半导体激光器LD脉冲驱动电路的设计与实验

合集下载

脉冲宽度连续可调的LD驱动设计

脉冲宽度连续可调的LD驱动设计

收稿日期:2020-03-31作者简介:卢唯实(1986-),男,吉林辽源人,本科,工程师,主要研究方向为光学工程;关冉昀(1994-),女,天津市蓟州区人,本科,助理工程师,主要研究方向为光学工程.E-mail :****************.com激光二极管在脉冲宽度调节方面较传统泵浦激光器有较大优势,在近距离精确测距与激光通信领域应用较为广泛[1],激光脉冲的宽度会直接影响测距精度与通信速率。

由于激光二极管在脉冲宽度调节方面具备较大的自由度,因此通过调节驱动器参数设置,能够实现不同脉宽的需求。

现在普通的激光器驱动都采用固定参数设置,只能发射固定脉宽的激光信号,通常也只能适配某一型号激光二极管,不具备通用性。

文中参考已有的射频电路实例与现阶段较为先进的高速射频芯片应用,结合激光应用实际,设计出一款脉冲宽度连续可调节的激光器驱动。

通过分析测试数据,验证方案的可行性。

1工作原理半导体激光器工作原理与二极管相似,依靠载流子直接注入工作,具备启动阈值[2]。

当驱动电流超过阈值时,输出激光。

因此可以通过调节脉冲电流宽度实现对激光脉冲宽度的精确控制[3-4]。

由于测距与通信应用的激光脉冲宽度都在纳秒级别,要实现纳秒级别的电脉冲调制,对驱动电路设计带来了较大难度。

现有的LD 驱动电路多采用RC 放电回路设计,其特点是电路结构简单[5-10]。

但是由于RC 回路采用固定的分立元件,无法实现激光脉冲宽度的实时调节。

如陈祚海等设计的高速窄脉冲激光器驱动电·电路与控制·脉冲宽度连续可调的LD 驱动设计卢唯实,关冉昀(中国电子科技集团公司光电研究院,天津300308)摘要:在激光测距与激光通信领域中,由于激光二极管在脉冲宽度调节方面较传统泵浦激光器有较大优势,所以基于LD激光器在近距离精确测距与激光通信领域应用较为广泛。

介绍了一种激光器工作原理,并设计了一款基于LD 的驱动电路,实现了激光脉宽连续调节。

半导体激光器驱动电路设计

半导体激光器驱动电路设计

半导体激光器驱动电路设计
1、确定参数:首先,根据所采用的半导体激光器进行相应参数的确定,主要包括输入电压、电流以及恒流模块的参数,根据具体的需要可以完成相应的参数确定。

2、结构设计:根据参数确定进行激光器驱动电路的结构设计,结构设计应考虑激光输出能力、负荷及恒流模块的输出的特性,满足激光器输出功率的要求;
3、计算电阻:对于激光驱动电路来说,为保持电流稳定,应据恒流模块的输入电流和输出电压计算电路上的各种电阻值,以便达到设计要求。

4、电路测试:经过上述步骤确定激光驱动电路的参数,在完成电路的组装后应对原装驱动电路进行相应的测量,在测量的时候需要考虑负载的幅值、波形及相位等因素,最后,验证激光输出的功率是否满足设计要求,同时检查电路中各部分是否运行正常。

5、微调激光器参数:最后,产品上线前将对激光器的参数进行微调,确保激光器的输出参数满足所设定的要求,同时可以调节激光的输出功率等参数,以规避在实际使用中出现的误差。

以上就是关于半导体激光器驱动电路设计的介绍,希望对大家有所帮助。

半导体激光器_实验报告

半导体激光器_实验报告

半导体激光器_实验报告【标题】半导体激光器实验报告【摘要】本实验主要通过实际操作和测量,研究半导体激光器的工作原理和性能特点。

通过改变电流和温度等参数,观察激光器的输出功率和波长、发散角度等特性的变化,并分析其与激光器内部结构和材料特性之间的关系。

【引言】半导体激光器具有体积小、功耗低、效率高等优点,在光通信、激光加工、医疗等领域有广泛应用。

了解半导体激光器的工作原理和特性对于深入理解其应用具有重要意义。

【实验内容】1. 实验器材与仪器准备:准备半导体激光器、电源、温度控制器、功率测量仪等实验设备。

2. 实验步骤:a. 连接电源和温度控制器,调节温度至设定值。

b. 调节电流,记录相应的激光器输出功率。

c. 测量激光器的输出波长和发散角度。

d. 分析激光器输出功率、波长和发散角度等特性随电流和温度变化的规律。

【实验结果】1. 实验数据记录:记录不同电流和温度下的激光器输出功率、波长和发散角度数据。

2. 实验结果分析:a. 输出功率与电流和温度的关系。

b. 输出波长与电流和温度的关系。

c. 发散角度与电流和温度的关系。

【讨论】根据实验结果,结合半导体激光器的内部结构和材料特性,讨论激光器输出功率、波长和发散角度等特性与电流和温度的关系。

分析激光器的工作原理和性能特点,并讨论其在实际应用中的优缺点。

【结论】通过实验,我们深入了解了半导体激光器的工作原理和性能特点。

通过调节电流和温度等参数,可以控制激光器的输出功率、波长和发散角度等特性。

半导体激光器具有体积小、功耗低、效率高等优点,但也存在一些限制,如温度敏感性较强。

最后,我们对半导体激光器的应用前景进行了展望。

半导体激光器LD恒流源调制电路的设计与实验

半导体激光器LD恒流源调制电路的设计与实验

半导体激光器LD恒流源调制电路的设计
与实验
概述
半导体激光器(LD)是一种重要的光电器件,广泛应用于通信、医疗和雷达等领域。

恒流源调制电路在LD的驱动中起到关键
作用。

本文将探讨半导体激光器LD恒流源调制电路的设计与实验。

设计原理
半导体激光器的工作需要稳定的电流源来实现恒定的激发电流。

恒流源调制电路通过控制输入信号和反馈电路的结构来实现恒流输出。

常见的调制电路设计方法包括共射极电路、共基极电路和共集
极电路。

实验步骤
1. 确定实验所需元器件,包括半导体激光器、恒流源电路、反
馈电路、电源等。

2. 根据实验需求选择合适的调制电路设计方法,如共射极电路。

3. 根据调制电路设计方法,搭建实验电路。

4. 进行实验前的参数调整和校准,确保实验的准确性和稳定性。

5. 施加输入信号并观察输出结果,记录实验数据。

6. 对实验数据进行分析和处理,评估恒流源调制电路的性能。

7. 针对实验结果进行必要的改进和优化,提高恒流源调制电路
的稳定性和效果。

结论
本文探讨了半导体激光器LD恒流源调制电路的设计与实验步骤。

恒流源调制电路的设计对于半导体激光器的驱动具有重要意义,能够实现稳定恒流输出。

根据实验结果,可以进行进一步的改进和
优化,提高调制电路的性能和稳定性。

参考文献:
注:以上内容仅供参考,请根据实际需求进行修改和完善。

半导体激光器驱动电路设计

半导体激光器驱动电路设计

第9卷 第21期 2009年11月1671 1819(2009)21 6532 04科 学 技 术 与 工 程Science T echno logy and Eng i neeringV o l9 N o 21 N ov .2009 2009 Sci T ech Engng通信技术半导体激光器驱动电路设计何成林(中国空空导弹研究院,洛阳471009)摘 要 半导体激光驱动电路是激光引信的重要组成部分。

根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。

通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。

关键词 激光引信 半导体激光器 窄脉冲中图法分类号 TN 242; 文献标志码A2009年7月14日收到作者简介:何成林(1982 ),男,湖北利川人,助理工程师,硕士,研究方向:激光引信技术,E m ai:l chengli nhe @163.co m 。

激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。

发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。

由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。

而光脉冲质量取决于激光器脉冲驱动电路的质量。

因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。

1 脉冲半导体激光器驱动电路模型分析激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。

图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。

脉冲产生电路以时序信号为输入条件。

根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。

开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。

当激励脉冲到来时,开关器件导通,充电元件通过开关器件和激光器构成的回路图1 驱动电路模型放电,从而达到驱动激光器的目的。

功率稳定可调LD驱动电路的设计

功率稳定可调LD驱动电路的设计

在精密光电检测领域中,光源的微小波动会引起被测量的较大偏移,从而产生较大的测量误差。

如在半导体薄膜特性检测中,常常需要检测薄膜反射比以求解出其它光电学参量。

由于薄膜增长的缓慢(0.1mm 级/秒),反射比变化非常小,在这种情况下,对于光源稳定性的要求非常高,达到0.1%。

稳定光源在光纤测量中像电子电路测试时用振荡器作为信号源一样,要求发出高稳定、光功率可调的光信号。

稳定光源是急待开发的光纤系统测试仪器中的一种重要的基础设备。

国内一些学者对稳定激光光源作了一些研究。

有的设计方法使激光器注入电流稳定,并配合使用温控电路。

这种方法虽然对稳定性有一定提高,但对其它影响因素缺乏考虑,不是一种闭环的控制系统。

有的对光功率的调节只使用模拟的积分调节,由于积分控制对稳态误差的消除作用是靠对误差的积累产生的,故反映不灵敏,且会使系统稳定裕量下降,超调增大,一般不单独使用。

这种方法的共同步是模拟调节。

本文设计一种对输出光功率进行闭环数字PID调节的激光二极管(LD)驱动电路。

该电路使用高精度14位A/D、D/A转换器,理论上对光功率的0.01%变化均可调节,且驱动电流最小节量<0.01m A,同时可精确设置初始驱动电流(光功率)。

驱动电路设计1 激光二极管封装及参数常见激光二极管封装有两种形式:共阳极与共阴极型(图1 (a)所示)。

LD 和监测激光器背向输出光功率的PIN光电二极管封装在一起。

这里,LD采用SANYO655nm红光激光二极管,封装形式为共阳极(LD的正极与PD(光电二极管)的负极连接在一起)。

LD最大输出光功率为30mW,阈值电流为40mA(25℃),工作电流量大为110mA。

PD的监测电流Im与激光器的输出功率P0在温度不变的情况下成线性关系(图1(b)所示),这为后面控制电路的设计提供了依据。

2 电路原理光电二极管的监测电流经差分放大后变成一个电压量,经高精度A/D转换器采样量化后送入单片机,与单片机内监测电压参考值(在设定功率条件下,监测电流经差分放大后变成的电压量的数字表示)之间作差,产生电压偏差信号;再对偏差信号进行PID运算,运算结果经D/A转换及电压-电流(V-I)变换后,成为LD的驱动电路。

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD脉冲驱动电路的设计与实验

半导体激光器LD 脉冲驱动电路的设计与实验进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动 时,其结温会在半导体激光器不工作的时刻进行散热, 因此半导体激光器在脉冲 电源驱动下,对半导体激光器的散热要求不高。

在设计半导体激光器的脉冲驱动 电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。

1脉冲电源的仿真在进行脉冲电源仿真时,同样选用的 NI 公司的这款MultisimIO 这款电路仿 真软件。

选用的器件是IRF530,信号源是5V ,占款比为50%,频率为50Hz 的 方波信号源;用电阻 R i代替半导体激光器、且将 R i的阻值设置为 1 Q ,用脉冲电源仿真在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻R i上 的电压进行采样,信号源选取的是输出5V 方波的、频率是50Hz 、占款比是50% 的信号源。

在进行仿真前、将示波器的 A 通道接在电阻R i的两端,对整个电路 的电流信号进行监测。

将示波器的 B通道接在信号源的两端,对信号源的输出MultisimIO 的自带示波器对电阻R i两端的电信号进行测量12V VGCMIL........ X SC1A ETinw ______ • 7訂 _________________ 計旷 ____________________ | Triggr SaihpOTi Diu ::-i■< ■ Suli [TvCi; \ Edgt |T" ijp":电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。

根据仿真示波器监测到的数据显示,电阻R i两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。

仿真结果显示电阻R i的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。

在仿真过程中,通过不断的调整信号源的特性,发现电阻R i两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。

半导体激光器LD开关电源驱动电路的设计和实验

半导体激光器LD开关电源驱动电路的设计和实验

半导体激光器LD 开关电源驱动电路的设计和实验开关电源相比线性电源它的转换效率高、电能利用率高,但纹波系数较大,本节将讨论半导体激光器在开关电源驱动下特性分析,并设计出一款稳定的半导体激光器的开关电源驱动电路。

首先应从半导体激光器工作特性出发,分析出开关电源驱动半导体激光器所应具备的条件,而结温、结电压、结电流是直接决定半导体激光器的工作特性的参量,因此分析开关电源驱动半导体激光器的特性、实际就是分析在开关电源驱动下半导体激光器结温、结电压、结电流这三者之间的关系。

1 恒流模式下的结温与工作特性研究根据半导体物理学理论,PN 结在小注入条件下的正向电流与电压近似满足下式:0exp qU I I kT ⎛⎫= ⎪⎝⎭很明显,正向电流和PN 结的节电压不是线性关系。

当载流子大注入时即半导体激光器满足载流子反转,开始向外输出激光时的工作条件,PN 结的电流-电压特性将会发生变化,不在遵从电流和PN 结结电压之间的关系式。

因为P 区为阻止空穴的扩散维持电中性,必然建立一个电场,成为自建电场,这样势必使加载在PN 上的结电压有一部分电压加在P 区。

此时PN 结的电流和结电压的关系公式需加以修正:0exp 2qU I I kT ⎛⎫= ⎪⎝⎭()320exp 2g E I f T T kT -⎛⎫= ⎪⎝⎭I :正向电流;0I :反向饱和电流;U :pn 结正向电压;T :绝对温度;k :波尔兹曼常数; q :为基本电荷电量;其中g E 为温度为0K 时的禁带宽度。

又由()K f T T =,函数()T f 含有32T -,这样K 是一个与温度无关的量,当半导体结在恒流状态时,PN 结的结电压和温度的关系如下式:()2g E kT U InK InI q q=--()2dU k InK InI dT q=-- 由上式可得,在恒流模式下结电压与温度是成线性变化的,随着温度的升高结电压是减小。

当工作在恒流模式下时,dU dT 是恒定的,说明半导体工作在横流模式下的输出状态影响因素少,整个工作状态易于控制。

半导体激光器驱动电路

半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能
图1
在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。

其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。

背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。

激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作.
其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。

XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。

其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。

该电路中,输出的恒定电压设定为2.6v。

图2
恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。

从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。

Uo再通过一个电阻和电容组成的LR滤波
电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。

图3。

大功率半导体激光器驱动电路

大功率半导体激光器驱动电路

第8卷 第4期信息与电子工程Vo1.8,No.4 2010年8月INFORMATION AND ELECTRONIC ENGINEERING Aug.,2010文章编号:1672-2892(2010)04-0441-04大功率半导体激光器驱动电路马良柱,宋志强,刘统玉,王 昌,陈汝波(山东科学院激光研究所山东省光纤传感器重点实验室,山东济南 250014)摘要:为实现30W连续掺Yb光纤激光器,设计一种大功率(10A)半导体激光器(LD)的驱动电路,该恒流源电路采用功率场效应管作电流控制元件,运用负反馈原理稳定输出电流,正向电流0A~10A连续可调,纹波峰值为10mV,输出电流的短期稳定度达到1×10-5,具有过流保护、防浪涌冲击的功能。

实际应用在30W连续掺Yb光纤激光器中,结果表明该驱动电路工作安全可靠。

关键词:半导体激光器;驱动电路;场效应管中图分类号:TN248 文献标识码:APower driving circuit of Laser DiodeMA Liang-zhu,SONG Zhi-qiang,LIU Tong-yu,WANG Chang,CHEN Ru-bo (Shandong key laboratory of optic fiber sensing,Laser Institute,Shandong Academy of Sciences,Tsinan Shandong 250014,China)Abstract:This paper introduces a power driving circuit for Laser Diode(LD). It adopts power Metal-Oxide Semiconductor Field Effect Transistor(MOSFET) as adjust device,and apply current negativefeedback to ensure constant current output. The output current is a forward current adjustable in 0A–10Arange with ripple less than 10mV,whose short-term stability has reached 1×10-5. This circuit also bearsfunctions including maximum current,surge current limitation and slow start. It has been applied as pumpsource for a Yb doped optic fiber laser,and the experimental results has proved its reliability and safety.Key words:Laser Diode;driving circuit;Metal-Oxide Semiconductor Field Effect Transistor半导体激光器(LD)具有尺寸小、重量轻和低电压驱动、直接调制等特点,还具有高单色性、高相干性、高方向性和准直性的优良特性,广泛应用于国防、科研、医疗、光通信和光传感等领域[1]。

ld驱动电路设计

ld驱动电路设计

ld驱动电路设计
在LD(激光二极管)驱动电路设计中,通常需要满足以下要求:
1.提供稳定的电流:LD需要稳定的电流才能正常工作,因此驱动电路应具备恒流源的特性,能够提供稳定的电流。

2.快速响应:LD通常需要快速启停,因此驱动电路应具有快速响应能力,以满足LD的启停要求。

3.电压控制:为了调整LD的功率和调制其输出光束,驱动电路应具有电压控制功能。

通过调整驱动电压,可以改变通过LD的电流,从而控制其输出光束的功率和调制。

4.温度控制:LD的工作性能受温度影响较大,因此驱动电路应具有温度控制功能。

通过监测LD的温度,驱动电路可以调节其输出电流或电压,以保持LD的工作温度稳定。

5.保护功能:为了防止LD过热或过流而损坏,驱动电路应具备保护功能。

当检测到LD的工作状态异常时,驱动电路应能够自动减小电流或关闭电路,以保护LD免受损坏。

总之,一个合格的LD驱动电路设计应该考虑以上几个方面,以满足LD的工作要求和确保其可靠、稳定的工作状态。

如需更多信息,建议咨询电子工程专家或查阅电子工程相关书籍。

窄脉冲半导体激光器驱动电路的设计与仿真试验

窄脉冲半导体激光器驱动电路的设计与仿真试验

窄脉冲半导体激光器驱动电路的设计与仿真试验1. 引言1.1 研究背景与意义1.2 国内外研究现状与进展1.3 本文研究目的与意义2. 窄脉冲半导体激光器驱动电路的原理2.1 窄脉冲半导体激光器的特性与应用2.2 半导体激光器的驱动原理及基本电路2.3 窄脉冲半导体激光器驱动电路的设计要求3. 窄脉冲半导体激光器驱动电路的设计3.1 驱动芯片的选型和参数确定3.2 电源电路的设计3.3 输出电路的设计3.4 控制电路的设计4. 窄脉冲半导体激光器驱动电路的仿真试验4.1 仿真环境及参数设置4.2 仿真结果分析4.3 实验结果验证5. 结论与展望5.1 研究结论5.2 改进与展望5.3 研究成果及其应用前景注:本题提供的是论文的提纲,提纲所提及的内容并不一定全面详实,具体内容需根据论文的实际需要进行拓展和补充。

1. 引言1.1 研究背景与意义半导体激光器是一种非常重要的光电器件,广泛应用于通讯、医疗、车载雷达等领域。

而窄脉冲半导体激光器则具有输出功率高、调制速度快、瞬时带宽宽等优点,在光通信领域尤其受到青睐。

然而,窄脉冲半导体激光器驱动电路的设计非常复杂,因为它要求驱动电路的响应速度极快,同时需要精确控制输出波形的上升和下降时间、脉冲宽度和峰值电流等参数,以保证激光器输出的信号质量和稳定性。

因此,本文将针对窄脉冲半导体激光器驱动电路的设计与仿真试验进行研究,旨在通过提高驱动电路的精度、响应速度和稳定性,实现高速、高品质、高可靠性的窄脉冲半导体激光器输出。

此外,论文的研究成果也可以为半导体激光器驱动技术的进一步发展提供重要的参考。

1.2 国内外研究现状与进展窄脉冲半导体激光器驱动电路的设计和优化是一个相当热门的研究领域,国内外的学者和工程师们已经开展了许多有意义的研究。

例如,在驱动芯片的选型方面,有人采用多级集成器件,以提高驱动芯片的响应速度和稳定性;还有人使用瞬态电压抑制器,以避免过压对芯片的损害。

半导体激光器驱动电路的研究与设计

半导体激光器驱动电路的研究与设计

半导体激光器驱动电路的研究与设计袁林成;蒋书波;宋相龙;陆志峰【摘要】The design of semiconductor laser driving circuit is an important technology to decide the stability of semiconductor laser system,and it has an important impact on the output characteristics of the laser.The variation of injection current will cause the laser emission frequencyvariation,eventually lead to jump mode or multi-mode op⁃eration. In order to ensure the quality of the laser output of semiconductor laser,a high performance laser driving cir⁃cuit is studied and designed,this driving circuit includs power supply circuit,constant current sourcecircuit,protec⁃tion circuit and time delay buffer circuit four parts;C is simulated by software Multisim. The actual circuit results compares withthe exploited result map,finally the application of photon counter to test the laser output intensity fluctuation is defined in the 200 kilo-count/s to 400 kilo-count/s range,stability and has a high precision,the experi⁃mental results show that the sufficient stability and high precision satisfy the follow-up experiment.%半导体激光器驱动电路的设计是决定半导体激光器系统稳定性的重要技术,对于激光器输出特性有重要影响。

大功率半导体激光器驱动电源保护电路方案

大功率半导体激光器驱动电源保护电路方案

大功率半导体激光器驱动电源保护电路方案1 引言半导体激光器(LD)具有体积小、重量轻、转换效率高、工作寿命长等优点,在工业、军事、医疗等领域得到了广泛应用。

LD 是以电流注入作为激励方式的一种激光器,其使用寿命、工作特性在很大程度上取决于所用驱动电源的性能好坏。

设计一个符合LD 技术要求、性能稳定、工作可靠的驱动电源是十分必要的。

近年来,有不少科研单位研究开发了一系列LD 用电流源,保证了LD的正常工作。

半导体激光器本身的性质决定其抗浪涌冲击能力差,这就要求驱动电源的稳定度高,浪涌冲击小,因此驱动电源中需要各种保护电路以满足实际要求。

通常用慢启动电路、TVS(瞬态抑制器)吸收电路、限流电路等来防止浪涌冲击及电流过大。

但大功率半导体激光器的工作电流较大,并且半导体激光器比较脆弱,传统的慢启动电路、TVS 吸收电路不能很好地满足实际要求。

本文在参考各种实用的保护电路基础上,设计出应用大功率器件强制吸收或隔离浪涌冲击和双限流保护电路,有效地保护半导体激光器不被损伤,具有较好的实际应用前景。

2原理分析2.1半导体激光器损坏机理分析在正常条件下使用的半导体激光器有很长的工作寿命。

但在不适当的工作条件下,会造成性能的急剧恶化乃至失效。

统计表明,半导体激光器突然失效,有一半以上的几率是由于浪涌击穿。

因而如何保护半导体激光器,延长半导体激光器的使用寿命是研制大功率半导体激光器驱动电源保护电路的重要问题。

主要应考虑:1)激光器必须工作在限制电流以内,一个安全可靠的限流电路是不可缺少的。

2)为了防止驱动电源浪涌冲击,必须有比较强的浪涌吸收电路。

3)由于激光器是一种敏感的电流元件,所以驱动电流不能直接加在激光器两端,慢启动电路对激光器的防护也是必不可少的。

2.2传统保护电路的特点1)在隔离变压器的原边和副边加上TVS器件,利用其高速响应特性抑制过高的电网浪涌电压和雷电感应电压。

这种措施比较有效,但受限于TVS的响应速度,如果响应速度达不到要求那就不能很好抑制浪涌冲击。

半导体激光器LD恒流源驱动电路的设计与实验

半导体激光器LD恒流源驱动电路的设计与实验

半导体激光器LD恒流源驱动电路的设计与实验半导体激光器LD恒流源驱动电路的设计与实验这款半导体激光器的恒流源驱动电路,是根据实际的项目需求进行设计的。

项目要求是半导体激光器得根据探测距离,能改变输出光功率,这就要求半导体激光器的驱动电路输出的电流是可调的,这样现阶段几种半导体激光器驱动电路中只有恒流源驱动电路可以做到这一点,实现这种功能是通过改变恒流源电路的基准电压而实现的。

进行恒流源驱动电路的设计的方法是在先仿真的基础上进行的,项目所需要的恒流源驱动电路的设计参数是恒流源输出电流是0-1A可调。

1 恒流源软件仿真为精确仿真出结果,为以后的设计提供理论依据,选用的电路仿真软件是NI公司的Multisim10软件,该款软件经历几代的发展,功能不断的完善,其数据库包含常用的所有元器件,能进行模拟电路的仿真、数字电路的仿真,其仿真结果的准确性高,能为设计提供设计依据。

恒流源仿真结果恒流源仿真电路选取了单电源供电的集成运放LM2900N、功率管IRF540、供电的电源电压是9V,为测量电路输出的电流,将万用表调整到电流档串联到电路中进行测量,以上图可见、设计的电路是很简单的。

集成运放U2B的作用是将采样电阻所测得电压反馈回输入端,通过集成运放U2A与输入端的基准电压进行比较。

恒流源仿真电路是一款很经典恒流源电路,具有的优点是电路稳定性很高、这款恒流源电路在基准电压不变的情况下,可以很容易的进行恒流源输出电流大小的调整,因为只需要调整电阻R3、R3的阻值即可。

仿真结果显示,当将采样电阻的阻值选为1欧姆、R3R4?13、基准电压选取为2V时,仿真结果得到的电流是1.5A。

在仿真过程中、通过选取不同的基准电压和R3、R3的值可以得到不同的电流值,这样仿真结果为实际的电路设计提供很好参考依据。

为了进一步简化恒流源驱动电路的设计、又作了如下的设计仿真。

选取的功率管是IRF530、采样R1的阻值为1欧姆、选取的电压比较器是单电源供电的集成运算放大器LM2900N,在电路仿真中,可以看见当基准电压选为1V、采样电阻为1欧姆时,恒流源的输出电流是0.9A,这与理论推导的结果完全一样。

半导体激光器驱动电路设计

半导体激光器驱动电路设计
导通状 态 , 电压输 出端 给调 制 电路 、 流保护 电路 由 恒
2 1 慢 启 动 电路 .
在实 际 应用 中 , 导体 激 光 器往 往 会 因 为接在 半
同一 电 网上 的多 种 电器 的 突然开启 或关 闭而 受到损
及 半导 体激 光器供 电 。
图 1 慢 启 动 电路 原 理 图
模拟 , 结果 显示 该驱 动 电路 满足 设 计 需求 , 类似 电路设 计有 很好 的借 鉴作 用 。 对
关键 词 : 动 电路 ; 导体 激光 器 ; 启动 电路 驱 半 慢
中 图分类 号 : N 4 . T 2 84
文献标 识 码 : A
文章编 号 :6 35 9 ( 0 1 0 -5 4 17 -6 2 2 1 ) 66 7 3 4
2c 0( =一7 ℃ , 温 下 具 有 稳 定 的 光 功 率 输 出。 0 常
在 2 ℃的标准温度 下 , 5 该型激 光器 的 阈值 电流为
设计 出具有抗干扰 能力强 、 恒流稳定和过流保 护等 特性 的驱 动 电路尤 为必 要 。
2 A, 5m 串联电阻是 1 光学输出功率的最小值为 0Q,

种高功率密度并具有极高量子效率 的结型器件 ,D L
对 于 电流 冲击 的承 受 能力 较 差 , 电流 微 小 的变 化将 导 致光 输 出的极 大 变化 和器 件 参 数 的 变化 , 这些 变
化直接危及器件的安全使用 , 因而在实际应用中对 驱 动 电源 的 性 能 和 安 全 保 护 有 着 很 高 的 要 求 』 。 为了保证激光器稳定工作、 性能可靠和使用寿命长 ,
, - /一0 0 c  ̄b .6

14 .
/ 一 一

半导体激光管LD的电源电路图设计

半导体激光管LD的电源电路图设计

半导体激光管LD的电源电路图设计半导体激光管(LD)和普通二极管采用不同工艺,但电压和电流特性基本相同。

在工作点时,小电压变化会导致激光管电流变化较大。

此外电流纹波过大也会使得激光器输出不稳定。

二极管激光器对它的驱动电源有十分严格的要求;输出的直流电流要高、电流稳定及低纹波系数、高功率因数等。

随着激光器的输出功率不断加大,需要高性能大电流的稳流电源来驱动。

为了保证半导体激光器正常工作,需要对其驱动电源进行合理设计。

并且随着高频、低开关阻抗的MOSFET技术的发展,采用以MOSFET为核心的开关电源出现,开关电源在输出大电流时,纹波过大的问题得到了解决。

1系统构成装置输入电压为24V,输出最大电流为20A,根据串联激光管的数量输出不同电压。

如果采用交流供电,前端应该采用AC/DC作相应的变换。

该装置主要部分为同步DC/DC变换器,其原理图如图1所示。

Vin为输入电压,VM1、VM2为MOSFET,VM1导通宽度决定输出电压大小,快恢复二极管和VM2共同续流电路,整流管的导通损耗占据最主要的部分,因此它的选择至关重要,试验中选用通态电阻很低的M0SFET。

电感、电容组成滤波电路。

测量电阻两端电压与给定值比较后,通过脉冲发生器产生相应的脉宽,保持负载电流稳定。

VM1关断,快恢复二极管工作,快恢复二极管通态损耗大,VM2接着开通续流,减少系统损耗。

2工作原理VM1导通ton时,可得:电流纹波为:VM1关断,电流通过VD续流,接着VN2导通。

由于VM2的阻抗远小于二极管阻抗,因此通过VM2续流。

VMl、VN2触发脉冲如图2所示。

图2中td为续流二极管导通时间。

二极管消耗的功率为P=VtdI0。

一般快恢复二极管压降0.4V,当电流20A时,二极管消耗功率为0.8W。

如采用MOSFET,则消耗的功率将小很多。

本实验采用威世半导体公司的60A的MOSFET,其导通等效电阻为0.0022Ω。

当电流为20A时,消耗功率约为0.088W。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体激光器LD脉冲驱动电路的设计与实验
进行脉冲驱动电路的设计主要是由于,半导体激光器在脉冲驱动电路驱动时,其结温会在半导体激光器不工作的时刻进行散热,因此半导体激光器在脉冲电源驱动下,对半导体激光器的散热要求不高。

在设计半导体激光器的脉冲驱动电源时,也是先仿真后设计的思想,在电路选型上也是力求简单。

1 脉冲电源的仿真
在进行脉冲电源仿真时,同样选用的NI公司的这款Multisim10这款电路仿真软件。

选用的器件是IRF530,信号源是5V,占款比为50%,频率为50Hz的方波信号源;用电阻1R代替半导体激光器、且将1R的阻值设置为1Ω,用Multisim10的自带示波器对电阻1R两端的电信号进行测量。

脉冲电源仿真
在仿真电路设计的过程中,选用了功率管IRF530作为主开关,对电阻1R上的电压进行采样,信号源选取的是输出5V方波的、频率是50Hz、占款比是50%的信号源。

在进行仿真前、将示波器的A通道接在电阻1R的两端,对整个电路的电流信号进行监测。

将示波器的B通道接在信号源的两端,对信号源的输出
电信号进行采样,这样通过A、B两通道的电信号进行对比,看脉冲驱动电路能否满设计要求。

根据仿真示波器监测到的数据显示,电阻1R两端的电信号完全是跟信号源的电信号同步变化的,而且波形完全一致。

仿真结果显示电阻1R的峰值电压是为1.145V,说明电路的峰值电流也是1.145A。

在仿真过程中,通过不断的调整信号源的特性,发现电阻1R两端的电压值的大小只与信号源的电压值大小有关系,而与信号源的频率和占空比关系不大,这说明此脉冲仿真电路输出电流值的大小只与信号源输出的电压值大小有关。

出现这样的结果主要是选取的信号源的频率过低,功率管IRF530完全可以做到对电路的开断控制。

以上仿真结果显示,当信号源的峰值电压是5V的时候,所对应的流过IRF530的峰值电流是1.145A。

根据IRF530的输出特性,通过调节信号源的加载在IRF530GS
V的电压就可以改变功率管IRF530的输出电流值,从而改变整个脉冲电源输出电流的值。

2 脉冲电源的设计
从上面的电路仿真可以看出,脉冲电源的设计主要是脉冲信号源的设计、电路的主体部分还是用IRF530来实现的,通过控制信号源的加载在GS
V的电压来控制流通IRF530的电流。

要调整输出电流信号的频率得通过信号源进行控制。

图 3-25 基于单片机脉冲电源
在信号源的选取上,首先选取了基于单片机STC89C52的脉冲电源的信号源设计,在设计时设定P0.0端口为频率发出端口、P0.1端口为判别端口,整个程序设计采用中断处理函数加延时函数组成。

在电路结构设计很简单、设置了中断、利用中断控制频率发生器是否继续工作。

用单片机作脉冲信号源的好处在于、成本低廉,开发周期短。

不足在于,书写单片机代码的时候,发现单片机作为信号源,其输出的信号的频率和占宽比之间的矛盾较为明显,很难得到频率高的信号源。

为得到较为理想的信号源输出,随后选取了Altera公司性价比较高的MAXII 系列的CPLD产品EPM240T100C5N。

该芯片有240个逻辑单元,等效宏单元是192个,资源比较丰富,内有8Kbit Flash的存储空间;使用的晶振是50MHz 有源晶振,具有低电平复位,各个相邻引脚间的时延在ns级。

而且EPM240T100C5N这款芯片的价格也在20元以内,无论从性能还是价位上讲都是不错的选择。

在基于EPM240的脉冲电源设计中,主要是分频代码的书写。

主时钟的频率是50MHz,一个周期是20ns。

采用不同位数的计数器进行循环计数,就可以得到不同的频率脉冲信号。

在EPM240的代码设计中,采用了verilog语言进行代码设计。

在设计中只使用了EPM240的一个引脚作为信号源的输出。

在进行代码设计时,首先进了如下定义,将clk定为时钟信号、频率是50MHz;rst_n是EPM240的复位信号、低电平有效;clk_div分频信号输出端口。

代码设计的思想是通过改变计数器的位数得到不同的频率的输出。

芯片RTL视图
在代码调试通过后,首先使用quartus ii软件进行RTL视图仿真,从RTL 视图可以看出,当计数器cnt计满两次,clk_div就会有一个周期的时钟变化,通过clk_div输出分频后的信号,从而实现脉冲信号的输出。

芯片时序仿真
如图是芯片EPM240的时序仿真、可以看出得到脉冲信号的周期是640ns。

当改变cnt计数器的位数后,可以得到不通频率的脉冲信号。

很明显、这种设计电路较单片的电路设计要简单,只是对芯片的代码进行一些修改,就可以得到多个端口输出不同频率的信号。

相关文档
最新文档