厦门大学-林子雨-大数据技术原理与应用-上机练习-图计算框架Hama的基础操作实践
林子雨大数据技术原理与应用答案(全)
![林子雨大数据技术原理与应用答案(全)](https://img.taocdn.com/s3/m/c7fd8f934a7302768e9939ad.png)
林子雨大数据技术原理及应用课后题答案大数据第一章大数据概述课后题 (1)大数据第二章大数据处理架构Hadoop课后题 (5)大数据第三章Hadoop分布式文件系统课后题 (10)大数据第四章分布式数据库HBase课后题 (16)大数据第五章NoSQl数据库课后题 (22)大数据第六章云数据库课后作题 (28)大数据第七章MapReduce课后题 (34)大数据第八章流计算课后题 (41)大数据第九章图计算课后题 (50)大数据第十章数据可视化课后题 (53)大数据第一章课后题——大数据概述1.试述信息技术发展史上的3次信息化浪潮及其具体内容。
第一次信息化浪潮1980年前后个人计算机开始普及,计算机走入企业和千家万户。
代表企业:Intel,AMD,IBM,苹果,微软,联想,戴尔,惠普等。
第二次信息化浪潮1995年前后进入互联网时代。
代表企业:雅虎,谷歌阿里巴巴,百度,腾讯。
第三次信息浪潮2010年前后,云计算大数据,物联网快速发展,即将涌现一批新的市场标杆企业。
2.试述数据产生方式经历的几个阶段。
经历了三个阶段:运营式系统阶段数据伴随一定的运营活动而产生并记录在数据库。
用户原创内容阶段Web2.0时代。
感知式系统阶段物联网中的设备每时每刻自动产生大量数据。
3.试述大数据的4个基本特征。
数据量大(Volume)据类型繁多(Variety)处理速度快(Velocity)价值密度低(Value)4.试述大数据时代的“数据爆炸”特性。
大数据摩尔定律:人类社会产生的数据一直都在以每年50%的速度增长,即每两年就增加一倍。
5.科学研究经历了那四个阶段?实验比萨斜塔实验理论采用各种数学,几何,物理等理论,构建问题模型和解决方案。
例如:牛一,牛二,牛三定律。
计算设计算法并编写相应程序输入计算机运行。
数据以数据为中心,从数据中发现问题解决问题。
6.试述大数据对思维方式的重要影响。
全样而非抽样效率而非精确相关而非因果7.大数据决策与传统的基于数据仓库的决策有什么区别?数据仓库以关系数据库为基础,在数据类型和数据量方面存在较大限制。
大数据技术原理与应用-厦门大学数据库试验室
![大数据技术原理与应用-厦门大学数据库试验室](https://img.taocdn.com/s3/m/548d383b58fb770bf78a55e6.png)
3.1.1 Spark简介
Spark具有如下几个主要特点: •运行速度快:使用DAG执行引擎以支持循环数据流与内存计算 •容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过 Spark Shell进行交互式编程 •通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算 、机器学习和图算法组件 •运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也 可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、 HBase、Hive等多种数据源
《大数据处理技术Spark》 厦门大学计算机科学系 林子雨 ziyulin@
3.1 Spark概述
3.1.1 Spark简介 3.1.2 Scala简介 3.1.3 Spark与Hadoop的比较
《大数据处理技术Spark》
厦门大学计算机科学系
林子雨
ziyulin@
存储在 内存中 读取 内存 存储在 内存中
读询 1
存储在 内存中
结果 1
查询 2
结果 2
输入
...
图16-2 Hadoop与Spark的执行流程对比
林子雨 ziyulin@
(b) Spark执行流程
《大数据处理技术Spark》
厦门大学计算机科学系
3.1.3 Spark与Hadoop的对比
《大数据处理技术 厦门大学计算机科学系 Spark》
厦门大学计算机科学系
林子雨
2017ziyulin@ 年版
提纲
• • • • 3.1 Spark概述 3.2 Spark生态系统 3.3 Spark运行架构 3.4 Spark的部署和应用方式
厦门大学-林子雨-大数据技术原理与应用-上机练习-图计算框架Hama的基础操作实践
![厦门大学-林子雨-大数据技术原理与应用-上机练习-图计算框架Hama的基础操作实践](https://img.taocdn.com/s3/m/e4cf3795e53a580216fcfee2.png)
厦门大学林子雨编著《大数据技术原理与应用》教材配套上机练习图计算框架Hama的基础操作实践(版本号:2016年1月18日版本)主讲教师:林子雨厦门大学数据库实验室二零一六年一月(版权所有,请勿用于商业用途)目录目录1作业题目 (1)2作业目的 (1)3作业性质 (1)4作业考核方法 (1)5作业提交日期与方式 (1)6作业准备 (1)6.1、Hama计算框架的安装配置 (1)6.2、用Hama计算模型实现寻找最大独立集问题算法 (3)7作业内容 (9)8实验报告 (9)附录1:任课教师介绍 (9)附录2:课程教材介绍 (10)《大数据技术原理与应用》图计算框架Hama基础操作实践上机练习说明主讲教师:林子雨E-mail: ziyulin@ 个人主页:/linziyu1作业题目图计算框架Hama基础操作实践。
2作业目的旨在让学生了解Pregel图计算模型,并学会用Pregel的开源实现Hama实现一些基本操作。
3作业性质课后作业,必做,作为课堂平时成绩。
4作业考核方法提交上机实验报告,任课老师根据上机实验报告评定成绩。
5作业提交日期与方式图计算章节内容结束后的下一周周六晚上9点之前提交。
6作业准备请阅读厦门大学林子雨编著的大数据专业教材《大数据技术原理与应用》(官网:/post/bigdata/),了解图计算的概念与意义。
6.1、Hama计算框架的安装配置A pache Hama是Google Pregel的开源实现,与Hadoop适合于分布式大数据处理不同,Hama主要用于分布式的矩阵、graph、网络算法的计算。
简单说,Hama是在HDFS 上实现的BSP(Bulk Synchronous Parallel)计算框架,弥补Hadoop在计算能力上的不足。
(1). 安装好合适版本的jdk和hadoop,并且进行测试,保证他们能用。
(2). 下载hama安装文件,从/downloads.html处下载合适的版本,我当时下的是0.6.4版本的。
厦门大学林子雨编著《大数据技术原理与应用》教材配套实验
![厦门大学林子雨编著《大数据技术原理与应用》教材配套实验](https://img.taocdn.com/s3/m/b15de60d80eb6294dc886c2b.png)
厦门大学林子雨编著《大数据技术原理与应用》教材配套实验实验一:熟悉常用的Linux操作和Hadoop操作一、实验目的Hadoop运行在Linux系统上,因此,需要学习实践一些常用的Linux命令。
.本实验旨在熟悉常用的Linux操作和Hadoop操作,为顺利开展后续其他实验奠定基础。
.二、实验平台●操作系统:Linux(建议Ubuntu16. 04);●Hadoop版本:2. 7. 1。
.三、实验步骤(一)熟悉常用的Linux操作●cd命令:切换目录(1)切换到目录“/usr/local”(2)切换到当前目录的上一级目录(3)切换到当前登录Linux系统的用户的自己的主文件夹●ls命令:查看文件与目录(4)查看目录“/usr”下的所有文件和目录●mkdir命令:新建目录(5)进入“/tmp”目录,创建一个名为“a”的目录,并查看“/tmp”目录下已经存在哪些目录(6)进入“/tmp”目录,创建目录“a1/a2/a3/a4”●rmdir命令:删除空的目录(7)将上面创建的目录a(在“/tmp”目录下面)删除(8)删除上面创建的目录“a1/a2/a3/a4”(在“/tmp”目录下面),然后查看“/tmp”目录下面存在哪些目录●cp命令:复制文件或目录(9)将当前用户的主文件夹下的文件. bashrc复制到目录“/usr”下,并重命名为bashrc1(10)在目录“/tmp”下新建目录test,再把这个目录复制到“/usr”目录下●mv命令:移动文件与目录,或更名(11)将“/usr”目录下的文件bashrc1移动到“/usr/test”目录下(12)将“/usr”目录下的test目录重命名为test2●rm命令:移除文件或目录(13)将“/usr/test2”目录下的bashrc1文件删除(14)将“/usr”目录下的test2目录删除●cat命令:查看文件内容(15)查看当前用户主文件夹下的. bashrc文件内容●tac命令:反向查看文件内容(16)反向查看当前用户主文件夹下的. bashrc文件的内容●more命令:一页一页翻动查看(17)翻页查看当前用户主文件夹下的. bashrc文件的内容●head命令:取出前面几行(18)查看当前用户主文件夹下. bashrc文件内容前20行(19)查看当前用户主文件夹下. bashrc文件内容,后面50行不显示,只显示前面几行●tail命令:取出后面几行(20)查看当前用户主文件夹下. bashrc文件内容最后20行(21)查看当前用户主文件夹下. bashrc文件内容,并且只列出50行以后的数据●touch命令:修改文件时间或创建新文件(22)在“/tmp”目录下创建一个空文件hello,并查看文件时间(23)修改hello文件,将文件时间整为5天前●chown命令:修改文件所有者权限(24)将hello文件所有者改为root帐号,并查看属性●find命令:文件查找(25)找出主文件夹下文件名为. bashrc的文件●tar命令:压缩命令(26)在根目录“/”下新建文件夹test,然后在根目录“/”下打包成test. tar. gz(27)把上面的test. tar. gz压缩包,解压缩到“/tmp”目录●grep命令:查找字符串(28)从“~/. bashrc”文件中查找字符串'examples'●配置环境变量(29)请在“~/. bashrc”中设置,配置Java环境变量(30)查看JAVA_HOME变量的值(二)熟悉常用的Hadoop操作(31)使用hadoop用户登录Linux系统,启动Hadoop(Hadoop的安装目录为“/usr/local/hadoop”),为hadoop用户在HDFS中创建用户目录“/user/hadoop”(32)接着在HDFS的目录“/user/hadoop”下,创建test文件夹,并查看文件列表(33)将Linux系统本地的“~/. bashrc”文件上传到HDFS的test文件夹中,并查看test (34)将HDFS文件夹test复制到Linux系统本地文件系统的“/usr/local/hadoop”目录下四、实验报告实验二:熟悉常用的HDFS操作一、实验目的●理解HDFS在Hadoop体系结构中的角色;●熟练使用HDFS操作常用的Shell命令;●熟悉HDFS操作常用的Java API。
大学生mooc大数据技术原理与应用(林子雨)章节测验期末考试答案
![大学生mooc大数据技术原理与应用(林子雨)章节测验期末考试答案](https://img.taocdn.com/s3/m/1ce43d4751e79b8969022675.png)
作者:解忧书店 JieYouBookshop 第1章大数据概述1单选(2分)第三次信息化浪潮的标志是:A.个人电脑的普及B.云计算、大数据、物联网技术的普及C.虚拟现实技术的普及D.互联网的普及正确答案:B你选对了2单选(2分)就数据的量级而言,1PB数据是多少TB?A.2048B.1000C.512D.1024正确答案:D你选对了3单选(2分)以下关于云计算、大数据和物联网之间的关系,论述错误的是:A.云计算侧重于数据分析B.物联网可以借助于云计算实现海量数据的存储C.物联网可以借助于大数据实现海量数据的分析D.云计算、大数据和物联网三者紧密相关,相辅相成正确答案:A你选对了4单选(2分)以下哪个不是大数据时代新兴的技术:A.SparkB.HadoopC.HBaseD.MySQL正确答案:D你选对了每种大数据产品都有特定的应用场景,以下哪个产品是用于批处理的:A.MapReduceB.DremelC.StormD.Pregel正确答案:A你选对了6单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于流计算的:A.GraphXB.S4C.ImpalaD.Hive正确答案:B你选对了7单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于图计算的:A.PregelB.StormC.CassandraD.Flume正确答案:A你选对了8单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于查询分析计算的:A.HDFSB.S4C.DremelD.MapReduce正确答案:C你选对了9多选(3分)数据产生方式大致经历了三个阶段,包括:A.运营式系统阶段B.感知式系统阶段C.移动互联网数据阶段正确答案:ABD你选对了10多选(3分)大数据发展的三个阶段是:A.低谷期B.成熟期C.大规模应用期D.萌芽期正确答案:BCD你选对了11多选(3分)大数据的特性包括:A.价值密度低B.处理速度快C.数据类型繁多D.数据量大正确答案:ABCD你选对了12多选(3分)图领奖获得者、著名数据库专家Jim Gray博士认为,人类自古以来在科学研究上先后经历了哪几种范式:A.计算科学B.数据密集型科学C.实验科学D.理论科学正确答案:ABCD你选对了13多选(3分)大数据带来思维方式的三个转变是:A.效率而非精确B.相关而非因果C.精确而非全面D.全样而非抽样正确答案:ABD你选对了14多选(3分)大数据主要有哪几种计算模式:C.查询分析计算D.批处理计算正确答案:ABCD你选对了15多选(3分)云计算的典型服务模式包括三种:A.SaaSB.IaaSC.MaaSD.PaaS正确答案:ABD你选对了第2章大数据处理架构Hadoop1单选(2分)启动hadoop所有进程的命令是:A.start-dfs.shB.start-all.shC.start-hadoop.shD.start-hdfs.sh正确答案:B你选对了2单选(2分)以下对Hadoop的说法错误的是:A.Hadoop是基于Java语言开发的,只支持Java语言编程B.Hadoop2.0增加了NameNode HA和Wire-compatibility两个重大特性C.Hadoop MapReduce是针对谷歌MapReduce的开源实现,通常用于大规模数据集的并行计算D.Hadoop的核心是HDFS和MapReduce正确答案:A你选对了3单选(2分)以下哪个不是Hadoop的特性:A.成本高B.支持多种编程语言正确答案:A你选对了4单选(2分)以下名词解释不正确的是:A.Zookeeper:针对谷歌Chubby的一个开源实现,是高效可靠的协同工作系统B.HBase:提供高可靠性、高性能、分布式的行式数据库,是谷歌BigTable的开源实现C.Hive:一个基于Hadoop的数据仓库工具,用于对Hadoop文件中的数据集进行数据整理、特殊查询和分析存储D.HDFS:分布式文件系统,是Hadoop项目的两大核心之一,是谷歌GFS的开源实现正确答案:B你选对了5多选(3分)以下哪些组件是Hadoop的生态系统的组件:A.HBaseB.OracleC.HDFSD.MapReduce正确答案:ACD你选对了6多选(3分)以下哪个命令可以用来操作HDFS文件:A.hadoop fsB.hadoop dfsC.hdfs fsD.hdfs dfs正确答案:ABD你选对了第3章分布式文件系统HDFS1单选(2分)HDFS的命名空间不包含:A.字节B.文件C.块正确答案:A你选对了2单选(2分)对HDFS通信协议的理解错误的是:A.客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的B.客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互C.名称节点和数据节点之间则使用数据节点协议进行交互D.HDFS通信协议都是构建在IoT协议基础之上的正确答案:D你选对了3单选(2分)采用多副本冗余存储的优势不包含:A.保证数据可靠性B.容易检查数据错误C.加快数据传输速度D.节约存储空间正确答案:D你选对了4单选(2分)假设已经配置好环境变量,启动Hadoop和关闭Hadoop的命令分别是:A.start-dfs.sh,stop-hdfs.shB.start-hdfs.sh,stop-hdfs.shC.start-dfs.sh,stop-dfs.shD.start-hdfs.sh,stop-dfs.sh正确答案:C你选对了5单选(2分)分布式文件系统HDFS采用了主从结构模型,由计算机集群中的多个节点构成的,这些节点分为两类,一类存储元数据叫,另一类存储具体数据叫 :A.名称节点,主节点B.从节点,主节点C.名称节点,数据节点D.数据节点,名称节点正确答案:C你选对了6单选(2分)A.分布式文件系统HDFS是Google Bigtable的一种开源实现B.分布式文件系统HDFS是谷歌分布式文件系统GFS(Google File System)的一种开源实现C.分布式文件系统HDFS比较适合存储大量零碎的小文件D.分布式文件系统HDFS是一种关系型数据库正确答案:B你选对了7多选(3分)以下对名称节点理解正确的是:A.名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问B.名称节点用来负责具体用户数据的存储C.名称节点通常用来保存元数据D.名称节点的数据保存在内存中正确答案:ACD你选对了8多选(3分)以下对数据节点理解正确的是:A.数据节点通常只有一个B.数据节点用来存储具体的文件内容C.数据节点的数据保存在磁盘中D.数据节点在名称节点的统一调度下进行数据块的创建、删除和复制等操作正确答案:BCD你选对了9多选(3分)HDFS只设置唯一一个名称节点带来的局限性包括:A.集群的可用性B.性能的瓶颈C.命名空间的限制D.隔离问题正确答案:ABCD你选对了10多选(3分)以下HDFS相关的shell命令不正确的是:A.hadoop dfs mkdir <path>:创建<path>指定的文件夹B.hdfs dfs -rm <path>:删除路径<path>指定的文件C.hadoop fs -copyFromLocal <path1> <path2>:将路径<path2>指定的文件或文件夹复制到路径<path1>指定的文件夹中正确答案:AC你选对了第4章分布式数据库HBase1单选(2分)HBase是一种数据库A.行式数据库B.关系数据库C.文档数据库D.列式数据库正确答案:D你选对了2单选(2分)下列对HBase数据模型的描述错误的是:A.每个HBase表都由若干行组成,每个行由行键(row key)来标识B.HBase是一个稀疏、多维度、排序的映射表,这张表的索引是行键、列族、列限定符和时间戳C.HBase中执行更新操作时,会删除数据旧的版本,并生成一个新的版本D.HBase列族支持动态扩展,可以很轻松地添加一个列族或列正确答案:C你选对了3单选(2分)下列说法正确的是:A.如果不启动Hadoop,则HBase完全无法使用B.HBase的实现包括的主要功能组件是库函数,一个Master主服务器和一个Region服务器C.如果通过HBase Shell插入表数据,可以插入一行数据或一个单元格数据D.Zookeeper是一个集群管理工具,常用于分布式计算,提供配置维护、域名服务、分布式同步等正确答案:D你选对了4单选(2分)在HBase数据库中,每个Region的建议最佳大小是:A.2GB-4GBB.100MB-200MBC.500MB-1000MBD.1GB-2GB正确答案:D你选对了HBase三层结构的顺序是:A.Zookeeper文件,.MEATA.表,-ROOT-表B.-ROOT-表,Zookeeper文件,.MEATA.表C.Zookeeper文件,-ROOT-表,.MEATA.表D..MEATA.表,Zookeeper文件,-ROOT-表正确答案:C你选对了6单选(2分)客户端是通过级寻址来定位Region:A.三B.二C.一D.四正确答案:A你选对了7单选(2分)关于HBase Shell命令解释错误的是:A.create:创建表B.put:向表、行、列指定的单元格添加数据C.list:显示表的所有数据D.get:通过表名、行、列、时间戳、时间范围和版本号来获得相应单元格的值正确答案:C你选对了8多选(3分)下列对HBase的理解正确的是:A.HBase是针对谷歌BigTable的开源实现B.HBase是一种关系型数据库,现成功应用于互联网服务领域C.HBase是一个行式分布式数据库,是Hadoop生态系统中的一个组件D.HBase多用于存储非结构化和半结构化的松散数据正确答案:AD你选对了9多选(3分)HBase和传统关系型数据库的区别在于哪些方面:A.数据操作B.数据索引C.数据模型正确答案:ABCD你选对了10多选(3分)访问HBase表中的行,有哪些方式:A.通过某列的值区间B.全表扫描C.通过一个行健的区间来访问D.通过单个行健访问正确答案:BCD你选对了第5章 NoSQL数据库1单选(2分)下列关于NoSQL数据库和关系型数据库的比较,不正确的是:A.NoSQL数据库很容易实现数据完整性,关系型数据库很难实现数据完整性B.NoSQL数据库缺乏统一的查询语言,而关系型数据库有标准化查询语言C.NoSQL数据库的可扩展性比传统的关系型数据库更好D.NoSQL数据库具有弱一致性,关系型数据库具有强一致性正确答案:A你选对了2单选(2分)以下对各类数据库的理解错误的是:A.键值数据库的键是一个字符串对象,值可以是任意类型的数据,比如整型和字符型等B.文档数据库的数据是松散的,XML和JSON 文档等都可以作为数据存储在文档数据库中C.图数据库灵活性高,支持复杂的图算法,可用于构建复杂的关系图谱D.HBase数据库是列族数据库,可扩展性强,支持事务一致性正确答案:D你选对了3单选(2分)下列数据库属于文档数据库的是:A.MySQLB.RedisC.MongoDBD.HBase正确答案:C你选对了NoSQL数据库的三大理论基石不包括:A.最终一致性B.BASEC.ACIDD.CAP正确答案:C你选对了5多选(3分)关于NoSQL数据库和关系数据库,下列说法正确的是:A.NoSQL数据库可以支持超大规模数据存储,具有强大的横向扩展能力B.NoSQL数据库和关系数据库各有优缺点,但随着NoSQL的发展,终将取代关系数据库C.大多数NoSQL数据库很难实现数据完整性D.关系数据库有关系代数理论作为基础,NoSQL数据库没有统一的理论基础正确答案:ACD你选对了6多选(3分)NoSQL数据库的类型包括:A.键值数据库B.列族数据库C.文档数据库D.图数据库正确答案:ABCD你选对了7多选(3分)CAP是指:A.一致性B.可用性C.持久性D.分区容忍性正确答案:ABD你选对了8多选(3分)NoSQL数据库的BASE特性是指:A.软状态B.持续性C.最终一致性正确答案:ACD你选对了第6章云数据库1单选(2分)下列Amazon的云数据库属于关系数据库的是:A.Amazon SimpleDBB.Amazon DynamoDBC.Amazon RDSD.Amazon Redshift正确答案:C你选对了2单选(2分)下列关于UMP系统的说法不正确的是:A.Controller服务器向UMP集群提供各种管理服务,实现集群成员管理、元数据存储等功能B.Agent服务器部署在运行MySQL进程的机器上,用来管理每台物理机上的MySQL实例C.UMP系统是低成本和高性能的MySQL云数据库方案D.Mnesia是UMP系统的一个组件,是一个分布式数据库管理系统,且不支持事务正确答案:D你选对了3多选(3分)UMP依赖的开源组件包括A.LVSB.ZooKeeperC.MnesiaD.RabbitMQ正确答案:ABCD你选对了4多选(3分)在UMP系统中,Zookeeper主要发挥的作用包括:A.监控所有MySQL实例B.负责集群负载均衡C.提供分布式锁,选出一个集群的“总管”D.作为全局的配置服务器正确答案:ACD你选对了UMP系统设计了哪些机制来保证数据安全:A.记录用户操作日志B.数据访问IP白名单C.SSL数据库连接D.SQL拦截正确答案:ABCD你选对了第7章 MapReduce1单选(2分)下列说法错误的是:A.Map函数将输入的元素转换成<key,value>形式的键值对B.Hadoop框架是用Java实现的,MapReduce应用程序则一定要用Java来写C.MapReduce框架采用了Master/Slave架构,包括一个Master和若干个SlaveD.不同的Map任务之间不能互相通信正确答案:B你选对了2单选(2分)在使用MapReduce程序WordCount进行词频统计时,对于文本行“hello hadoop hello world”,经过WordCount程序的Map函数处理后直接输出的中间结果,应该是下面哪种形式:A.<"hello",1,1>、<"hadoop",1>和<"world",1>B.<"hello",2>、<"hadoop",1>和<"world",1>C.<"hello",<1,1>>、<"hadoop",1>和<"world",1>D.<"hello",1>、<"hello",1>、<"hadoop",1>和<"world",1>正确答案:D你选对了3单选(2分)对于文本行“hello hadoop hello world”,经过WordCount的Reduce函数处理后的结果是:A.<"hello",<1,1>><"hadoop",1><"world",1>B.<"hello",1><"hello",1><"hadoop",1><"world",1>C.<"hello",1,1><"hadoop",1><"world",1>D.<"hello",2><"hadoop",1><"world",1>正确答案:B你选对了4多选(3分)下列关于传统并行计算框架(比如MPI)和MapReduce并行计算框架比较正确的是:A.前者所需硬件价格贵,可扩展性差,后者硬件便宜,扩展性好C.前者是共享式(共享内存/共享存储),容错性差,后者是非共享式的,容错性好D.前者适用于实时、细粒度计算、计算密集型,后者适用于批处理、非实时、数据密集型正确答案:ABCD你选对了5多选(3分)MapReduce1.0的体系结构主要由哪几个部分组成:A.JobTrackerB.TaskTrackerC.ClientD.Task正确答案:ABCD你选对了第8章 Hadoop再探讨1单选(2分)下列说法正确的是:A.HDFS HA可用性不好B.第二名称节点是热备份C.HDFS HA提供高可用性,可以实现可扩展性、系统性能和隔离性D.第二名称节点无法解决单点故障问题正确答案:D你选对了2单选(2分)HDFS Federation设计不能解决“单名称节点”存在的哪个问题:A.单点故障问题B.HDFS集群扩展性C.性能更高效D.良好的隔离性正确答案:A你选对了3多选(3分)下列哪些是Hadoop1.0存在的问题:A.抽象层次低B.表达能力有限C.开发者自己管理作业之间的依赖关系正确答案:ABCD你选对了4多选(3分)下列对Hadoop各组件的理解正确的是:A.Oozie:工作流和协作服务引擎B.Pig:处理大规模数据的脚本语言C.Kafka:分布式发布订阅消息系统D.Tez:支持DAG作业的计算框架正确答案:ABCD你选对了5多选(3分)对新一代资源管理调度框架YARN的理解正确的是:A.YARN既是资源管理调度框架,也是一个计算框架B.MapReduce2.0是运行在YARN之上的计算框架,由YARN来为MapReduce提供资源管理调度服务C.YARN可以实现“一个集群多个框架”,即在一个集群上部署一个统一的资源调度管理框架D.YARN的体系结构包含三个组件:ResourceManager,NodeManager,ApplicationMaster正确答案:BCD你选对了第9章数据仓库Hive1单选(2分)下列有关Hive和Impala的对比错误的是:A.Hive与Impala中对SQL的解释处理比较相似,都是通过词法分析生成执行计划B.Hive与Impala使用相同的元数据C.Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询D.Hive在内存不足以存储所有数据时,会使用外存,而Impala也是如此正确答案:D你选对了2单选(2分)下列关于Hive基本操作命令的解释错误的是:A.create table if not exists usr(id bigint,name string,age int);//如果usr表不存在,创建表usr,含三个属性id,name,ageB.load data local inpath ‘/usr/local/data’ overwrite into table usr; //把目录’/usr/local/data’下的数据文件中的数据以追加的方式装载进usr表C.create database userdb;//创建数据库userdbusr表的age大于10的数据并覆盖student表中原有数据正确答案:B你选对了3多选(3分)下列说法正确的是:A.Impala和Hive、HDFS、HBase等工具可以统一部署在一个Hadoop平台上B.数据仓库Hive不需要借助于HDFS就可以完成数据的存储C.Hive本身不存储和处理数据,依赖HDFS存储数据,依赖MapReduce处理数据D.HiveQL语法与传统的SQL语法很相似正确答案:ACD你选对了4多选(3分)Impala主要由哪几个部分组成:A.HiveB.ImpaladC.State StoreD.CLI正确答案:BCD你选对了5多选(3分)以下属于Hive的基本数据类型是:A.BINARYB.STRINGC.FLOATD.TINYINT正确答案:ABCD你选对了第10章 Spark1单选(2分)Spark SQL目前暂时不支持下列哪种语言:A.PythonB.JavaC.ScalaD.Lisp2单选(2分)RDD操作分为转换(Transformation)和动作(Action)两种类型,下列属于动作(Action)类型的操作的是:A.groupByB.filterC.countD.map正确答案:C你选对了3单选(2分)下列说法错误的是:A.在选择Spark Streaming和Storm时,对实时性要求高(比如要求毫秒级响应)的企业更倾向于选择流计算框架StormB.RDD采用惰性调用,遇到“转换(Transformation)”类型的操作时,只会记录RDD生成的轨迹,只有遇到“动作(Action)”类型的操作时才会触发真正的计算C.Spark支持三种类型的部署方式:Standalone,Spark on Mesos,Spark on YARND.RDD提供的转换接口既适用filter等粗粒度的转换,也适合某一数据项的细粒度转换正确答案:D你选对了4单选(2分)下列关于常见的动作(Action)和转换(Transformation)操作的API解释错误的是:A.filter(func):筛选出满足函数func的元素,并返回一个新的数据集B.map(func):将每个元素传递到函数func中,并将结果返回为一个新的数据集C.count():返回数据集中的元素个数D.take(n):返回数据集中的第n个元素正确答案:D你选对了5单选(2分)下列大数据处理类型与其对应的软件框架不匹配的是:A.复杂的批量数据处理:MapReduceB.基于历史数据的交互式查询:ImpalaC.基于实时数据流的数据处理:StormD.图结构数据的计算:Hive正确答案:D你选对了6多选(3分)A.OracleB.HadoopC.StormD.Spark正确答案:ABC你选对了7多选(3分)Spark的主要特点包括:A.运行模式多样B.运行速度快C.通用性好D.容易使用正确答案:ABCD你选对了8多选(3分)下列关于Scala的说法正确的是:A.Scala运行于Java平台,兼容现有的Java程序B.Scala具备强大的并发性,支持函数式编程C.Scala是一种多范式编程语言D.Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言正确答案:ABCD你选对了9多选(3分)Spark的运行架构包括:A.运行作业任务的工作节点 Worker NodeB.每个工作节点上负责具体任务的执行进程 ExecutorC.每个应用的任务控制节点 DriverD.集群资源管理器 Cluster Manager正确答案:ABCD你选对了第11章流计算1单选(2分)流计算秉承一个基本理念,即数据的价值随着时间的流逝而,如用户点击流:A.降低C.不变D.升高正确答案:A你选对了2单选(2分)Hadoop运行的是MapReduce任务,类似地,Storm运行的任务叫做A.SpoutB.BoltC.TupleD.Topology正确答案:D你选对了3多选(3分)对于一个流计算系统来说,它应达到如下哪些需求:A.海量式B.高性能C.分布式D.实时性正确答案:A、B、C、D你选对了4多选(3分)数据采集系统的基本架构包括哪些部分:A.ControllerB.StoreC.AgentD.Collector正确答案:B、C、D你选对了5多选(3分)以下哪些是开源的流计算框架:A.Facebook PumaB.Yahoo! S4C.IBM InfoSphere StreamsD.Twitter Storm正确答案:B、D你选对了6多选(3分)A.按照字段分组B.广播发送C.随机分组D.全局分组正确答案:A、B、C、D你选对了第12章 Flink1单选(2分)以下哪个不是Flink的优势:A.同时支持高吞吐、低延迟、高性能B.不支持增量迭代C.同时支持流处理和批处理D.支持有状态计算正确答案:B你选对了2单选(2分)在Flink中哪个是基于批处理的图计算库:A.SQL&Table库B.FlinkMLC.GellyD.CEP正确答案:C你选对了3多选(3分)下面关于Flink的说法正确的是:A.Flink起源于Stratosphere 项目,该项目是在2010年到2014年间由柏林工业大学、柏林洪堡大学和哈索普拉特纳研究所联合开展的B.Flink可以同时支持实时计算和批量计算C.Flink不是Apache软件基金会的项目D.Flink是Apache软件基金会的5个最大的大数据项目之一正确答案:A、B、D你选对了4多选(3分)Flink的主要特性包括:B.批流一体化C.精密的状态管理D.事件时间支持正确答案:A、B、C、D你选对了5多选(3分)下面论述正确的是:A.Spark Streaming通过采用微批处理方法实现了高吞吐和容错性,但是牺牲了低延迟和实时处理能力B.Storm虽然可以做到低延迟,但是无法实现高吞吐,也不能在故障发生时准确地处理计算状态C.流处理架构需要具备低延迟、高吞吐和高性能的特性,而目前从市场上已有的产品来看,只有Flink 可以满足要求D.Flink实现了Google Dataflow流计算模型,是一种兼具高吞吐、低延迟和高性能的实时流计算框架,并且同时支持批处理和流处理正确答案:A、B、C、D你选对了6多选(3分)Flink常见的应用场景包括:A.数据流水线应用B.事件驱动型应用C.地图应用D.数据分析应用正确答案:A、B、D你选对了7多选(3分)Flink核心组件栈分为哪三层:A.物理部署层B.Runtime核心层C.Core层D.API&Libraries层正确答案:A、B、D你选对了8多选(3分)Flink有哪几种部署模式:A.运行在GCE(谷歌云服务)和EC2(亚马逊云服务)上B.YARN集群模式D.Local模式正确答案:A、B、C、D你选对了9多选(3分)Flink系统主要由两个组件组成,分别为:A.JobManagerB.JobSchedulerC.TaskSchedulerD.TaskManager正确答案:A、D你选对了10多选(3分)在编程模型方面,Flink 提供了不同级别的抽象,以开发流或批处理作业,主要包括哪几个级别的抽象:A.DataStream API(有界或无界流数据)以及 DataSet API(有界数据集)B.Table APIC.状态化的数据流接口D. SQL正确答案:A、B、C、D你选对了第13章图计算1单选(2分)Pregel是一种基于模型实现的并行图处理系统:A.TSPB.STPC.BSPD.SBP正确答案:C你选对了2单选(2分)谷歌在后Hadoop时代的新“三驾马车”不包括:A.CaffeineB.DremelC. PregelD.Hama正确答案:D你选对了3多选(3分)下列哪些是以图顶点为中心的,基于消息传递批处理的并行图计算框架:B.GiraphC.PregelD.Neo4j正确答案:A、B、C你选对了4多选(3分)以下关于Pregel图计算框架说法正确的是:A.通常只对满足交换律和结合律的操作才会开启Combiner功能B.Pregel采用检查点机制来实现容错C.对于全局拓扑改变,Pregel采用了惰性协调机制D.Aggregator提供了一种全局通信、监控和数据查看的机制正确答案:A、B、C、D你选对了第14章大数据在不同领域的应用1单选(2分)下列说法错误的是:A.ItemCF算法推荐的是那些和目标用户之前喜欢的物品类似的其他物品B.基于用户的协同过滤算法(简称UserCF算法)是目前业界应用最多的算法erCF算法推荐的是那些和目标用户有共同兴趣爱好的其他用户所喜欢的物品erCF算法的推荐更偏向社会化,而ItemCF算法的推荐更偏向于个性化正确答案:B你选对了2多选(3分)推荐方法包括哪些类型:A.专家推荐B.协同过滤推荐C.基于内容的推荐D.基于统计的推荐正确答案:A、B、C、D你选对了期末试卷1单选(2分)数据产生方式的变革主要经历了三个阶段,以下哪个不属于这三个阶段:A.运营式系统阶段B.感知式系统阶段C.数据流阶段D.用户原创内容阶段正确答案:C你选对了2单选(2分)第三次信息化浪潮的发生标志是以下哪种技术的普及:A.互联网B.CPUD.个人计算机正确答案:C你选对了3单选(2分)在Flink中哪个是基于批处理的图计算库:A.SQL&Table库B.CEPC. GellyD. FlinkML正确答案:C你选对了4单选(2分)Hadoop的两大核心是和A.MapReduce; HBaseB. HDFS; HBaseC.HDFS; MapReduceD.GFS; MapReduce正确答案:C你选对了5单选(2分)HDFS默认的一个块大小是A.64MBB.8KBC. 32KBD.16KB正确答案:A你选对了6单选(2分)在分布式文件系统HDFS中,负责数据的存储和读取:A.数据节点B.第二名称节点C.名称节点D.主节点正确答案:A你选对了7单选(2分)上传当前目录下的本地文件file.txt到分布式文件系统HDFS的“/path”目录下的Shell命令是:A.hdfs dfs -put /path file.txtB.hadoop dfs -put /path file.txtC.hdfs fs -put file.txt /pathD.hdfs dfs -put file.txt /path正确答案:D你选对了8单选(2分)在HDFS根目录下创建一个文件夹/test,且/test文件夹内还包含一个文件夹dir,正确的shell命令是:A.hadoop fs -mkdir -p /test/dirB.hdfs fs -mkdir -p /test/dirC.hadoop dfs -mkdir /test/dir正确答案:A你选对了9单选(2分)下列有关HBase的说法正确的是:A.在向数据库中插入记录时,HBase和关系数据库一样,每次都是以“行”为单位把整条记录插入数据库B.HBase是针对谷歌BigTable的开源实现,是高可靠、高性能的图数据库C.HBase是一种NoSQL数据库D.HBase数据库表可以设置该表任意列作为索引正确答案:C你选对了10单选(2分)已知一张表student存储在HBase中,向表中插入一条记录{id:2015001,name:Mary,{score:math}:88},其id 作为行键,其中,在插入数学成绩88分时,正确的命令是:A.put 'student','score:math','88'B.put 'student','2015001','score:math','88'C.put 'student','2015001','math','88'D.put 'student','2015001','88'正确答案:B你选对了11单选(2分)NoSQL数据库的三大理论基石不包括:A.ACIDB.最终一致性C.BASED.CAP正确答案:A你选对了12单选(2分)在设计词频统计的MapReduce程序时,对于文本行“hello bigdata hello hadoop”,经过map函数处理后直接输出的结果应该是(没有发生combine和merge操作):A.<"hello",1,1>、<"bigdata",1>和<"hadoop",1>B. <"hello",<1,1>>、<"bigdata",1>和<"hadoop",1>C.<"hello",2>、<"bigdata",1>和<"hadoop",1>D.<"hello",1>、<"hello",1>、<"bigdata",1>和<"hadoop",1>正确答案:D你选对了13单选(2分)假设已经配置好PATH环境变量,启动Hadoop的命令是:A.start-hdfs.shB.start-fs.shC.start-dfs.shD.start-hadoop.sh正确答案:C你选对了14单选(2分)下列说法错误的是:A.HDFS Federation使得HDFS的命名服务能够水平扩展B.第二名称节点是热备份,而HDFS HA不是热备份。
(完整版)大数据技术原理与应用林子雨版课后习题答案
![(完整版)大数据技术原理与应用林子雨版课后习题答案](https://img.taocdn.com/s3/m/9b18ea836c85ec3a87c2c5bd.png)
第一章1.试述信息技术发展史上的3次信息化浪潮及具体内容。
2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的4个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪4个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。
7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术。
答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。
11.定义并解释以下术语:云计算、物联网答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。
物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
12.详细阐述大数据、云计算和物联网三者之间的区别与联系。
第二章1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。
《大数据技术原理与应用》林子雨 课后简答题答案
![《大数据技术原理与应用》林子雨 课后简答题答案](https://img.taocdn.com/s3/m/1ceeb380dbef5ef7ba0d4a7302768e9951e76e60.png)
《大数据技术原理与应用》林子雨课后简答题答案第一章大数据概述1. 试述大数据的四个基本特征。
数据量大:人类进入信息社会后,数据以自然方式增长,数据每两年就会增加一倍多。
数据类型繁多:大数据的数据类型非常丰富,包括结构化数据和非结构化数据,如邮件、音频、视频等,给数据处理和分析技术提出了新的挑战。
处理速度快:由于很多应用都需要基于快速生成的数据给出实时分析结果,因此新兴的大数据分析技术通常采用集群处理和独特的内部设计。
价值密度低:有价值的数据分散在海量数据中。
2. 举例说明大数据的关键技术。
大数据技术层面功能数据采集与预处理利用ETL 工具将分布在异构数据源中的数据抽到临时中间层后进行清洗、转换和集成后加载到数据仓库中,成为联机分析处理、数据挖掘的基础,也可以利用日志采集工具(如 Flume、Kafka 等)将实时采集的数据作为流计算系统的输入,进行实时处理分析。
数据存储和管理利用分布式文件系统、NoSQL 数据库等实现对数据的存储和管理。
数据处理与分析利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析,并进行可视化呈现。
数据安全和隐私保护构建数据安全体系和隐私数据保护体系。
3. 详细阐述大数据、云计算和物联网三者之间的区别与联系区别联系大数据侧重于海量数据的存储、处理与分析,从海量数据中发现价值,服务于生产和生活;云计算旨在整合和优化各种 IT 资源并通过网络以服务的方式,廉价地提供给用户;物联网的发展目标是实现“ 物物相连”,应用创新是物联网的核心。
从整体上看,大数据、云计算和物联网这三者是相辅相成的。
大数据根植于云计算,大数据分析的很多技术都来自于云计算,云计算的分布式存储和管理系统提供了海量数据的存储和管理能力,分布式并行处理框架MapReduce 提供了数据分析能力。
没有这些云计算技术作为支撑,大数据分析就无从谈起。
物联网的传感器源源不断的产生大量数据,构成了大数据的重要数据来源,物联网需要借助于云计算和大数据技术,实现物联网大数据的存储、分析和处理。
(完整版)大数据技术原理与应用林子雨版课后习题答案
![(完整版)大数据技术原理与应用林子雨版课后习题答案](https://img.taocdn.com/s3/m/9b18ea836c85ec3a87c2c5bd.png)
第一章1.试述信息技术发展史上的3次信息化浪潮及具体内容。
2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的4个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪4个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。
7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术。
答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。
11.定义并解释以下术语:云计算、物联网答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。
物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
12.详细阐述大数据、云计算和物联网三者之间的区别与联系。
第二章1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。
厦门大学-林子雨-大数据技术原理与应用-第11章大数据在互联网领域的应用-Python安装与基本使用
![厦门大学-林子雨-大数据技术原理与应用-第11章大数据在互联网领域的应用-Python安装与基本使用](https://img.taocdn.com/s3/m/7a050b2e5727a5e9856a615f.png)
厦门大学计算机系研究生课程《大数据技术原理与应用》Python的安装与基本使用
Python的安装与基本使用
厦门大学计算机科学系林子雨
E-mail: ziyulin@ 个人主页:/linziyu
一、Windows上的安装与使用
访问官网下载地址:https:///download/releases/2.7.6/,请选择32位安装程序https:///ftp/python/2.7.6/python-2.7.6.msi。
下载并打开安装程序,一路点next,默认安装即可。
安装完成后,我们可以使用其提供的IDE来编写、执行代码。
在开始菜单里的“Python 2.7”下,打开IDLE (Python GUI),点击File->New File,输入如下两行代码:
# coding: utf-8
print "hello world"
接着点击File->Save,保存为hello.py,再点击Run->Run Module,即可看到运行结果。
二、Linux上的安装与使用
Linux系统默认安装了Python,可以直接使用。
通过vim或者文本编辑器写好代码后,在终端中执行python+代码文件位置即可,如假设代码文件位置为: /home/user/hello.py,则打开终端,执行如下代码就可得到运行结果:
cd /home/user
python hello.py
主讲教师:林子雨/linziyu 第1页。
Chapter0-厦门大学-林子雨-大数据技术原理与应用-课程介绍资料
![Chapter0-厦门大学-林子雨-大数据技术原理与应用-课程介绍资料](https://img.taocdn.com/s3/m/2f1f2f9fc77da26925c5b0fc.png)
主讲教师和助教
主讲教师:林子雨
单位:厦门大学计算机科学系 E-mail: ziyulin@ 个人网页:/linziyu 数据库实验室网站:
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
课程特色大 数 据 Fra bibliotek 门搭建起通向“大数据知识空间”的桥梁和纽带 构建知识体系、阐明基本原理 引导初级实践、了解相关应用 为学生在大数据领域“深耕细作”奠定基础、指明方向
《大数据技术原理与应用》
厦门大学计算机科学系
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
内容提要
• 本课程系统介绍了大数据相关知识,共有13章 • 系统地论述了大数据的基本概念、大数据处理架构 Hadoop、分布式文件系统HDFS、分布式数据库HBase、 NoSQL数据库、云数据库、分布式并行编程模型 MapReduce、流计算、图计算、数据可视化以及大数据 在互联网、生物医学和物流等各个领域的应用 • 在Hadoop、HDFS、HBase和MapReduce等重要章节, 安排了入门级的实践操作,让学生更好地学习和掌握大数 据关键技术
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
篇章安排
第一篇:大数据基础篇 第二篇:大数据存储篇 第三篇:大数据处理与分析篇 第四篇:大数据应用篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
第一篇:大数据基础篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
厦门大学林子雨编着
![厦门大学林子雨编着](https://img.taocdn.com/s3/m/380dd7d70029bd64793e2c51.png)
厦门大学林子雨编著《大数据技术原理与应用》教材配套上机练习熟悉Hive的基本操作(版本号:2016年4月15日版本)主讲教师:林子雨厦门大学数据库实验室二零一六年四月目录1作业题目................................................................................................. 错误!未定义书签。
2作业目的................................................................................................. 错误!未定义书签。
3作业性质................................................................................................. 错误!未定义书签。
4作业考核方法......................................................................................... 错误!未定义书签。
5作业提交日期与方式............................................................................. 错误!未定义书签。
6实验平台................................................................................................. 错误!未定义书签。
7实验内容和要求..................................................................................... 错误!未定义书签。
大数据技术原理与应用_厦门大学中国大学mooc课后章节答案期末考试题库2023年
![大数据技术原理与应用_厦门大学中国大学mooc课后章节答案期末考试题库2023年](https://img.taocdn.com/s3/m/05cb9ffc09a1284ac850ad02de80d4d8d15a0106.png)
大数据技术原理与应用_厦门大学中国大学mooc课后章节答案期末考试题库2023年1.数据产生方式的变革主要经历了三个阶段,以下哪个不属于这三个阶段:答案:数据流阶段2.第三次信息化浪潮的发生标志是以下哪种技术的普及:答案:物联网、云计算和大数据3.在Flink中哪个是基于批处理的图计算库:答案:Gelly4.Hadoop的两大核心是和答案:HDFS; MapReduce5.HDFS默认的一个块大小是答案:64MB6.在分布式文件系统HDFS中,负责数据的存储和读取:答案:数据节点7.上传当前目录下的本地文件file.txt到分布式文件系统HDFS的“/path”目录下的Shell命令是:答案:hdfs dfs -put file.txt /path8.在HDFS根目录下创建一个文件夹/test,且/test文件夹内还包含一个文件夹dir,正确的shell命令是:答案:hadoop fs -mkdir -p /test/dir9.下列有关HBase的说法正确的是:答案:HBase是一种NoSQL数据库10.已知一张表student存储在HBase中,向表中插入一条记录{id:2015001,name:Mary,{score:math}:88},其id作为行键,其中,在插入数学成绩88分时,正确的命令是:答案:put 'student','2015001','score:math','88'11.NoSQL数据库的三大理论基石不包括:答案:ACID12.在设计词频统计的MapReduce程序时,对于文本行“hello bigdata hellohadoop”,经过map函数处理后直接输出的结果应该是(没有发生combine 和merge操作):<"hello",1>、<"hello",1>、<"bigdata",1>和<"hadoop",1>13.假设已经配置好PATH环境变量,启动Hadoop的命令是:答案:start-dfs.sh14.下列说法错误的是:答案:第二名称节点是热备份,而HDFS HA不是热备份15.RDD操作包括转换(Transformation)和动作(Action)两种类型,下列RDD操作属于动作(Action)类型的是:答案:collect16.下列关于Hive的说法正确的是:Hive支持批量导入17.大数据的特点包括:答案:数据种类繁多数据量大价值密度低处理速度快18.下列适用于批处理计算的框架有哪些:答案:SparkMapReduce19.下列适用于流计算的框架有哪些:答案:StormSpark Streaming20. Flink核心组件栈分为哪三层:答案:API&Libraries层物理部署层Runtime核心层21.从技术架构上来看,物联网可以分为哪几层:答案:网络层应用层处理层感知层22.HBase需要根据哪些属性来唯一地确定一个单元格(cell)中的某个版本数据:答案:列限定符列族时间戳23.典型的NoSQL数据库的类型包括:答案:图数据库键值数据库列族数据库文档数据库24.CAP是指:答案:一致性可用性分区容忍性25.云计算主要包括哪3种类型:答案:SaaSIaaS26.以下属于流计算的应用有哪些:答案:购物网站的广告推荐实时交通路线推荐27.下列关于图计算产品Pregel的说法正确的是:答案:Pregel是一种基于BSP模型实现的并行图处理系统在每个超步中,每个顶点会根据其接收消息的最大值和自身值比较,来确定自己状态作何种改变当多个顶点的操作请求发生冲突时,Pregel采用局部有序和Handler来解决冲突28.下列哪些是图计算框架Pregel的应用:答案:二分匹配单源最短路径PageRank29.关于Spark的特性说法正确的是:答案:Spark的计算模式也属于MapReduce,但编程模型比Hadoop MapReduce 更灵活Spark基于DAG的任务调度执行机制,要优于Hadoop MapReduce的迭代执行机制Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高30.BASE的基本含义是:答案:基本可用最终一致性软状态31.Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,是基于Java语言开发的,具有很好的跨平台特性。
大数据技术原理与应用 林子雨版 课后习题答案
![大数据技术原理与应用 林子雨版 课后习题答案](https://img.taocdn.com/s3/m/6bced137ce2f0066f43322be.png)
第一章1。
试述信息技术发展史上的3次信息化浪潮及具体内容。
2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的4个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪4个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果.7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术.答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层.11.定义并解释以下术语:云计算、物联网答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源.物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
12.详细阐述大数据、云计算和物联网三者之间的区别与联系。
第二章1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。
(完整版)大数据技术原理与应用林子雨版课后习题答案
![(完整版)大数据技术原理与应用林子雨版课后习题答案](https://img.taocdn.com/s3/m/9b18ea836c85ec3a87c2c5bd.png)
第一章1.试述信息技术发展史上的3次信息化浪潮及具体内容。
2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的4个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪4个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。
7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术。
答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。
11.定义并解释以下术语:云计算、物联网答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。
物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
12.详细阐述大数据、云计算和物联网三者之间的区别与联系。
第二章1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。
大学生mooc大数据技术原理与应用(林子雨)题库答案
![大学生mooc大数据技术原理与应用(林子雨)题库答案](https://img.taocdn.com/s3/m/1ce43d4751e79b8969022675.png)
作者:解忧书店 JieYouBookshop 第1章大数据概述1单选(2分)第三次信息化浪潮的标志是:A.个人电脑的普及B.云计算、大数据、物联网技术的普及C.虚拟现实技术的普及D.互联网的普及正确答案:B你选对了2单选(2分)就数据的量级而言,1PB数据是多少TB?A.2048B.1000C.512D.1024正确答案:D你选对了3单选(2分)以下关于云计算、大数据和物联网之间的关系,论述错误的是:A.云计算侧重于数据分析B.物联网可以借助于云计算实现海量数据的存储C.物联网可以借助于大数据实现海量数据的分析D.云计算、大数据和物联网三者紧密相关,相辅相成正确答案:A你选对了4单选(2分)以下哪个不是大数据时代新兴的技术:A.SparkB.HadoopC.HBaseD.MySQL正确答案:D你选对了每种大数据产品都有特定的应用场景,以下哪个产品是用于批处理的:A.MapReduceB.DremelC.StormD.Pregel正确答案:A你选对了6单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于流计算的:A.GraphXB.S4C.ImpalaD.Hive正确答案:B你选对了7单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于图计算的:A.PregelB.StormC.CassandraD.Flume正确答案:A你选对了8单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于查询分析计算的:A.HDFSB.S4C.DremelD.MapReduce正确答案:C你选对了9多选(3分)数据产生方式大致经历了三个阶段,包括:A.运营式系统阶段B.感知式系统阶段C.移动互联网数据阶段正确答案:ABD你选对了10多选(3分)大数据发展的三个阶段是:A.低谷期B.成熟期C.大规模应用期D.萌芽期正确答案:BCD你选对了11多选(3分)大数据的特性包括:A.价值密度低B.处理速度快C.数据类型繁多D.数据量大正确答案:ABCD你选对了12多选(3分)图领奖获得者、著名数据库专家Jim Gray博士认为,人类自古以来在科学研究上先后经历了哪几种范式:A.计算科学B.数据密集型科学C.实验科学D.理论科学正确答案:ABCD你选对了13多选(3分)大数据带来思维方式的三个转变是:A.效率而非精确B.相关而非因果C.精确而非全面D.全样而非抽样正确答案:ABD你选对了14多选(3分)大数据主要有哪几种计算模式:。
大数据技术原理及应用林子雨版课后习题答案解析
![大数据技术原理及应用林子雨版课后习题答案解析](https://img.taocdn.com/s3/m/ae2524b76f1aff00bed51ea6.png)
第一章1.试述信息技术发展史上的 3 次信息化浪潮及具体内容。
信息化浪潮发生时间标志解决问题代表公司第一次浪潮1980 年前后个人计算机信息处理Intel 、AMD、IBM、苹果、微软、联想、戴尔、惠普等第二次浪潮1995 年前后互联网信息传输雅虎、谷歌、阿里巴巴、百度、腾讯等第三次浪潮2010 年前后物理网、云计信息爆炸将涌现出一批新的算和大数据市场标杆企业2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的 4 个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪 4 个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。
7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:领域大数据的应用金融行业大数据在高频交易、社区情绪分析和信贷风险分析三大金融创新领域发挥重要作用。
汽车行业利用大数据和物联网技术的五人驾驶汽车,在不远的未来将走进我们的日常生活互联网行业借助于大数据技术,可以分析客户行为,进行商品推荐和有针对性广告投放个人生活大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周全的个性化服务。
9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术。
(完整版)大数据技术原理与应用林子雨版课后习题答案
![(完整版)大数据技术原理与应用林子雨版课后习题答案](https://img.taocdn.com/s3/m/9b18ea836c85ec3a87c2c5bd.png)
第一章1.试述信息技术发展史上的3次信息化浪潮及具体内容。
2.试述数据产生方式经历的几个阶段答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。
3.试述大数据的4个基本特征答:数据量大、数据类型繁多、处理速度快和价值密度低。
4.试述大数据时代的“数据爆炸”的特性答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。
5.数据研究经历了哪4个阶段?答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。
6.试述大数据对思维方式的重要影响答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。
7.大数据决策与传统的基于数据仓库的决策有什么区别答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。
大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。
8.举例说明大数据的基本应用答:9.举例说明大数据的关键技术答:批处理计算,流计算,图计算,查询分析计算10.大数据产业包含哪些关键技术。
答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。
11.定义并解释以下术语:云计算、物联网答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。
物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。
12.详细阐述大数据、云计算和物联网三者之间的区别与联系。
第二章1.试述hadoop和谷歌的mapreduce、gfs等技术之间的关系答:Hadoop的核心是分布式文件系统HDFS和MapReduce,HDFS是谷歌文件系统GFS的开源实现,MapReduces是针对谷歌MapReduce的开源实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门大学林子雨编著《大数据技术原理与应用》教材配套上机练习图计算框架Hama的基础操作实践(版本号:2016年1月18日版本)主讲教师:林子雨厦门大学数据库实验室二零一六年一月(版权所有,请勿用于商业用途)目录目录1作业题目 (1)2作业目的 (1)3作业性质 (1)4作业考核方法 (1)5作业提交日期与方式 (1)6作业准备 (1)6.1、Hama计算框架的安装配置 (1)6.2、用Hama计算模型实现寻找最大独立集问题算法 (3)7作业内容 (9)8实验报告 (9)附录1:任课教师介绍 (9)附录2:课程教材介绍 (10)《大数据技术原理与应用》图计算框架Hama基础操作实践上机练习说明主讲教师:林子雨E-mail: ziyulin@ 个人主页:/linziyu1作业题目图计算框架Hama基础操作实践。
2作业目的旨在让学生了解Pregel图计算模型,并学会用Pregel的开源实现Hama实现一些基本操作。
3作业性质课后作业,必做,作为课堂平时成绩。
4作业考核方法提交上机实验报告,任课老师根据上机实验报告评定成绩。
5作业提交日期与方式图计算章节内容结束后的下一周周六晚上9点之前提交。
6作业准备请阅读厦门大学林子雨编著的大数据专业教材《大数据技术原理与应用》(官网:/post/bigdata/),了解图计算的概念与意义。
6.1、Hama计算框架的安装配置A pache Hama是Google Pregel的开源实现,与Hadoop适合于分布式大数据处理不同,Hama主要用于分布式的矩阵、graph、网络算法的计算。
简单说,Hama是在HDFS 上实现的BSP(Bulk Synchronous Parallel)计算框架,弥补Hadoop在计算能力上的不足。
(1). 安装好合适版本的jdk和hadoop,并且进行测试,保证他们能用。
(2). 下载hama安装文件,从/downloads.html处下载合适的版本,我当时下的是0.6.4版本的。
(3). 在用户主目录下创建合适的安装目录文件,我这里是在~下创建了hama文件夹作为安装目录,即~/hama为安装目录。
(4). 将下载好的hama-0.6.4.tar.gz拷贝到~/hama中去,并用tar zvxf hama-0.6.4.tar.gz 进行解压。
(5). 进入hama-0.6.4中的conf文件夹,修改hama-env.sh文件,在其中加入java的home路径,即加入:Export JAVA_HOME=/home/wanglianping/java/jdk.1.7.0_91( 6). 修改 hama-site.xml文件,这时hama配置的核心文件,具体内容如下:<configuration><property><name>bsp.master.address</name><value>192.168.91.128:40000</value><description>The address of the bsp master server. Either theliteral string "local" or a host:port for distributed mode</description></property><property><name></name><value>hdfs://192.168.91.128:9000/</value><description>The name of the default file system. Either the literal string"local" or a host:port for HDFS.</description></property><property><name>hama.zookeeper.quorum</name><value>192.168.91.128</value><description>Comma separated list of servers in the ZooKeeper Quorum.For example, ",,".By default this is set to localhost for local and pseudo-distributed modesof operation. For a fully-distributed setup, this should be set to a fulllist of ZooKeeper quorum servers. If HAMA_MANAGES_ZK is set in hama-env.sh this is the list of servers which we will start/stop zookeeper on.</description></property><property><name>hama.zookeeper.property.clientPort</name><value>2181</value></property></configuration>其中,bsp.master.address即bsp中的BSPMaster的地址和端口。
这个值要特别注意,是hadoop中nameNode的地址和端口,因为hama要用到hadoop的hdfs 分布式文件系统。
剩下的俩个是zookeeper的相关配置。
(7).另外,在conf文件夹下还有一个groomservers文件,这个在分布式环境下配置groomserver的地址,在单机模式下就不用配置了,里面默认值为localhost。
同时,你也可以在~/.bashrc中添加hama的环境变量,这样每次启动就不同转到相应的目录下去了。
(8). 启动hadoop,并验证是否启动成功。
命令:HADOOP_HOME/bin/start-all.sh,如果启动成功,如下:启动hama,命令:HAMA_HOME/bin/start-bspd.sh,结果如下:出现上述结果,则表明hama已经成功启动。
6.2、用Hama计算模型实现寻找最大独立集问题算法(1). 本算法参考Luby's classic parallel algorithm《a simple parallel algorithm for maximal independent set problem》,把顶点分为三类:1) S:The MIS being constructed. Starts empty and grows in iterations.2) NotInS: Vertices that have at least one edge to a vertex in S and as a result cannot be in S.3) Unknown: Vertices that do not have an edge to any vertex in S but are not yet in S. (2).Hama模型下MIS(Maximal Independent Set)算法描述。
1)初始时,把所有顶点的value值赋值为自己的vertexID,表明初始所有顶点均在UnKnown 集合中,然后把自己的VertexID发送给邻接顶点。
2) 若顶点u的VertexID比自己所有邻接顶点都小,则该顶点进入S 集合中,并发送neighbor-in-set 消息给所有邻接顶点,通知它们退出Unknown集合进入到NotInS集合中,并最后把u置为InActive状态;否则,顶点u继续保持UnKnown状态。
3) S集合中顶点的邻接顶点收到neighbor-in-set 消息,则该顶点进入NotInS,并且设置为Inactive状态。
返回继续迭代,直到UnKnown集合为空。
(3). 程序中按照顶点value取值不同来区分顶点的类别,具体如下:1) value 等于vertexID ,表示顶点在Unknown 集合中;2) value 等于-1 ,表示顶点在S 集合中3) value 等于-2 ,表示顶点在NotInS 集合中。
当所有顶点进入S或者NotInS集合中,就停止计算,表明已找到一个MIS。
源码如下:package graph.mis;import java.io.IOException;import java.util.Iterator;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hama.HamaConfiguration;import org.apache.hama.bsp.HashPartitioner;import org.apache.hama.bsp.TextInputFormat;import org.apache.hama.bsp.TextOutputFormat;import org.apache.hama.graph.Edge;import org.apache.hama.graph.GraphJob;import org.apache.hama.graph.Vertex;import org.apache.hama.graph.VertexInputReader;public class FindMIS {public static class MISVertex extendsVertex<LongWritable, NullWritable, LongWritable> {@Overridepublic void compute(Iterator<LongWritable> messages) throws IOException {if (getSuperstepCount() == 0) {setValue(getVertexID());sendMessageT oNeighbors(getValue());} else {if(getValue().get()==-2) {voteToHalt();} else {boolean revMsg = false;while (messages.hasNext()) {revMsg = true;long msg = messages.next().get();if (msg == -2) {setValue(new LongWritable(-2));voteToHalt();return;} else if (msg < getValue().get()) {return;}}if (revMsg) {setValue(new LongWritable(-1));sendMessageT oNeighbors(new LongWritable(-2));voteToHalt();} else {sendMessageT oNeighbors(getValue());}}}}}public static class MISTextReader extendsVertexInputReader<LongWritable, Text, LongWritable, NullWritable, LongWritable> { @Overridepublic boolean parseVertex(LongWritable key, Text value,Vertex<LongWritable, NullWritable, LongWritable> vertex)throws Exception {String[] split = value.toString().split("\t");for (int i = 0; i < split.length; i++) {if (i == 0) {vertex.setVertexID(new LongWritable(Long.parseLong(split[i])));} else {vertex.addEdge(new Edge<LongWritable, NullWritable>(new LongWritable(Long.parseLong(split[i])), null));}}return true;}}public static void main(String[] args) throws IOException,InterruptedException, ClassNotFoundException {if (args.length < 2) {System.err.println("Usage: <input> <output>");System.exit(-1);}HamaConfiguration conf = new HamaConfiguration(new Configuration());GraphJob pageJob = new GraphJob(conf, FindMIS.class);pageJob.setJobName("Find a MIS");pageJob.setMaxIteration(30);pageJob.setVertexClass(MISVertex.class);pageJob.setInputPath(new Path(args[0]));pageJob.setOutputPath(new Path(args[1]));pageJob.setVertexIDClass(LongWritable.class);pageJob.setVertexValueClass(LongWritable.class);pageJob.setEdgeValueClass(NullWritable.class);pageJob.setInputKeyClass(LongWritable.class);pageJob.setInputValueClass(Text.class);pageJob.setInputFormat(T extInputFormat.class);pageJob.setVertexInputReaderClass(MISTextReader.class);pageJob.setPartitioner(HashPartitioner.class);pageJob.setOutputFormat(TextOutputFormat.class);pageJob.setOutputKeyClass(Text.class);pageJob.setOutputValueClass(LongWritable.class);pageJob.waitForCompletion(true);}}(4). 运行过程分析。