,4f-4f能级跃迁,多光子效应(即近来所谓的量子剪裁),离子间的无辐射能量传递等新现象和新概念;同时一些高效新材料被发明并很快在紧凑型荧光灯、X射线增感屏和显示器中得到应用。
新一代荧光灯一紧凑型灯及灯用稀土荧光粉是在七十年代初世界石油能源危机刺激下产生的。
现在最流行的纳米发光材料是指基质的粒子尺寸在1-100nm的发光材料,它包括纯的纳米半导体发光材料以及稀土离子和过渡金属离子掺杂的纳米氧化物、硫化物、复合氧化物、有机配合物和各种无机盐发光材料。
过去五十年中,人们对发光材料已经进行了大量的研究工作,其中大部分工作是围绕着寻找新材料展开的,很难希一望在以后的一段时间内能找到量子产率、光谱能量分布等性质都会明显优十已有磷光体的新材料。
而关于材料的微观结构对它们发光性质影响方面的研究却相对很少。
特别是材料的颗粒尺寸在纳米尺寸范围内。
另外,胶体化学方面,特别是在Ⅱ~Ⅵ主族硫属化合物方面的研究取得了重要进展,这对十研究纳米发光材料也是十分有利的因素。
因此,目前研究工作的热点开始着重十材料的微观结构对它们发光性质的影响。
二、稀土发光材料的发光性能稀土的发光性能都是由于稀土的4f电子在不同能级之间的跃迁而产生的(如图1.1)。
在f组态内不同能级之间的跃迁称为f-f跃迁;在f和d组态之间的跃迁称为f-d跃迁。
其光谱大概有30000条。
稀土发光材料可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。
由于很多稀土离子具有丰富的能级和它们的4f电子跃迁特性,使稀土成为一个巨大的发光宝库。
相比其它发光材料,稀土材料发光具有无可替代的优点稀土发光材料吸收能量的能力强,转换效率高,可发射从紫外光到红外光的光谱,特别是在可见光区有很强的发射能力,发射的荧光寿命从纳秒到毫秒,跨越6个数量级,而且它们的物理化学性能稳定,能承受大功率的电子束、高能射线和强紫外光子的作用等。
另外,在+3价稀土离子中,Y3+和La3+无4f电子,Lu3+的4f亚层为全充满的,都具有密闭的壳层,因此它们属于光学惰性的,适用于作基质材料;从Ce3+到Yb3+的+3价稀土离子电子依次填充在4f轨道,从f1到f13,其电子层中都具有未成对电子,其跃迁可产生发光,这些离子适于作为发光材料的激活离子。
至于其+2价离子,RE2+有两种电子层构型:4f n-15d1和4f n,4f n-15d l构型的特点是5d轨道裸露于外层,受外部场的影响显著,4f n-15d l→4f n(即d--f 跃迁)的跃迁发射呈宽带,强度较高,荧光寿命短,发射光谱随基质组成、结构的改变而发生明显变化,与RE3+相比,它的激发态能级间隔被压缩,最终导致最低激发态能量降低,谱线红移。
而+4价态稀土离子和与其相邻的前一个+3价稀土离子具有相同的4f电子数目。
例如,Ce4+和La3+,Pr4+和Ce3+,Tb4+和Gd3+等,+4价态稀土离子的电荷迁移带能量较低,吸收峰往往移到可见光区。
如Ce4+与Ce3+的混价电荷迁移跃迁形成的吸收峰已延伸到450nm附近,Tb4+的吸收峰在430nm附近。
这样,稀土发光材料在各个发光波长区域都受到了广泛关注。
三、稀土发光材料的制备工艺稀土发光材料的合成有高温固相反应法、燃料合成法、溶胶-凝胶法、水热合成法、化学沉淀法、微乳液法和微波辐射合成法。
随着研究的不断发展,最近有新出现了微乳-水热法、微乳-微波法、喷雾热解法和CO2激光加热气相沉积合成法,本文仅对前几种方法做些简单介绍:高温固相反应法首先将满足纯度要求的原料按一定配比称量,加入一定量的助熔剂混合至充分均匀。
将混合均匀的生料装入坩锅(按焙烧温度高低来选择普通陶瓷、刚玉或石英等材质的坩锅),送入焙烧炉,在一定的条件下(温度制度、还原或保护气氛、反应时间等)进行焙烧得到产品。
早期高温固相法的最大缺陷就是烧制温度太高,一般在1700℃左右。
固相反应通常取决于材料的晶体结构及其缺陷结构,而不仅是成分的固有反应性。
在固态材料中发生的每一种传质现象和反应过程均与晶格的各种缺陷有关。
通常固相中的各类缺陷愈多,则其相应的传质能力就愈强,因而与传质能力有关的固相反应速率也就愈大。
固相反应的充要条件是反应物必须相互接触,即反应是通过颗粒界面进行的。
反应物颗粒越细,其比表面积越大,反应物颗粒之间的接触面积也就越大,有利于固相反应的进行。
因此,将反应物研磨并充分混合均匀,可增大反应物之间的接触面积,使原子或离子的扩散输运比较容易进行,以增大反应速率。
另外,一些外部因素,如温度、压力、添加剂、射线的辐照等,也是影响固相反应的重要因素。
固相反应通常包括以下步骤:(1)固体界面如原子或离子的跨过界面的扩散;(2)原子规模的化学反应;(3)新相成核;(4)通过固体的输运及新相的长大。
决定固相反应性的两个重要因素是成核和扩散速度。
如果产物和反应物之间存在结构类似性,则成核容易进行。
扩散与固相内部的缺陷、界面形貌、原子或离子的大小及其扩散系数有关。
此外,某些添加剂的存在可能影响固相反应的速率[3]。
在高温固相反应中往往还需要控制一定的反应气氛,有些反应物在不同的反应气氛中会生成不同的产物,因此要想获得满意的某种产物,就一定要控制好反应气氛。
其具体工艺流程方框图如图2.1所示。
燃烧合成法燃烧合成(Combustion Synthesis,缩写CS),也称自蔓延高温合成法(Self-propagating High temperature Synthesis,缩写SHS),是高放热化学体系经外部能量诱发局部化学反应(点燃),形成其前沿(燃烧波),使化学反应持续蔓延,直至整个反应体系,最后达到合成所需材料目的的技术。
燃烧合成作为材料制备的高新技术,具有快速、节能、合成产物质量高、合成产品成本低、易十实现规模生产等特点:(1)燃烧合成反应充分利用化学反应本身放出的热量,反应体系在合成过程中温度可达数千摄氏度.是一种节能的技术;(2)燃烧合成反应是在原料混合物内部进行,其反应产生的大量热能直接用十材料的合成,无需热量从外部传递的过程,反应速度非常快,反应效率高;(3)燃烧合成反应产生非常高的温度,产品的合成率高,同时一些低熔点杂质可以得到进一步净化。
另外,燃烧合成采用的是一次直接合成,可避免复杂体系的多次复杂加工过程对产品的污染,合成的产物质量高;(4)只要在燃烧合成试验中找到合理原料配比和合适的工艺参数,在条件变化不大的情况下,就能实现产品的中试及规模生产,使新产品能以较快的速度投入市场;目前,燃烧合成颇受物理学、化学、化学工程、冶金学和材料科学与工程等领域工作者的重视,无论是在理论方面还是在应用方面,都得到了广泛的研究和迅速的发展。
在稀土发光材料研究中,燃烧法作为一种新的合成手段,受到了研究人员的高度关注。
溶胶-凝胶法用溶胶-凝胶法合成发光材料可以获得更细的粒径,无需研磨,且合成温度比传统的合成方法要低,这种方法在发光材料合成中具有一定的潜力,是合成纳米发光材料的方法之一。
其基本原理是:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。
溶胶一凝胶法己经广泛地用在各种光学材料的合成中,而且用此法制备的新型或改良的光学材料有的已成功地用在了光学设备上。
用溶胶一凝胶法合成发光体的烧结温度都较低(多数在1000℃以下),同时从现有的文献报道来看,目前采用溶胶一凝胶法合成发光材料多集中在硅酸盐体系,这可能是Si(OC2H5)的水解比较容易的缘故。
溶胶一凝胶法合成的材料具有以下特点:1、样品的均匀性好,尤其是多组份制品,其均匀性可以达到分子或原子水平,使激活离子能够均匀地分布在基质晶格中,有利于寻找发光体最强时激活离子的最低浓度。
2、锻烧温度比高温固相反应温度低,因此可以节约能源,避免由于锻烧温度高而从反应器中引入杂质,同时锻烧前已部分形成凝胶,具有大的表面积,利于产物生成。
3、产品的纯度高,因反应可以使用高纯原料,且溶剂在处理过程中易被除去。
反应过程及凝胶的微观结构都易于控制,大大减少了支反应的进行。
4、带状发射峰窄化,可提高发光体的相对发光强度和相对量子效率。