子集、全集、补集练习题及答案(精)

合集下载

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

子集真子集补集

子集真子集补集

1.2子集、全集、补集1.子集的概念:如果集合A 中的任意一个元素都是集合B 中的元素(若a A ∈,则a B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇,. B A ⊆还能够用Venn 图表示. 我们规定:A ∅⊆.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即A A ⊆.⑵子集具有传递性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B⑴规定:空集是任何非空集合的真子集.⑵如果A B, B C ,那么A C3.两个集合相等:如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =.4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 能够看作一个全集(Universal set ),全集通常记作U.5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集 (complementary set ), 记作:S A (读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且 补集的Venn 图表示:[预习自测]例1.判断以下关系是否准确:⑴{}{}a a ⊆; ⑵{}{}1,2,33,2,1=; ⑶{}0∅⊆; ⑷{}00∈; ⑸{}0∅∈; ⑹{}0∅=; 例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d 的值(用a 表示). A BS A S A AUC U A例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.二.例题例1.判断下列说法是否准确,说明理由.(1) a ⊆{,}a b ;(2) {}a ⊆{,}a b ; (3) {,}b a ⊆{,}a b(4) ∅⊆{,}a b ; (5) {}b ∈{,}a b ; (6) {,,}a b c {,}a c例2.已知2{20}A x x =+<,2{2}B x y x ==+,2{2}C y y x ==+{M x y ==,说出四个集合之间的关系?例2.写出集合{1,0,1}-的所有子集.例3.不等式组210360x x ->⎧⎨-≤⎩的解集为A ,求A 及R C A三.课堂练习1.已知集合M 满足{1,2}⊆M ⊆{1,2,3,4},写出集合M .2.已知集合{1,2,4,7}U =,{1,}A a =,{2,4}B =,若U B C A =,求a .3.集合{14}U x x =-<,集合2{1}A x x =<,求U C A四.课后作业1.下列关系:①∅⊆{}a ;②{}{,}a a b ∈;③∅ {}a ;④∅⊆∅,其中正确的符号为________2.已知集合{1,2,3,4}U =,{1,7}A =,则U C A =___________3.若2{1,2},{0}A B x x ax b =-=++=,且A B =,则______a b -=4.若{1,2,3,4,5},{1,3,4}U A ==,B U C A ,则集合B 的个数为_____5.若{02}A x x =<≤,分别求出当全集U 为下列集合时的U C A :(1) U R =; U C A =____________ (2) {1}U x x =≥- U C A =____________ (3) {03}U x x =≤≤ U C A =____________6. 若2{2,4,3},{2,2}U x M x x =-=-+,且{1}U C M =,求x 的值.7.已知集合{0,2,4,6},{3,1,1,3,5},{1,0,2}U U A C A C B ==--=-, 求集合B .作业:1. 下列关系①}{103≤⊆x x ;②Q ∈3;③(){()}{3,2,1=+∈y x y x ;④Φ}{π≥⊆x x 中,一定成立的有2. 已知}{3〉=x x A ,则=A C R 3. 已知全集{}3,2,1=U ,且{}2=A C U ,则A 的真子集有 个 4. 已知集合{}{}m mm +---⊂≠2,2,10,2,则实数=m5. 满足{}{}9,7,5,3,13,1⊆⊂≠A 的集合A 个数是6. 若(){}()⎭⎬⎫⎩⎨⎧====∈1,,,,,x y y x B x y y x A R y x ,则A 、B 的关系是 7.设{}=⎭⎬⎫⎩⎨⎧≥-=〉==A C x x B x x A R U U 则,021,1, ,=B C U 8.已知全集{}{}{}5,7,2,32,3,22=-=--=A C a A a a U U ,则实数a 的值是 9.设集合{}{},,21,1,,3,1A B a B a A ⊆-==且求a 的值。

《子集、全集、补集》2

《子集、全集、补集》2

江苏高中数学(必修1)第一章《集合》课时强化训练三——《子集、全集、补集》②一.填空题1.已知M={x|x≥22,x∈R},a=π,给定下列关系:①a∈M;②{a} M;③a M;④{a}∈M,其中正确的是________(填序号).2.已知集合A {2,3,7},且A中至多有1个奇数,则这样的集合共有________个3.设集合A={2,x,y},B={2x,y2,2},且A=B,则x+y的值为________.4.已知非空集合P满足:①P⊆{1,2,3,4,5},②若a∈P,则6-a∈P,符合上述条件的集合P的个数是________.5.集合M={x|x=6-2n,n∈N+,x∈N}的子集有________个.6.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则实数a的取值是________.7.已知集合A={x|0<x<2,x∈Z},B={x|x2+4x+4=0},C={x|ax2+bx+c=0},若A⊆C,B⊆C,则a∶b∶c等于________.8.已知集合A={-1,2},B={x|x2-2ax+b=0},若B≠∅,且B A,则实数a,b的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N;②{0}⊆Z;③∅⊆{1,2};④Q R.10.集合A={x|0≤x<3且x∈Z}的真子集的个数是________.11.设集合M={x|-1≤x<2},N={x|x-k≤0},若M⊆N,则k的取值范围是________.12.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.二.解答题13.已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z}.试确定M,N,P之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.课时强化训练三《子集、全集、补集》②参考答案一.填空题1. 解析:a ∈M 显然成立,从而{a } M 也成立,③中元素与集合之间的关系不应用“ ”符号,④中集合与集合之间的关系不应用“∈”符号,故①②正确.答案:①②2.解析:(1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 答案:63.解析:因为A =B ,所以⎩⎪⎨⎪⎧ y =y 2,x =2x ,或⎩⎪⎨⎪⎧ x =y 2,y =2x ,解得⎩⎪⎨⎪⎧ x =0,y =0,或⎩⎪⎨⎪⎧x =0,y =1,或⎩⎨⎧x =14,y =12.经检验,当⎩⎪⎨⎪⎧x =0,y =0,时, A ={2,0,0}与集合中元素互异性矛盾,舍去,其余符合题意.所以x +y =1或34.答案:1或344.解析:由a ∈P ,6-a ∈P ,且P ⊆{1,2,3,4,5}可知,P 中元素在取值方面应满足的条件是1,5同时选;2,4同时选;3单独选,可一一列出满足条件的全部集合P 为{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,5,2,4},{1,2,3,4,5}共7个.答案:75.解析:令x ≥0,得6-2n ≥0,∴n ≤3, 又n ∈N +,解得n =1,2,3,∴x =4,2,0.∴集合M ={x |x =6-2n ,n ∈N +,x ∈N }={4,2,0}的子集有23=8个. 答案:86.解析:∵集合A 有且仅有2个子集,∴A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根. 当a =0时,方程化为2x =0, 此时A ={0},符合题意. 当a ≠0时,由Δ=22-4·a ·a =0, 即a 2=1,得a =±1.此时A ={-1},或A ={1},符合题意. 故a =0,或a =±1. 答案:0或±17 解析:由于A ={1},B ={-2}, C ={x |ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则C ={1,-2}.由根与系数的关系得, -b a =-1,ca=-2. ∴a ∶b ∶c =1∶1∶(-2). 答案:1∶1∶(-2)8.解析:∵A ={-1,2},B ≠∅,且B A ,∴B ={-1},或B ={2}. 当B ={-1}时,有 ⎩⎪⎨⎪⎧Δ=(2a )2-4b =0,(-1)2-2a ·(-1)+b =0,解得⎩⎪⎨⎪⎧a =-1,b =1.当B ={2}时,有⎩⎪⎨⎪⎧Δ=(2a )2-4b =0,22-2a ×2+b =0,解得⎩⎪⎨⎪⎧a =2,b =4.综上所述,a =-1,b =1;或a =2,b =4. 答案:a =-1,b =1或a =2,b =49.解析:元素与集合之间为从属关系,集合与集合之间为包含关系,由于{0}⊆N ,Q ⊆R ,故①④不正确,②③正确.答案:②③10.解析:A ={x |0≤x <3且x ∈Z }={0,1,2},所以其真子集的个数是23-1=7. 答案:711.解析:N ={x |x ≤k },又M ⊆N ,所以k ≥2. 答案:k ≥212.解析:∵B ⊆A ,∴4∈A ,∴m =4. 答案:4 二.解答题13.解:集合M ={x |x =m +16,m ∈Z }.关于集合N :①当n 是偶数时,令n =2m (m ∈Z ).N ={x |x =m -13,m ∈Z }.②当n 是奇数时,令n =2m +1(m ∈Z ).N ={x |x =2m +12-13,m ∈Z }={x |x =m +16,m ∈Z }.从而,得M N .关于集合P :①当p =2m (m ∈Z )时,P ={x |x =m +16,m ∈Z }.②当p =2m -1(m ∈Z )时,P ={x |x =2m -12+16,m ∈Z }={x |x =m -13,m ∈Z }.从而,得N =P .总之,M N =P .14.解:(1)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,可得2≤m ≤3. 综上所述,m ≤3时有B ⊆A .(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}. ∴A 的非空真子集个数为:28-2=254. (3)∵x ∈R ,且A ={x |-2≤x ≤5}. B ={x |m +1≤x ≤2m -1},又不存在元素x ,使x ∈A 与x ∈B 同时成立. 则①若B =∅,即m +1>2m -1, 得m <2时满足条件.②若B ≠∅,则要满足的条件有: ⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解之得m >4. 综上,当m <2或m >4时满足条件.15.解:因为B 是A 的子集,所以B ⊆A ,B 的元素必是A 的元素. (1)若x +2=3,则x =1,符合题意; (2)若x +2=-x 3,x 3+x +2=0, 则x 3+1+x +1=0,(x +1)(x 2-x +1)+(x +1)=0, 即(x +1)(x 2-x +2)=0. 因为x 2-x +2≠0, 所以x +1=0,x =-1.此时x +2=1,B 中元素不满足互异性, 所以不符合题设.综上所述,当x =1时, A ={1,3,-1},B ={1,3}.。

集合、子集、全集、补集习题课

集合、子集、全集、补集习题课

6.已知 已知A={x| x2 +x-6=0}, 已知 = , B={x|ax+1 =0},若A ⊇ B, + , , ≠ 求实数a的取值范围 的取值范围. 求实数 的取值范围
7.设全集 设全集U={2,3,a2+2a-3}, 设全集 , , - , A={b,2}, ∁ U A={5},求实数 、b的值 求实数a、 的值 的值. , 求实数
集合、 集合、子集、全集、补集 全集、
习题课
1.已知 ={2,a,b}, 已知M= , , , 已知 N ={2a,பைடு நூலகம்,b2}, , , , M=N, , 求实数a、 的值 的值. 求实数 、b的值
2.设非空数集 满足下列条件: 设非空数集A 满足下列条件: 设非空数集
1 若a ∈A,则 , ∈A,且1 ∉ A. , 1− a
10.设A={x| - 2≤x≤5}, 设 B={x|m+1≤x <2m - 1}. + 的取值范围; (1)若B ⊆A,求实数 的取值范围; ) ,求实数m的取值范围 (2)若x∈R时,没有元素 使x∈A与x∈B ) ∈ 时 没有元素x使 ∈ 与 ∈ 同时成立,求实数m的取值范围 的取值范围. 同时成立,求实数 的取值范围
(1)若2 ∈A,你能求出 中的哪些元 ) ,你能求出A中的哪些元 素? 1 (2)求证:若a ∈A,则 1− ∈A; )求证: ,
a
中至少有三个元素. (3)求证:集合 中至少有三个元素 )求证:集合A中至少有三个元素
3.已知集合 已知集合A 已知集合 ={x|ax2+2x+1=0,a∈R,x∈R}. + = , ∈ , ∈ 中只有一个元素, 的值 的值; (1)若A中只有一个元素,求a的值; ) 中只有一个元素 中至多有一个元素, 的取值 (2)若A中至多有一个元素,求a的取值 ) 中至多有一个元素 范围. 范围

2022-2021年《金版学案》数学·必修1(苏教版)习题:第1章1.2子集、全集、补集

2022-2021年《金版学案》数学·必修1(苏教版)习题:第1章1.2子集、全集、补集

第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2022·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:由于A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x <5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是()A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2022·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:由于U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N之间关系的Venn 图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足() A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a =1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.解析:由于∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1}, 所以∁U A ∁U B . 答案:∁U A ∁U B10.集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若B A ,则实数a 的取值范围是________.解析:分B =∅和B ≠∅两种状况. 答案:{a |a ≤1} 11.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________.解析:由于∅{x |x 2-x +a =0}, 所以方程x 2-x +a =0有实根. 则Δ=1-4a ≥0,所以a ≤14.答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值. 解:由于B ⊆A ,A ≠∅,所以B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a ,所以-1a ∈A ,即有-1a =-2,得a =12.综上所述,a =0或a =12.B 级 力量提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:由于A ={1,2},B ={1,2,3,4},所以C 中必需含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的全部子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16. 答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:由于A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3}, 若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a .由B A ,可知1a =-1或1a =3,即a =-1或a =13.综上可知a 的值为0,-1,13.18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.解:由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3.综上可得a ≥-12.。

高考数学二级结论快速解题:专题01 子集、交集、并集、补集之间的关系式(解析版)

高考数学二级结论快速解题:专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01子集、交集、并集、补集之间的关系式一、结论1、子集、交集、并集、补集之间的关系式:I I A B A B A A B B A C B C A B I ∩ ∩ (其中I 为全集)(1)当A B 时,显然成立(2)当A B时,venn 图如图所示,结论正确.2、子集个数问题:若一个集合A 含有n (n N )个元素,则集合A 的子集有2n 个,非空子集有21n 个.真子集有21n 个,非空真子集有22n 个.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.二、典型例题(高考真题+高考模拟)1.(2012·湖北·高考(文))已知集合 2|320,,|05,A x x x x R B x x x N ,则满足条件A C B 的集合C 的个数为()A .1B .2C .3D .4【解析】求解一元二次方程,得2|320,|120,A x x x x x x x x R R 1,2 ,易知 |05,1,2,3,4B x x x N .因为A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合 3,4的子集个数,即有224 个,故选D.【反思】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,由于集合元素个数少,也可采用列举法,列出集合C 的所有可能情况,再数个数即可.2.(2021·全国·模拟预测)已知集合 24A x x ,2211B x x a ,若A B B ∩,则实数a 的取值范围是()A . 1,3B .2,3C .1,3D .2,3【答案】B【解析】解不等式2211x a ,得1a x a ,所以 1B x a x a .由A B B ∩,得B A ,画出数轴:242∴214a a,解得23a ﹒故选:B【反思】在利用数轴求B A 包含关系时,特别注意最后答案区间的开闭细节问题;解此类题目时可以遵循两步法原则:①先确定大方向:由B A ,结合数轴242可以得到:214a a注意此时不要把等号写上去,所谓先确定大方向,就是只确定a 与2的大小,1a 与4的大小;②再确定个别点:经过上述步骤再确定214a a 不等式组中等号是否可以取到等号;假设2a ;则由数轴可以观察出几何 24A x x 中左端是开区间;而集合1B x a x a 左端是闭区间,结合数轴假设2a 不成立;同理假设14a ,也不成立;故本题最后得到的关系式为214a a .三、针对训练举一反三1.(2013·福建·高考真题(文))若集合 =1,2,3=1,3,4A B A B ∩,,则的子集个数为A .2B .3C .4D .16【答案】C1,3A B 其子集个数为224 个.2.(2011·安徽·高考真题(理))设集合 1,2,3,4,5,6,A 4,5,6,7,B 则满足S A 且S B ∩的集合S 的个数为A .57B .56C .49D .8【答案】B集合A 的非空子集的个数为62163 个,集合 1,2,3的非空子集的个数为3217 ,所以集合S 的个数为63756 .3.(2022·安徽黄山·一模(文))已知集合 21,S s s n n Z ,3T x x ,则S T ∩的真子集的个数是()A .1B .2C .3D .4【答案】C 【详解】∵ 21,S s s n n Z , 33T x x ,∴ 1,1S T ∩,∴S T ∩的真子集个数为2213 ,故选:C .4.(2022·全国·模拟预测)已知22,1,0,1,3,41{2}|,x A B x ,则 R A B ∩ð的子集的个数为()A .3B .4C .15D .16【答案】D 【详解】由221x ,得:2x ,∴2,{|}2,1,0,1{}R R B x A B x 痧,∴其子集个数为4216 个.故选:D.5.(2022·重庆实验外国语学校一模)已知集合86A x NN x,则集合A 的所有非空子集的个数为()A .5个B .6个C .7个D .8个【答案】C 【详解】由题设,86N x,即8可被6x 整除且60x ,x N ,∴{2,4,5}A ,故集合A 的所有非空子集的个数为3217 .故选:C6.(2021·全国·模拟预测)已知集合2210M x x x ,2,N m m ,若M N M ,则m ()A .-1B .-1或0C .±1D .0或±1【答案】A 【详解】依题意,22101,0,1M x x x .由M N M ,可知:N M ,又2m m ,则1m .故选:A .7.(2021·江西·新余市第一中学模拟预测(理))已知集合2340A x x x ,集合2120B x x a x a ,且A B A ,则实数a 的取值集合为()A . 3,2B . 3,0,2C . 3a aD .32a a a 或【答案】A 【详解】由题意知集合2340=4,1A x x x ,对于方程 2120x a x a ,解得12x a ,21x .因为A B A ,则B A .①当21a 时,即3a 时,B A 成立;②当21a 时,即当3a 时,因为B A ,则24a ,解得2a .综上所述,a 的取值集合为 3,2 .故选:A.8.(2021·全国全国·模拟预测)已知集合2270,Q x x x x N ,且P Q ,则满足条件的集合P 的个数是()A .8B .9C .15D .16【答案】D 【详解】解:27270,0,2Q x x x x N x x x N,所以 0,1,2,3Q ,又P Q ,则满足题意的集合P 的个数为24=16,故选:D .9.(2021·辽宁实验中学二模)已知非空集合A 、B 、C 满足:A B C ∩,A C B ∩.则().A .B CB .A B CC . B C AD .A B A C【答案】C 【详解】解:因为非空集合A 、B 、C 满足:A B C ∩,A C B ,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A B A C .故选:D .10.(2021·湖南·雅礼中学高一期中)定义,,xA B z z xy x A y B y ,设集合0,2A , 1,2B , 1C ,则集合 A B C 的所有子集中的所有元素之和为_________.【答案】72【详解】因为 0,2A , 1,2B ,所以 0,4,5A B ,又因为 1C ,所以 0,8,10A B C ,A B C 的所有子集为: , 0, 8, 10, 0,8, 0,10, 8,10, 0,8,10,所有子集元素之和为81081081081072 .故答案为:7211.(2022·全国·高三专题练习)集合 0,1,2,3,4,5S ,A 是S 的一个子集,当x A 时,若有1x A 且1x A ,则称x 为A 的一个“孤立元素”,那么S 的4元子集中无“孤立元素”的子集个数是__________.【答案】6个【详解】由孤立元素的定义可得:{0S ,1,2,3,4,5}中不含“孤立元素”的集合4个元素有:{0,1,2,3},{0,1,3,4},{0,1,4,5}},{1,2,3,4},{1,2,4,5},{2,3,4,5},所以S 中无“孤立元素”的4个元素的子集A 的个数是6个.故答案为6个.12.(2022·天津西青·高三期末)若集合20,1,2,3,1A B y y x x A ,,则集合B 的所有子集的个数是_________.【答案】16-【详解】由题20,1,2,3,1A B y y x x A ,,逐个代入可得集合B 中21=1,0,3,8y x ,故集合 =1,0,3,8B ,一共有4个元素,故集合B 的所有子集的个数为4216 .故答案为16.13.(2021·江西·模拟预测)设全集U R ,集合 22940A x x x , 2B x a x a .(1)当2a 时,求 U C A B ;(2)若A B A ∩,求实数a 的取值范围.【答案】(1) ,04, (2) 4, (1)解:当2a 时, 02B x x ,212940421042A x x x x x x x x所以 0,4A B 又全集U R所以 ,04,U C A B (2)解:由(1)知,142A x x, 2B x a x a 由A B A ∩可得:A B ,则21224a a a a,解得:4a 所以实数a 的取值范围为:4,a 14.(2021·江西·模拟预测)设全集U R ,集合 21A x a x a ,14644xB x.(1)当1a 时,求()U A B ð;(2)若A B A ∩,求实数a 的取值范围.【答案】(1){|0x x 或3}x (2)1(,)2(1)当1a 时,可得: 20A x x ,又14644xB x={x |-1<x <3},所以U B ð={|1x x 或3}x ,所以()U A B ð={|0x x 或3}x .(2)由A B A ∩,则A ⊆B ,当A = 时,则有21a a ,解得1a ,当A 时,由A ⊆B 可得12131aa a,解得112a .综上,实数a 的取值范围1(,)2.15.(2021·陕西·高新一中高一期中)已知集合2230,{1A x x x B y y ∣∣或3},{21}y C x x m ∣,其中3m .(1)求A B ∩;(2)若 ∩A B C C ,求实数m 的取值范围.【答案】(1){|31}A B x x ∩;(2)(3 ,0].(1)解:∵集合2{|230}{|31}A x x x x x ,{|1B y y 或3}y ,{|31}A B x x ∩.(2)解:{|1A B x x 或3}x ,{|21}C x x m ,其中3m .因为()A B C C ∩,()C A B ,3m ∵,C \蛊,11m ,解得0m ,实数m 的取值范围是(3 ,0].16.(2021·安徽·芜湖一中高一阶段练习)已知集合 25,|1|21A x x B x m x m .(1)当 |25A x Z x 时,求A 的非空真子集的个数;(2)若A B A ,求实数m 的取值范围;(3)若A B ∩,求实数m 的取值范围.【答案】(1){m|m≤3}(2)254(3){m|m<2或m>4}(1)当x∈Z时,A={x∈Z|-2≤x≤5}={-2,-1,0,1,2,3,4,5},共有8个元素,所以A的非空真子集的个数为28-2=254.(2)因为A∪B=A,所以B⊆A,当B=∅时,由m+1>2m-1,得m<2,符合;当B≠∅时,根据题意,可得21112215m mmm,解得2≤m≤3.综上可得,实数m的取值范围是{m|m≤3}.(3)当B=∅时,由(1)知m<2;当B≠∅时,根据题意作出如图所示的数轴,可得211212m mm或21115m mm解得m>4.综上可得,实数m的取值范围是{m|m<2或m>4}.。

专题 子集、全集、补集-重难点题型精讲(举一反三)(苏教版09必修第一册)(解析版)

专题 子集、全集、补集-重难点题型精讲(举一反三)(苏教版09必修第一册)(解析版)

专题1.3 子集、全集、补集-重难点题型精讲1.子集(1)任何一个集合是它本身的子集,即A ⊆A ;2.真子集(1)对于集合A ,B ,C ,若A ⫋B 且B ⫋C ,则A ⫋C ;3.全集如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,全集通常记作U.在实数范围内讨论集合时,R便可看作一个全集U.4.补集(1)A⊆S,∁A⊆S;(2)∁(∁A)=A;(3)∁S=∅,∁∅=S【题型1 子集、真子集的概念】【例1】(2020秋•宁县校级月考)对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A【分析】“A⊆B”不成立,是对命题的否定,任何的反面是至少,即可得到结论.【解答】解:∵“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素,∴不成立的含义是A中至少有一个元素不属于B,故选:C.【点评】本题考查集合的包含关系,考查命题的否定,属于基础题.【变式1-1】(2020秋•海淀区期末)已知集合U={1,2,3,4,5,6},A={1,2,3},集合A与B的关系如图所示,则集合B可能是()A.{2,4,5}B.{1,2,5}C.{1,6}D.{1,3}【分析】根据Venn图表达集合的关系可得集合A与集合B的关系,然后根据选项找符号条件的即可.【解答】解:由图可知B⊆A,而{1,3}⊆{1,2,3}.故选:D.【点评】本题主要考查了集合之间的关系,弄清元素与集合的隶属关系以及集合之间的包含关系是解题的关键.【变式1-2】(2020秋•东湖区校级期中)下列各式:①{a}⊆{a}②Ø⊊{0}③0⊆{0}④{1,3}⊊{3,4},其中正确的有()A.②B.①②C.①②③D.①③④【分析】根据子集,真子集的定义,以及元素与集合的关系即可判断每个式子的正误,从而找到正确选项.【解答】解:任何集合是它本身的子集,∴①正确;空集是任何非空集合的真子集,∴②正确;0表示元素,应为0∈{0∈},∴③错误;1∉{3,4},∴{1,3}不是{3,4}的真子集,∴④错误;∴正确的为①②.故选:B.【点评】考查任何集合和它本身的关系,空集和任何非空集合的关系,以及元素与集合的关系,真子集的定义.【变式1-3】[多选题]下列命题中,正确的有()A.空集是任何集合的真子集;B.若A⫋B,B⫋C,则A⫋C;C.任何一个集合必有两个或两个以上的真子集;D.如果不属于B的元素也不属于A,则A⊆B【分析】根据集合的相关知识,可以进行判断.【解答】解:空集是不是空集的真子集,A 错; 真子集具有传递性,B 对; 空集没有真子集,C 错;如果不属于B 的元素也不属于A ,则A ⊆B ,D 对, 故选:BD .【点评】本题考查集合的相关知识,属于基础题. 【题型2 集合的相等与空集】【例2】(2020秋•雨花区校级月考)[多选题]下列选项中的两个集合相等的有( ) A .P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z } B .P ={x |x =2n ﹣1,n ∈N *},Q ={x |x =2n +1,n ∈N +}C .P ={x |x 2﹣x =0},Q ={x |x =1+(−1)n2,n ∈Z }D .P ={x |y =x +1},Q ={(x ,y )|y =x +1}【分析】利用集合相等的定义和集合中的元素的性质,对各个选项逐个判断即可. 【解答】解:选项A :因为集合P ,Q 表示的都是所有偶数组成的集合,所以P =Q ; 选项B :集合P 中的元素是由1,3,5,…,所有正奇数组成的集合,集合Q 是由3,5,7…,所有大于1的正奇数组成的集合,即1∉Q ,所以P ≠Q ;选项C :集合P ={0,1},集合Q 中:当n 为奇数时,x =0,当n 为偶数时,x =1,所以Q ={0,1},则P =Q ;选项D :集合P 表示的是数集,集合Q 表示的是点集,所以P ≠Q ; 综上,选项AC 表示的集合相等, 故选:AC .【点评】本题考查了集合相等的性质,考查了学生对集合的元素的理解,属于基础题.【变式2-1】(2020秋•五华区校级期中)已知集合A ={1,a ,b },B ={a 2,a ,ab },若A =B ,则a 2021+b 2020=( ) A .﹣1B .0C .1D .2【分析】根据集合元素的互异性得到关于a 的方程组{1=ab b =a 2或{1=a 2b =ab,通过解方程组求得a 、b 的值,则易求a 2021+b 2020的值.【解答】解:由题意得①组{1=ab b =a 2或②{1=a 2b =ab, 由②得a =±1,当a =1时,A ={1,1,b },不符合,舍去; 当a =﹣1时,b =0,A ={1,﹣1,0},B ={﹣1,1,0},符合题意. 由①得a =1,舍去, 所以a =﹣1,b =0. ∴a 2021+b 2020=﹣1. 故选:A .【点评】本题考查了集合相等的应用,注意要验证集合中元素的互异性,属于基础题. 【变式2-2】(2020秋•武邑县校级期末)下列四个集合中,是空集的是( ) A .{x |x +3=3} B .{(x ,y )|y 2=﹣x 2,x ,y ∈R } C .{x |x 2≤0}D .{x |x 2﹣x +1=0,x ∈R }【分析】根据空集的定义,分别对各个选项进行判断即可.【解答】解:根据题意,由于空集中没有任何元素,对于选项A ,x =0; 对于选项B ,(0,0)是集合中的元素; 对于选项C ,由于x =0成立; 对于选项D ,方程无解. 故选:D .【点评】本题考查了集合的概念,是一道基础题.【变式2-3】(2020春•保定期中)如果A ={x |ax 2﹣ax +1<0}=∅,则实数a 的取值范围为( ) A .0<a <4B .0≤a <4C .0<a ≤4D .0≤a ≤4【分析】由A =∅得不等式ax 2﹣ax +1<0的解集是空集,然后利用不等式进行求解. 【解答】解:因为A ={x |ax 2﹣ax +1<0}=∅,所以不等式ax 2﹣ax +1<0的解集是空集, 当a =0,不等式等价为1<0,无解,所以a =0成立. 当a ≠0时,要使ax 2﹣ax +1<0的解集是空集, 则{a >0△=a 2−4a ≤0,解得0<a ≤4.综上实数a 的取值范围0≤a ≤4. 故选:D .【点评】本题主要考查一元二次不等式的应用,将集合关系转化为一元二次不等式是解决本题的关键.【题型3 集合间关系的判断】【例3】(2021春•江油市校级期末)在下列选项中,能正确表示集合A={﹣2,0,2}和B={x|x2+2x=0}关系的是()A.A=B B.A⊆B C.A⊋B D.A⊊B【分析】先求出集合B,然后利用两个集合之间的关系进行判断即可.【解答】解:解方程x2+2x=0,得x=0或x=﹣2,所以B={﹣2,0},又A={1﹣2,0,2},所以A⊋B.故选:C.【点评】本题考查了集合之间关系的判断,属于基础题.【变式3-1】(2021•市中区校级模拟)设集合P={y|y=x2+1),M={x|y=x2+1},则集合M与集合P的关系是()A.M=P B.P∈M C.M⫋P D.P⫋M【分析】由函数得:P={y|y≥1},M=R,即P⫋M,得解【解答】解:因为y=x2+1≥1,即P={y|y≥1},M={x|y=x2+1}=R,所以P⫋M,故选:D.【点评】本题考查了集合的表示及函数,属简单题.【变式3-2】(2020春•九龙坡区校级期中)已知集合A={x|x2﹣2x﹣3≤0},集合B={x||x﹣1|≤3},集合C=≤0},则集合A,B,C的关系为(){x|x−4x+5A.B⊆A B.A=B C.C⊆B D.A⊆C【分析】解出不等式,从而得出集合A,B,C,再根据子集的定义判断A,B,C的关系.【解答】解:∵x2﹣2x﹣3≤0,即(x﹣3)(x+1)≤0,∴﹣1≤x ≤3,则A =[﹣1,3], 又|x ﹣1|≤3,即﹣3≤x ﹣1≤3, ∴﹣2≤x ≤4,则B =[﹣2,4], ∵x−4x+5≤0⇔{(x −4)(x +5)≤0x +5≠0, ∴﹣5<x ≤4,则C =(﹣5,4], ∴A ⊆C ,B ⊆C , 故选:D .【点评】本题主要考查集合间的基本关系的判断,考查一元二次不等式、绝对值不等式、分式不等式的解法,属于基础题.【变式3-3】(2020秋•湖北期中)[多选题]集合M ={x |x =2k ﹣1,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m ∈Z }之间的关系表述正确的有( ) A .S ⊆PB .S ⊆MC .M ⊆SD .P ⊆S【分析】根据题意判断集合M ,P ,S 表示的意义,进行判断. 【解答】解:M ={x |x =2k ﹣1,k ∈Z }表示被2整除余1的数的集合; P ={y |y =3n +1,n ∈Z }表示被3整除余1的数的集合;S ={z |z =6m +1,m ∈Z }={z |z =3×(2m )+1,m ∈Z }={z |z =2×(3m )+1,m ∈Z },表示被6整除余1的集合;故S ⫋P ,S ⫋M .故S ⊆P ,S ⊆M ,正确,即AB 正确. 故选:AB .【点评】本题考查了集合的交集、补集问题,属于基础题. 【题型4 有限集合子集、真子集的确定】【例4】(2020秋•南昌县校级月考)已知集合M ={2,4,8},N ={1,2},P ={x |x =ab ,a ∈M ,b ∈N },则集合P 的子集个数为( ) A .4B .6C .16D .63【分析】由集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},求出集合P,由此能求出集合P的子集个数.【解答】解:集合M={2,4,8},N={1,2},P={x|x=ab,a∈M,b∈N},∴P={1,2,4,8},∴集合P的子集个数为:24=16.故选:C.【点评】本题考查集合的子集个数的求法,考查子集的定义等基础知识,考查运算求解能力,是基础题.【变式4-1】(2020秋•南沙区校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⊆C⊆B的集合C的个数为()A.4B.8C.7D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⊆C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⊆C⊆B的集合C有:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-2】(2020秋•临猗县校级月考)已知集合A={x|x2﹣3x+2=0},B={x|0<x<6,x∈N},则满足A⫋C⊆B的集合C的个数为()A.4B.7C.8D.16【分析】求出集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},由此利用列举法能求出满足A⫋C⊆B的集合C的个数.【解答】解:集合A={x|x2﹣3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5},∴满足A⫋C⊆B的集合C有:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故选:B.【点评】本题考查满足条件的集合的个数的求法,是基础题,解题时要认真审题,注意子集定义、列举法的合理运用.【变式4-3】(2020秋•海曙区校级期中)已知集合A={x|(a﹣1)x2+3x﹣2=0},若A的子集个数为2个,则实数a=.【分析】推导出(a﹣1)x2+3x﹣2=0只有一个实数解,当a﹣1=0时,a=1,(a﹣1)x2+3x﹣2=0即3x﹣2=0,当a﹣1≠0时,(a﹣1)x2+3x﹣2=0只有一个实数根,△=9+8(a﹣1)=0,由此能求出实数a的值.【解答】解:∵集合A={x|(a﹣1)x2+3x﹣2=0},且A的子集个数为2个,∴(a﹣1)x2+3x﹣2=0只有一个实数解,当a﹣1=0时,a=1,(a﹣1)x2+3x﹣2=0即3x﹣2=0,解得x=2 3,当a﹣1≠0时,(a﹣1)x2+3x﹣2=0只有一个实数根,△=9+8(a﹣1)=0,解得a=−1 8.∴实数a的值为1或−1 8.故答案为:1或−1 8.【点评】本题考查实数值的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.【题型5 补集的运算】【例5】(2020秋•湖北期末)设集合U={x|x<5,x∈N*},M={x|x2﹣5x+4=0},则∁U M=()A.{2,3}B.{1,5}C.{1,4}D.{2,3,5}【分析】可求出集合U,M,然后进行补集的运算即可.【解答】解:∵U={1,2,3,4},M={1,4},∴∁U M={2,3}.故选:A.【点评】本题考查了描述法和列举法的定义,补集及其运算,考查了计算能力,属于基础题.【变式5-1】(2020春•烟台期末)已知全集U={0,1,2,3,4},A={1,3,4},B={0,1,2},则图中阴影部分表示的集合为()A.{0}B.{2}C.{0,2}D.{0,2,4}【分析】可知阴影部分表示的集合为∁B(A∩B),从而进行交集和补集的运算即可.【解答】解:A∩B={1},∴∁B(A∩B)={0,2},∴阴影部分表示的集合为{0,2}.故选:C.【点评】本题考查了V enn图表示集合的方法,交集和补集的定义及运算,考查了计算能力,属于基础题.【变式5-2】(2020秋•海淀区校级月考)设集合U={1,2,3,4},M={x∈U|x2﹣5x+p=0},若∁U M={1,4},则p的值为()A.﹣4B.4C.﹣6D.6【分析】由题意推出M中方程的解,然后求出p的值.【解答】解:因为集合U={1,2,3,4},M={x∈U|x2﹣5x+p=0},若∁U M={1,4},所以M={2,3}即2,3是方程的两个根,22﹣5×2+p=0,所以p=6.故选:D.【点评】本题考查集合的补集的运算,考查计算能力.【变式5-3】(2020秋•张家口月考)设全集U={2,4,6,8,a,10},集合A={2,|a﹣6|,10},{6,8}⊆∁U A,则实数a的值是()A.3B.10C.2D.2或10或3【分析】由集合补集的定义得到6∉A,8∉A,则有|a﹣6|=4或|a﹣6|=a,求解即可得到答案.【解答】解:因为全集U={2,4,6,8,a,10},集合A={2,|a﹣6|,10},{6,8}⊆∁U A,所以6∉A,8∉A,则|a ﹣6|=4或|a ﹣6|=a ,解得a =2(舍)或a =10(舍)或a =3,所以实数a 的值是3.故选:A .【点评】本题考查了集合补集的理解和应用,解题时要注意集合元素互异性,考查了逻辑推理能力,属于基础题.【题型6 利用集合间的关系求参数】【例6】(2020秋•南开区校级月考)设集合A ={x |﹣1≤x +1≤6},B ={x |m ﹣1<x <2m +1},若A ⊇B ,则m的取值范围是 .【分析】B ⊆A ,则说明B 是A 的子集,然后分m ≤﹣2和m >﹣2两种情况求出m 的取值范围.【解答】解:∵A ={x |﹣1≤x +1≤6}={x |﹣2≤x ≤5},当m ﹣1≥2m +1,即m ≤﹣2时,B =∅满足B ⊆A .当m ﹣1<2m +1,即m >﹣2时,要使B ⊆A 成立,需 {m −1≥−22m +1≤5,可得﹣1≤m ≤2,即﹣1≤m ≤2, 综上,m ≤﹣2或﹣1≤m ≤2时有B ⊆A .故答案为:{m |m ≤﹣2或﹣1≤m ≤2}.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.【变式6-1】(2020秋•武汉期中)已知关于x 不等式x 2﹣2mx +m +2≤0(m ∈R )的解集为M .(1)[1,2]⊆M ,求实数m 的取值范围;(2)当M 不为空集,且M ⊆[1,4]时,求实数m 的取值范围.【分析】(1)由题意得到关于m 的不等式组,求解不等式组确定实数m 的取值范围即可;(2)由题意分类讨论即可求得实数m 的取值范围.【解答】解:(1)由题意[1,2]⊆M 可知,令 f (x )=x 2﹣2mx +m +2,则{f(1)≤0f(2)≤0△>0,解得:m ≥3.(2)∵M 不为空集,且M ⊆[1,4],当△>0 时,则{ f(1)≥0f(4)≥0△>01≤m ≤4,解得:2≤m ≤187, 当△=0 时,m =2也符合题目要求:综上:2≤m ≤187. 【点评】本题主要考查集合的包含关系,分类讨论的数学思想,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.【变式6-2】(2020秋•南阳期中)集合A ={x |﹣3≤x ≤7},B ={x |m +1≤x ≤2m ﹣1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.【分析】(1)根据B ⊆A 可讨论B 是否为空集:B =∅时,m +1>2m ﹣1;B ≠∅时,{m +1≤2m −1m +1≥−32m −1≤7,解出m 的范围即可;(2)根据题意可知A ∩B =∅,讨论B 是否为空集:B =∅时,m <2;B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,然后解出m 的范围即可.【解答】解:(1)∵B ⊆A ,∴①B =∅时,m +1>2m ﹣1,解得m <2;②B ≠∅时,{m ≥2m +1≥−32m −1≤7,解得2≤m ≤4,综上,实数m 的取值范围为(﹣∞,4];(2)由题意知,A ∩B =∅,①B =∅时,m <2;②B ≠∅时,{m ≥2m +1>7或{m ≥22m −1<−3,解得m >6, ∴实数m 的取值范围为(﹣∞,2)∪(6,+∞).【点评】本题考查了描述法的定义,子集的定义,空集的定义,分类讨论的思想,考查了计算能力,属于基础题.【变式6-3】(2020秋•浙江期中)已知全集U =R ,集合A ={x |﹣1≤x ≤3}.(1)求∁U A ;(2)若集合B ={x |2x ﹣a >0},且B ⊆(∁U A ),求实数a 的取值范围.【分析】(1)由全集U =R ,集合A ={x |﹣1≤x ≤3}.利用补集定义能求出∁U A .(2)由集合B ={x |2x ﹣a >0}={x |x >a 2},且B ⊆(∁U A ),得到a 2≥3,由此能求出实数a 的取值范围. 【解答】解:(1)∵全集U =R ,集合A ={x |﹣1≤x ≤3}.∴∁U A ={x |x <﹣1或x >3}.(2)集合B ={x |2x ﹣a >0}={x |x >a 2},且B ⊆(∁U A ),∴a 2≥3,解得a ≥6. ∴实数a 的取值范围是[6,+∞).【点评】本题考查补集、实数的取值范围的求法,考查补集、子集定义等基础知识,考查运算求解能力,是基础题.。

子集、全集、补集 课时练习-02-2022学年高一上学期苏版(2019)必修第一册:第1章

 子集、全集、补集 课时练习-02-2022学年高一上学期苏版(2019)必修第一册:第1章

1.2子集、全集、补集中等生刷基础题组一子集的概念1.(2020江苏扬州大学附属中学高一期中)已知集合A={x|x≥-1},则下列正确的是()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A2.(2019陕西汉中勉县高一期中)若集合A={x|x为正方形},B={x|x为矩形},C= {x|x为平行四边形},D={x|x为梯形},则下列关系中不正确的是()A.A⊆BB.B⊆CC.C⊆DD.A⊆C3.(2020江苏泰兴中学高一月考)已知集合A={0,2,3},B={x|x=ab,a,b∈A},则B 的子集的个数是()A.10B.12C.14D.164.(2020江苏南京六合高一期中)已知集合A={x|x2-4x+3=0,x∈R},B={x|-1<x<5,x ∈N},则满足A⊆C⊆B的集合C的个数是.题组二真子集的概念5.(2020江苏泰兴黄桥中学高一月考)已知集合C={(x,y)|y=x},集合},则下列正确的是()D={(x,x)|{2x-x=1x+4x=5A.C=DB.C⊆DC.C⫋DD.D⫋C6.(2020江苏常熟中学高一月考)若集合M={x∈N|x≤2},则M的真子集有()A.3个B.4个C.7个D.8个7.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()题组三 全集与补集的概念8.(2020江苏常州前黄高级中学高一月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},则∁U A = ( )A.⌀B.{1,3}C.{4,5,6}D.{1}9.(2020江苏南京江宁高级中学高一月考)已知全集U =R,集合A ={x |x <-2或x >2},则∁U A =( )A.{x |-2<x <2}B.{x |x <-2或x >2}C.{x |-2≤x ≤2}D.{x |x <-2或x ≥2}10.(2020江苏南京江浦高级中学高一月考)设全集A ={1,2,4},B ={x |x 2-4x +m =0},若1∉∁A B ,则B 等于( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}11.不等式组{3x -1≥0,4x -8<0的解集为A ,U =R,试求A 及∁U A ,并把它们分别表示在数轴上.题组四 集合关系中的参数问题12.(2020江苏南京师范大学附属中学高一月考)已知集合A ={x |x =x 2},B ={1,m ,2},若A ⊆B ,则实数m 的值为( )A.2B.0C.0或2D.113.(2020江苏南京田家炳高级中学高一月考)设集合A={3,m,m-1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或614.(2020江苏无锡锡山高级中学高一月考)已知集合A={x|-1≤x≤3},B={y|y=x2,x∈A},C={y|y=2x+a,x∈A},若C⊆B,则实数a的取值范围为.15.已知集合A={x|x2-4=0},集合B={x|ax-2=0},若B⊆A,求实数a的取值集合.尖子生练素养题组一子集、全集、补集1.(多选)(2020江苏无锡怀仁中学高一月考,)已知A⊆B,A⊆C,B={2,0,1,8},C={1,9,3,8},则A可以是()A.{1,8}B.{2,3}C.{1}D.{2}2.(2020江苏南京外国语学校高一月考,)集合A={x|4-|2x-1|∈N*},则A的非空真子集的个数是()A.62B.126C.254D.5103.()集合M={x|x=5k-2,k∈Z},P={x|x=5n+3,n∈Z},S={x|x=10m+3,m∈Z}之间的关系是 ()A.S⫋P⫋MB.S=P⫋MC.S⫋P=MD.P=M⫋S4.(多选)(2020江苏南京师范大学苏州实验学校高一开学考试,)下列说法中不正确的是()A.集合{x|x<1,x∈N}为无限集B.方程(x-1)2(x-2)=0的解构成的集合的所有子集共四个C.{(x,y)|x+y=1}={y|x-y=-1}D.{y|y=2n,n∈Z}⊆{x|x=4k,k∈Z}5.(2020湖南长沙长郡中学高一上期中,)若规定集合M={a1,a2,…,a n}(n∈N*)的子集N={x x1,x x2,…,x xx}(m∈N*)为M的第k个子集,其中k=2x1-1+2x2-1+⋯+2x x-1,例如P={a1,a3}是M的第5个子集,则M的第25个子集是.题组二集合关系中的参数问题6.(2019江苏扬州宝应中学高一期中,)设集合A={-1,1},集合B={x|x2-2ax+1=0},若B≠⌀,B⊆A,则a= ()A.-1B.0C.1D.±17.(多选)(2020江苏宜兴中学高一月考,)已知集合A={-5,2},B={x|mx=1},若B⊆A,则实数m的值可以为()A.-15B.12C.−12D.08.(多选)(2020福建龙岩武平第一中学高一月考,)已知集合A={x|1<x<2},B={x|2a-3<x<a-2},下列说法正确的是()A.不存在实数a使得A=BB.当a=4时,A⊆BC.当0≤a≤4时,B⊆AD.存在实数a使得B⊆A9.(2020江苏扬州江都大桥高级中学高一月考,)已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是.10.(2020江苏徐州第三中学高一月考,)设集合U={-2,1,2,3},A={x|2x2-2},若∁U A=B,则b=.5x+2=0},B={3x,xx11.(2019江苏常州高一月考,)设集合A={x|x2-x-2=0},B={x|ax2+x+2=0},若B⊆A,求实数a的取值范围.12.(2020广西玉林高级中学高一期中,)设集合A={x|x2-1=0},集合B={x|x2-ax+b=0,x∈R},且B≠⌀.(1)若B⊆A,求实数a,b的值;(2)若A⊆C,且集合C={-1,2m+1,m2},求实数m的值.答案全解全析1.2子集、全集、补集中等生刷基础1.D对于选项A,0∈A,故A错误;对于选项B、D,{0}⊆A,故B错误,D正确;对于选项C,空集是任何集合的子集,即⌀⊆A,故C错误.故选D.警示元素与集合之间是“属于”或“不属于”的关系,用符号“∈”或“∉”来表示;集合与集合之间是“包含”或“不包含”的关系,用符号“⊆”或“⊈”来表示.2.C正方形一定是矩形,所以选项A中关系正确;矩形一定是平行四边形,所以选项B中关系正确;梯形不是平行四边形,平行四边形也不是梯形,所以选项C中关系不正确;正方形一定是平行四边形,所以选项D中关系正确.故选C.3.D易知B={x|x=ab,a,b∈A}={0,4,6,9}.因此B的子集的个数是24=16.故选D.4.答案8解析 由x 2-4x +3=(x -3)(x -1)=0,解得x =1或x =3,所以A ={1,3}.易得B ={0,1,2,3,4}.由于A ⊆C ⊆B ,所以C 中元素必有1,3,还可有0,2,4,所以满足条件的集合C 的个数是8.5.D 因为D ={(x ,x )|{2x -x =1x +4x =5}={(1,1)},C ={(x ,y )|y =x },所以D ⫋C.故选D.6.C 根据题意,集合M ={x ∈N|x ≤2}={0,1,2},则其真子集的个数为23-1=7.故选C.规律总结 含有n 个元素的集合有2n 个子集,(2n -1)个真子集,(2n -1)个非空子集,(2n -2)个非空真子集.7.B 由x 2-x =0得x =1或x =0,故N ={0,1},易得N ⫋M ,其对应的Venn 图如选项B 所示.8.D 因为全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},所以∁U A ={1}.故选D. 9.C 已知全集U =R,集合A ={x |x <-2或x >2},所以∁U A ={x |-2≤x ≤2}.故选C. 10.C 因为1∉∁A B ,所以1∈B ,所以1-4+m =0,即m =3,所以B ={x |x 2-4x +3=0}={1,3}. 故选C.11.解析 由{3x -1≥0,4x -8<0,得{x ≥13,x <2,故A ={x |13≤x <2},所以∁U A ={x |x <13或x ≥2}.集合A 及∁U A 在数轴上表示如下:12.B 集合A ={x |x =x 2}={0,1}.因为A ⊆B ,所以m =0.故选B. 13.B 由∁A B ={5},B ={3,4},得4,5∈A , 又A ={3,m ,m -1},m -1<m ,所以m =5.故选B.14.答案 {a |2≤a ≤3}解析 因为A ={x |-1≤x ≤3},所以B ={y |y =x 2,x ∈A }={y |0≤y ≤9},C ={y |y =2x +a ,x ∈A }={y |-2+a ≤y ≤6+a }.又C ⊆B ,C ≠⌀,所以{-2+x ≥0,6+x ≤9,解得2≤a ≤3.所以实数a 的取值范围为{a |2≤a ≤3}.15.解析 解方程x 2-4=0,得x =±2,则集合A ={-2,2}. ①当a =0时,B =⌀⊆A ,符合题意;②当a ≠0时,B ={x |ax -2=0}={2x },∵B ⊆A ,∴2x =−2或2x =2,解得a =-1或a =1.综上,实数a 的取值集合为{0,-1,1}.警示 由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A ⊆B ”或“A ⫋B ”时,一定要注意分A =⌀和A ≠⌀两种情况讨论,不能忽略A =⌀的情形.尖子生练素养1.AC ∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},∴A ⊆{1,8}. 结合选项可知A,C 均满足题意.2.B ∵A ={x |4-|2x -1|∈N *},∴x =2或x =32或x =1或x =12或x =0或x =−12或x =-1,∴A ={2,32,1,12,0,-12,-1},∴A 的非空真子集的个数是27-2=126.故选B.3.C ∵M ={x |x =5k -2,k ∈Z},P ={x |x =5n +3,n ∈Z},S ={x |x =10m +3,m ∈Z},∴M ={…,-7,-2,3,8,13,18,…},P ={…,-7,-2,3,8,13,18,…},S ={…,-7,3,13,23,…},∴S ⫋P =M.故选C .4.ACD 集合{x |x <1,x ∈N}={0},不是无限集,故A 中说法不正确;方程(x -1)2(x -2)=0的解构成的集合为{1,2},所有子集为⌀,{1},{2},{1,2},共四个,故B 中说法正确;因为{(x ,y )|x +y =1}是点集,{y |x -y =-1}是数集,所以它们不相等,故C 中说法不正确;因为{y |y =2n ,n ∈Z}={…,-8,-6,-4,-2,0,2,4,6,8,…},{x |x =4k ,k ∈Z}={…,-8,-4,0,4,8,…},所以{y |y =2n ,n ∈Z}⊇{x |x =4k ,k ∈Z},故D 中说法不正确. 故选ACD. 5.答案 {a 1,a 4,a 5}解析 因为N ={x x 1,x x 2,…,x x x }(m ∈N *)为M 的第k 个子集,且k =2x 1-1+2x 2-1+⋯+2x x -1,25=20+23+24=21-1+24-1+25-1, 所以M 的第25个子集是{a 1,a 4,a 5}.6.D 当B ={-1}时,方程x 2-2ax +1=0有两个相等的实数根-1,得a =-1; 当B ={1}时,方程x 2-2ax +1=0有两个相等的实数根1,得a =1; 当B ={-1,1}时,{2+2x =0,2-2x =0,无解.综上,a =±1.7.ABD 当m =0时,B =⌀,满足题意;当m ≠0时,由B ⊆A ,得2∈B 或-5∈B ,则2m =1或-5m =1,解得m =12或x =−15.综上,m 的值为0或12或−15.故选ABD.8.AD 选项A 中,由集合相等的概念可得{2x -3=1,x -2=2,此方程组无解,故不存在实数a 使得集合A =B ,故A 正确.选项B 中,当a =4时,B =⌀,不满足A ⊆B ,故B 错误.选项C 、D 中,当2a -3≥a -2,即a ≥1时,B =⌀,满足B ⊆A ;当a <1时,要使B ⊆A ,需满足{2x -3≥1,x -2≤2,解得2≤a ≤4,不满足a <1,故实数a 不存在.故当a ≥1时,B ⊆A ,故C 错误,D 正确. 故选AD .9.答案 {a |a ≥2}解析 ∵B ={x |x -a ≤0}={x |x ≤a }, ∴∁U B ={x |x >a }.∵集合A ={x |x >2或x <1},∁U B ⊆A , ∴a ≥2.∴实数a 的取值范围是{a |a ≥2}. 10.答案 -2解析 因为U ={-2,12,2,3},A ={x |2x 2-5x +2=0}={12,2},∁U A =B ,所以B ={-2,3},所以3a =3,xx=-2,所以a =1,b =-2.11.解析 由x 2-x -2=0得(x +1)(x -2)=0,解得x =-1或x =2,故A ={-1,2}. ∵B ⊆A ,∴B =⌀或{-1}或{2}或{-1,2}. ①当B =⌀时,a ≠0且Δ=1-8a <0,解得a >18;②当B ={-1}时,a ≠0,且{x =1-8x =0,x -1+2=0,即{x =18,x =-1,无解; ③当B ={2}时,a ≠0,且{x =1-8x =0,x ×22+2+2=0,即{x =18,x =-1,无解; ④当B ={-1,2}时,a ≠0, 且{ x =1-8x >0,-1+2=-1x ,-1×2=2x,解得a =-1.综上,实数a 的取值范围是a =-1或a >18.12.解析 (1)A ={x |x 2-1=0}={-1,1}. 分以下三种情况讨论:①当B ={-1}时,由根与系数的关系得{x =-1+(-1)=-2,x =(-1)2=1;②当B ={1}时,由根与系数的关系得{x =1+1=2,x =12=1;11 ③当B ={-1,1}时,由根与系数的关系得{x =1+(-1)=0,x =1×(-1)=-1.综上,a =-2,b =1或a =2,b =1或a =0,b =-1.(2)∵A ⊆C ,且A ={-1,1},C ={-1,2m +1,m 2},∴2m +1=1或m 2=1,解得m =0或m =±1. 当m =0时,C ={-1,1,0},满足集合中元素的互异性,符合题意;当m =-1时,2m +1=-1,不满足集合中元素的互异性,舍去;当m =1时,C ={-1,3,1},满足集合中元素的互异性,符合题意.综上所述,m =0或m =1.。

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.子集的有关性质(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1集合与集合间的关系是否能用“∈”?【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c}的子集是,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a的值为多少?【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A ,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3,∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4,∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p q p解得⎪⎩⎪⎨⎧-==.12,21q p【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用1.指出下列集合之间的关系:(1){1,2,3}______{3,2,1};(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z }.【思路解析】 本题考查几个符号的正确应用情况.【答案】 =2.设集合M ={x |x ≤0},则下列关系中正确的是( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注意两个特殊子集,即和给定集合本身.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n 个)(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素1,剩下元素组成的集合依次为,{2},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A 中元素增加的状况进行分类讨论:(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4个:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b8.已知A={0,1},B={x|x⊆A},C={x|x∈A,x∈N*},写出A、,B、,C三个集合间的关系.【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。

集合关系练习题及答案

集合关系练习题及答案

集合关系练习题及答案集合关系是数学中的一个重要概念,它涉及到集合之间的包含、相等、子集等关系。

以下是一些集合关系的练习题及答案,供同学们学习和练习。

# 练习题1:判断下列集合之间的关系设集合 A = {1, 2, 3},B = {3, 4, 5},C = {1, 2, 3, 4}。

1. A 是否是 B 的子集?2. B 是否是 A 的子集?3. C 是否是 A 的子集?4. A 和 B 是否相等?# 答案1:1. A 不是 B 的子集,因为 A 中的元素 1 和 2 不在 B 中。

2. B 不是 A 的子集,因为 B 中的元素 4 和 5 不在 A 中。

3. C 是 A 的子集,因为 A 中的所有元素都在 C 中。

4. A 和 B 不相等,因为它们包含不同的元素。

# 练习题2:求集合的交集和并集设集合 D = {1, 2, 5},E = {2, 3, 5, 7}。

1. 求 D 和 E 的交集。

2. 求 D 和 E 的并集。

# 答案2:1. D 和 E 的交集是 {2, 5},因为这两个元素同时出现在 D 和 E 中。

2. D 和 E 的并集是 {1, 2, 3, 5, 7},包含了 D 和 E 中的所有元素。

# 练习题3:使用韦恩图表示集合关系使用韦恩图表示以下集合的关系:集合 F = {1, 3, 5, 7},G = {2, 4, 6, 8},H = {3, 4, 5, 6}。

# 答案3:韦恩图是一种图形化表示集合之间关系的工具。

在这个例子中,F、G和 H 没有共同元素,因此它们的韦恩图将显示三个不相交的集合。

# 练习题4:求集合的补集设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9},I = {2, 4, 6, 8}。

1. 求 I 在 U 中的补集。

2. 如果 J = {1, 3, 5, 7, 9},求 J 在 U 中的补集。

# 答案4:1. I 在 U 中的补集是 {1, 3, 5, 7, 9},因为这些元素在 U 中但不在 I 中。

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01 子集、交集、并集、补集之间的关系式(解析版)

专题01子集、交集、并集、补集之间的关系式一、结论1、子集、交集、并集、补集之间的关系式:I I A B A B A A B B A C B C A B I ⊆⇔=⇔=⇔=∅⇔= (其中I 为全集)(1)当A B =时,显然成立(2)当A B ⊂≠时,venn 图如图所示,结论正确.2、子集个数问题:若一个集合A 含有n (n N *∈)个元素,则集合A 的子集有2n 个,非空子集有21n -个.真子集有21n -个,非空真子集有22n -个.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.二、典型例题(高考真题+高考模拟)例题1.(2023·山东·潍坊一中校联考模拟预测)设集合{}2Z1002x M x x =∈<<∣,则M 的所有子集的个数为()A.3B.4C.8D.16【答案】C【详解】解:解不等式2100x <得1010x -<<,解不等式1002x <得2log 100x >,由于67222log 2log 100log 2<<,所以,{}{}{}22Z1002Z log 100107,8,9x M x x x x =∈<<=∈<<=∣∣,所以,M 的所有子集的个数为328=个.故选:C【反思】本题考查子集的概念,不等式.本题在求集合个数时,先求出集合M 中的元素个数,再根据集合元素的个数利用公式子集的个数为2n 个得到结论.2.(2022·吉林长春·长春吉大附中实验学校校考模拟预测)已知函数1⎧⎫1,()()({2,2B x y x a y =-+-其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,。

1.2子集、全集、补集 学案(含答案)

1.2子集、全集、补集 学案(含答案)

1.2子集、全集、补集学案(含答案)1.2子集.全集.补集学习目标1.理解子集.真子集.全集.补集的概念.2.能用符号和Venn图.数轴表达集合间的关系.3.掌握列举有限集的所有子集的方法,给定全集,会求补集知识点一子集定义如果集合A的任意一个元素都是集合B的元素若aA,则aB,那么集合A称为集合B的子集记法AB或BA读法集合A包含于集合B或集合B包含集合A图示性质1任何一个集合是它本身的子集,即AA;2对于集合A,B,C,若AB且BC,则AC;3若AB且BA,则AB;4规定A知识点二真子集定义如果AB,并且AB,那么集合A称为集合B的真子集记法AB 或BA读法集合A真包含于集合B或集合B真包含集合A图示性质1对于集合A,B,C,若AB且BC,则AC;2对于集合A,B,若AB 且AB,则AB;3若A,则A知识点三全集.补集1全集如果集合S 包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.2补集定义文字语言设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言SAx|xS,且xA 图形语言性质1AS,SAS;2SSAA;3SS,SS题型一有限集合子集真子集的确定例11写出集合a,b,c,d的所有子集解,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d反思感悟当元素个数为n时,有如下结论含有n个元素的集合有2n个子集;含有n个元素的集合有2n1个真子集;含有n个元素的集合有2n1个非空子集;含有n 个元素的集合有2n2个非空真子集跟踪训练11集合Ax|0x3,xN 的真子集的个数是A16B8C7D4答案C解析易知集合A0,1,2,含有3个元素,所以A的真子集的个数为2317.例12满足条件1,2,3M1,2,3,4,5,6的集合M的个数是A8B7C6D5答案C解析集合M中一定含有元素1,2,3,但同时M1,2,3且是1,2,3,4,5,6的真子集,所以集合M为1,2,3,4,1,2,3,5,1,2,3,6,1,2,3,4,5,1,2,3,4,6,1,2,3,5,6,共6个,故选C.反思感悟对于有限集A,B,C,设集合A中含有n个元素,集合B中含有m个元素n,mN*,且mn若BCA,则C的个数为2nm;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm2.跟踪训练12适合条件1A1,2,3,4,5的集合A的个数是________答案15解析这样的集合A有1,1,2,1,3,1,4,1,5,1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,1,2,3,4,1,2,3,5,1,2,4,5,1,3,4,5共15个题型二集合间关系的判断例2判断下列各组中集合之间的关系1Ax|x是12的约数,Bx|x是36的约数2Ax|x是平行四边形,Bx|x是菱形,Cx|x是四边形;Dx|x 是正方形3M,N.4Ax|1x4,Bx|x5解1因为若x是12的约数,则必定是36的约数,反之不成立,所以AB.2由图形的特点可画出Venn图如图所示,从而DBAC.3对于集合M,其组成元素是,分子部分表示所有的整数;而对于集合N,其组成元素是n,分子部分表示所有的奇数由真子集的概念知,NM.4由数轴易知A中元素都属于B,B中至少有一个元素如2A,故有AB.反思感悟判断集合A,B之间是否有包含关系的步骤先明确集合A,B中的元素,再分析集合A,B中的元素间的关系当集合A 中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B且B中至少有一个元素不属于集合A时,AB;当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有AB.跟踪训练2设集合A0,1,集合Bx|x2或x3,则A与B的关系为________答案AB或AB解析02,0B.又12,1B,又AB,AB或AB题型三补集的求法例31设Ux|x是小于9的正整数,A1,2,3,B3,4,5,6,求UA,UB.解根据题意可知,U1,2,3,4,5,6,7,8,所以UA4,5,6,7,8,UB1,2,7,82若全集UxR|2x2,AxR|2x0,则UA________.答案x|0x2解析UxR|2x2,AxR|2x0,UAx|0x2反思感悟求集合的补集,需关注两处一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图有限集.数轴数集.坐标系点集来求解跟踪训练31设集合U1,2,3,4,5,集合A1,2,则UA________.答案3,4,52已知集合UR,Ax|x2x20,则UA________.答案x|x2x203已知全集Ux,y|xR,yR,集合Ax,y|xy0,则UA________.答案x,y|xy0题型四由集合间关系求参数值或范围例4已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围解1当B时,如图所示或解这两个不等式组,得2m3.2当B时,由m12m1,得m2.综上可得,m的取值范围是m3.引申探究1若本例条件“Ax|2x5”改为“Ax|2x5”,其他条件不变,求m的取值范围解1当B时,由m12m1,得m2.2当B时,如图所示解得即2m3,综上可得,m的取值范围是m3.2若本例条件“BA”改为“AB”,其他条件不变,求m的取值范围解当AB时,如图所示,此时B.即m不存在即不存在实数m使AB.反思感悟1利用集合的关系求参数问题利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合含参数,另一个为静集合具体的,解答时常借助数轴来建立变量间的关系,需特别注意端点问题空集是任何集合的子集,因此在解ABB的含参数的问题时,要注意讨论A和A两种情况,前者常被忽视,造成思考问题不全面2数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题跟踪训练4已知集合Ax|x4或x5,Bx|a1xa3,aR,若BA,则a的取值范围为________答案a|a8或a3解析利用数轴法表示BA,如图所示,则a35或a14,解得a8或a3.1对子集.真子集有关概念的理解1集合A中的任何一个元素都是集合B中的元素,即由xA,能推出xB,这是判断AB的常用方法2不能简单地把“AB”理解成“A是B中部分元素组成的集合”,因为若A时,则A中不含任何元素;若AB,则A中含有B 中的所有元素3在真子集的定义中,AB首先要满足AB,其次至少有一个xB,但xA.2集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集集合的子集.真子集个数的规律为含n个元素的集合有2n个子集,有2n1个真子集,有2n2个非空真子集写集合的子集时,空集和集合本身易漏掉3补集是相对于全集而言的,有限集求补集一般借助Venn图,连续的数集求补集常用数轴,求时注意端点取舍4在由集合间关系求参数值或范围时1由于空集是任何集合的子集,又是任何非空集合的真子集,所以在遇到“AB”或“AB且B”时,一定要注意讨论A 和A两种情况,A的情况易被忽略,应引起足够重视2在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界能否取等号,否则会导致解题结果错误正确的做法是把端点值代入原式,看是否符合题目要求.1若A1,下列关系错误的是ABAACADA 考点空集的定义.性质及运算题点空集的性质答案D2已知集合A1,0,1,则含有元素0的A的子集的个数为A2B4C6D8答案B解析根据题意,含有元素0的A的子集为0,0,1,0,1,1,0,1,共4个3设集合U1,2,3,4,5,6,M1,2,4,则UM________.答案3,5,64若Ax|xa,Bx|x6,且AB,则实数a的取值范围是________答案a|a65已知集合Ax|1x2,Bx|2a3xa2,且AB,求实数a的取值范围考点子集及其运算题点根据子集关系求参数的取值范围解1当2a3a2,即a1时,BA,符合题意2当a1时,要使AB,需满足这样的实数a不存在综上,实数a的取值范围是a|a1.。

子集、全集、补集知识点总结及练习

子集、全集、补集知识点总结及练习

1.2 子集全集补集学习目标:1.理解集合之间包含的含义,能识别给定集合是否具有包含关系;2.理解全集与空集的含义.重点难点:能通过分析元素的特点判断集合间的关系.授课内容:一、知识要点1.子集、真子集(1)子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.即:对任意的x ∈A ,都有x ∈B ,则A ____B (或B ⊇A ).(2)真子集:若A ⊆B ,且A ≠B ,那么集合A 称为集合B 的真子集,记作A ___B (或B _____A ).(3)空集:空集是任意一个集合的______,是任何非空集合的____.即∅⊆A ,∅____B (B ≠∅).(4)若A 含有n 个元素,则A 的子集有 个,A 的非空子集有 个.(5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .2.全集与补集:全集:包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U .补集:若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集. 简单性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S .二、典型例题子集、真子集1.(1)写出集合{a ,b }的所有子集及其真子集;(2)写出集合{a ,b ,c }的所有子集及其真子集.2.设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求:(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B=C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠全集、补集1.设集合{}{}R b b y y B R a a x x A ∈+-==∈+-==,3|,,4|22,则A ,B 间的关系为 .2.若U ={x|x 是三角形},P ={x|x 是直角三角形},则U C P = .3.已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A =4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.求B C U 、C C U三、巩固练习《子集、全集、补集》1一、填空题1.已知全集U,M、N是U的非空子集,若∁U M⊇N,则下列关系正确的是________.①M⊆∁U N ②M∁U N ③∁U M=∁U N ④M=N2.设全集U和集合A、B、P,满足A=∁U B,B=∁U P,则A________P(填“”、“”或“=”).3.设全集U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},则a=________,b=________.4.给出下列命题:①∁U A={x|x/∈A};②∁U∅=U;③若S={三角形},A={钝角三角形},则∁S A={锐角三角形};④若U={1,2,3},A={2,3,4},则∁U A={1}.其中正确命题的序号是________.5.已知全集U={x|-2011≤x≤2011},A={x|0<x<a},若∁U A≠U,则实数a的取值范围是________.6.设U为全集,且M U,N U,N⊆M,则①∁U M⊇∁U N;②M⊆∁U N;③∁U M⊆∁U N;④M⊇∁U N.其中不正确的是________(填序号).7.设全集U={1,3,5,7,9},A={1,|a-5|,9},∁U A={5,7},则a的值为________.8.设全集U={2,4,1-a},A={2,a2-a+2}.若∁U A={-1},则a=______.9.设I={1,2,3,4,5,6,7},M={1,3,5,7},则∁I M=________.10.若全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则由∁U A与∁U B的所有元素组成的集合为________.11.已知全集U={非负实数},集合A={x|0<x-1≤5},则∁U A=________.12.已知全集U={0,1,2},且∁U Q={2},则集合Q的真子集共有________个.二、解答题13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.14.设全集I={2,3,x2+2x-3},A={5},∁I A={2,y},求x,y的值15.已知全集U =R ,集合A ={x|0<ax +1≤5},集合B ={x|x ≤-12或x>2}. (1)若A ⊆∁U B ,求实数a 的取值范围;(2)集合A 、∁U B 能否相等?若能,求出a 的值;否则,请说明理由.《子集、全集、补集》2一、填空题1.已知M ={x|x≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A ⊆{2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.3.设集合A ={2,x,y},B ={2x,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R .10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二、解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x =p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.。

1.2子集、真子集、全集、补集

1.2子集、真子集、全集、补集

例2 下列各组的三个集合中, 哪两个集合之间有包含关系?
1S 2,1,1,2 , A 1,1 , B 2,2 ;
2S R, A x | x 0, x R , B x | x 0, x R ;
3S x | x为地球人, A x | x为中国人, B x | x为外国
U A,并把它们分别表示在数轴上.
解 A x | 2x 1 0,且3x 6 0 x | 1 / 2 x 2 ,
U A x | x 1 / 2,或 x 2 ,在数轴上表示如下.
注意实心点与 空心点的区别
1
2
x
2
1
2
x
2
空集是任何集合的子集.
思考 A B与B A能否同时成立?
例1 写出集合a,b的所有子集.
解 集合a,b的子集是,a, b, a,b.
集合a1, a2,, an 有多少个子集?
如果 A B,并且 A B, 这时集合 A 称为B的 真子集
proper set,记为 A B 或 B A,读作" A真包含于B" 或"B真包含A",如a a,b.
1. 2 子集、全集、补集
观察下列各组集合, A与B之间有怎样的 关 系? 如 何 用 语 言 来 表 述 这 种关 系?
1 A 1, 1, B 1, 0, 1, 2 ;
2 A N , B R;
3 A x | x是北京人, B x | x为中国人;
上述每组中的集合A, B具有的关系可以用子 集的概念来表述. 如果集合A的每一个元素都是集合B的元素
(若a A,则a B) ,则称集合A是集合B的子
集subset ,记为 A B A或 B A,读作"集
合A包含于集合B "或 "集合B包含集合A".

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集一、单选题1.已知集合P ={2,4,6,8},则集合P 的真子集的个数是( ) A .4B .14C .15D .162.集合M =}|1,2n x x n Z⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M3.下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00∈.其中正确的个数是( ) A .1B .3C .4D .64.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .25.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .166.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( ) A .{}1B .{}3C .{}1,1-D .{}3,3-7.已知集合{}{}2|560,,|04,,A x x x x R B x x x N =-+=∈=<≤∈则满足条件A C B ⊆⊆的集合C 的个数( ) A .1B .2C .3D .48.已知全集U R =,那么正确表示集合{}1,0,1,2M =-和{}2|0N x x x =-=的关系的韦恩图是( )A .B .C .D .二、多选题9.已知集合{1,1},{|1}M N x mx =-==,且N M ⊆,则实数m 的值可以为( ) A .1B .1-C .2D .010.下列四个选项中正确的是( ) A .{}{},a b ∅⊆ B .(){}{},,a b a b = C .{}{},,a b b a ⊆D .{}0∅⊆11.若集合2{|60}M x x x =+-=,{|10}N x ax =-=,且N M ⊆,则实数a 的值为( )A .13-B .0C .12D .112.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =三、填空题13.如果{}{},1,2a b =,则ab=________. 14.所有满足{}{},,,a Ma b c d ⊆的集合M 的个数为________;15.已知集合2{|9140}A x x x =-+=,集合{|20}B x ax =+=,若B A ,则实数a 的取值集合为________.16.已知集合{|04}A x x =<≤,{|}B x x a =<.当A ⊆B 时实数a 的取值范围为a c >,则c =________.四、解答题17.已知集合A ={x ||x -a |=4},B ={1,2,b }.(1)是否存在实数a ,使得对于任意的实数b ,都有A ⊆B ?若存在,求出a 的值;若不存在,请说明理由;(2)若A ⊆B 成立,求出对应的实数对(a ,b ).18.已知集合A ={x |x 2﹣3x +2=0},B ={x |ax ﹣2=0},C ={x |x 2﹣mx +2=0}. (1)若B ⊆A ,求实数a 构成的集合; (2)若A ∩C =C ,求实数m 的取值范围.19.已知集合{}{},|325,|21U R M x a x a P x x ==<<+=-≤≤,若M ⫋U C P ,求实数a 的取值范围.20.已知22{|}}240|2{0A x x x B x x ax a =+-==++-=,,若B A ⊆,求实数a 的值.21.设全集{}22,3,23U m m =+-,{}1,2A m =+,{}5UA =,求m 的值.22.已知集合A {}25x x =-≤≤.(1)若{}621B x m x m =-≤≤-,A B ⊆,求实数m 的取值范围; (2)若{}121B x m x m =+≤≤-,B A ⊆,求实数m 的取值范围.参考答案1.C 【分析】根据集合P 元素的个数确定正确选项. 【详解】集合P 元素有4个,故其真子集的个数为42115-=个. 故选:C 2.D 【分析】根据子集的定义判断. 【详解】由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ), 当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ), ∴N ⊆M , 故选:D. 3.C 【分析】利用集合相等的概念可判定①,③,④;利用集合之间的包含关系可判定②,⑤,利用元素与集合的关系可判定⑥. 【详解】①正确,集合中元素具有无序性; ②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立. ④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立; ⑤正确,空集是任何非空集合的真子集; ⑥正确,由元素与集合的关系知,{}00∈. 故选:C.4.B 【分析】先利用集合相等列式201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得a ,b ,再验证集合元素的互异性,代入计算即得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B. 5.D 【分析】先化简集合,得到集合元素的个数n ,再由子集的个数为2n 求解. 【详解】6{|}{0,3,4,5}6x N N x ∈∈=-, ∴6{|}6x N N x ∈∈-的子集的个数为4216=.故选:D. 6.C 【分析】根据题意可得21m =或22m =-,解方程即可求解. 【详解】因为B A ⊆,所以21m =或22m =- 因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C. 7.D 【分析】先求得集合A ,再由集合的包含关系求得集合C 得选项. 【详解】由已知得,{}{}2,3,1,2,3,4A B ==.因为A C B ⊆⊆,所以满足条件的集合C 有{}2,3,{}1,2,3,{}2,3,4,{}1,2,3,4,共4个.故选:D. 8.B 【分析】根据,M N 之间的关系进行判断即可. 【详解】因为{}{}1,0,1,2,1,0M N =-=,所以N ⫋M . 故选:B . 9.ABD 【分析】根据给定条件利用集合包含关系按m 值是否为0分类即可得解. 【详解】因N M ⊆,{1,1},{|1}M N x mx =-==, 则当0m =时,N M =∅⊆,符合题意,当0m ≠时,1{}N m =,于是得11m =-或11m =,解得1m =-或1m =,所以m 的值为1或1-或0. 故选:ABD 10.CD 【分析】注意到空集和由空集构成的集合的不同,可以判定AD ;注意到集合元素的无序性,可以判定C ;注意到集合的元素的属性不同,可以否定B. 【详解】对于A 选项,集合{}∅的元素是∅,集合{},a b 的元素是,a b ,故没有包含关系,A 选项错误;对于B 选项,集合(){},a b 的元素是点,集合{},a b 的元素是,a b ,故两个集合不相等,B 选项错误;对于C 选项,由集合的元素的无序性可知两个集合是相等的集合,故C 选项正确; 对于D 选项,空集是任何集合的子集,故D 选项正确. 故选:CD. 11.ABC 【分析】根据子集的定义求解,注意空集是任何集合的子集. 【详解】{}2{|60}{|(2)(3)0}3,2M x x x x x x =+-==-+==-,{|10}N x ax =-=,当0a =时,N =∅,N M ⊆,可取, 当0a ≠时,1x a =,令13a =-,13a =-,可取, 令12a=,12a =,可取,综上13a =-、0a =或12a =,故选:ABC. 12.CD 【分析】采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果. 【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确;由()U A B B =,知U A B ⊆,∴()()UU A A A B =⊆,∴A B U ⋃=,由U A B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.13.12或2【分析】根据已知条件可得出a 、b 的值,即可得出结果. 【详解】因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 14.7 【分析】列举出满足条件的集合M ,即可得到答案. 【详解】 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:7 15.71,,02⎧⎫--⎨⎬⎩⎭【分析】先确定集合{2A =,7},然后利用B A ,得到集合B 的元素和A 的关系,分类讨论,即可得出结论. 【详解】2{|9140}{2A x x x =-+==,7},因为BA ,所以若0a =,即B =∅时,满足条件. 若0a ≠,则2B a ⎧⎫=-⎨⎬⎩⎭,若B A ,则22a-=或7-,解得1a =-或72-.则实数a 的取值的集合为71,,02⎧⎫--⎨⎬⎩⎭.故答案为:71,,02⎧⎫--⎨⎬⎩⎭.16.4利用数轴分析,可得实数a的取值范围,从而得到c的值.【详解】{|04}A x x=<≤,{|}B x x a=<,如上图所示,由A⊆B,得4a>.所以4c=.故答案为:4.17.(1)不存在,理由见解析;(2)(5,9),(6,10),(-3,-7),(-2,-6).【分析】(1)根据已知条件列方程组,根据方程组的解的情况作出结论.(2)根据A B⊆列方程组,解方程组求得对应的实数对.【详解】(1)由题意,知当且仅当集合A中的元素为1,2时,对于任意的实数b,都有A⊆B. 因为A={a-4,a+4},所以4142aa-=⎧⎨+=⎩或4241aa-=⎧⎨+=⎩,方程组均无解,所以不存在实数a,使得对于任意的实数b都有A⊆B. (2)结合(1),知若A⊆B,则有414aa b-=⎧⎨+=⎩或424aa b-=⎧⎨+=⎩或441a ba-=⎧⎨+=⎩或442a ba-=⎧⎨+=⎩,解得59ab=⎧⎨=⎩或610ab=⎧⎨=⎩或37ab=-⎧⎨=-⎩或26ab=-⎧⎨=-⎩,所以所求实数对(a,b)为(5,9),(6,10),(-3,-7),(-2,-6).18.(1){0,1,2};(2)2222m-<<m=3.【分析】(1)对a进行分类讨论,根据包含关系求解;(2)根据C⊆A,分类讨论求解.(1)∵A ={x |x 2﹣3x +2=0}={1,2}, ①若a =0,则B =∅,满足题意.②若a ≠0,则B =2a ⎧⎫⎨⎬⎩⎭,由B ⊆A 得:2a =1或2a =2,∴a =1或a =2,∴实数a 构成的集合为{0,1,2}; (2)若A ∩C =C ,则C ⊆A ,若△=m 2﹣8<0,即m -<<若△=m 2﹣8=0,则C ={,或C =}不满足条件, 若△=m 2﹣8>0,则C =A ,则m =3,综上所述m -<m =3, 19.7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【分析】先由题意,得到{C 2U P x x =<-或}1x >,根据M ⫋U C P ,分别讨论分M =∅,M 两种情况讨论,即可得出结果. 【详解】由题意得,{|2U C P x x =<-或}1x >,M ⫋U C P ,∴分M =∅和M两种情况讨论.①当M =∅时,有325a a ≥+,即5a ≥. ②当M时,由M ⫋U C P ,可得325252a a a <+⎧⎨+≤-⎩,或32531a a a <+⎧⎨≥⎩,即72a ≤-或153a ≤<,综上可知,实数a 的取值范围是7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【点睛】本题主要考查由集合的包含关系求参数,熟记集合基本运算的概念即可,属于常考题型. 20.1或4. 【分析】先求出A ,然后对集合B 分四种情况讨论,利用韦达定理即可求解. 【详解】解:由已知可得{2,1}A =-,因为B A ⊆,则B =∅或{2}-或{}1或{2,1}-,当B =∅时,()224248160a a a a ∆=-=+-<-,无解,当{2}B =-时,则()()222224a a --=-⎧⎨-⨯-=-⎩,解得4a =, 当{}1B =时,则111124a a +=-⎧⎨⨯=-⎩,无解, 当{2,1}B =-时,则212124a a -+=-⎧⎨-⨯=-⎩,解得1a =, 综上,实数a 的值为1或4.21.2或4-【分析】本题可通过{}5U A =得出213235m m m ⎧+=⎨+-=⎩,然后通过计算即可得出结果. 【详解】因为{}5U A =,所以集合A 中有元素3,全集U 中有元素5, 即213235m m m ⎧+=⎨+-=⎩,解得2m =或4m =-,通过检验满足题意, 故m 的值为2或4-.22.(1)[3,4];(2)(﹣∞,3].【分析】(1)先判断出B ≠∅,由A B ⊆,列不等式62215m m -≤-⎧⎨-≥⎩即可解得实数m 的取值范围; (2)对B 是否为∅进行分类讨论,解出实数m 的取值范围.【详解】集合A {}25x x =-≤≤,(1)∵A ⊆B ,A ≠∅,∴B ≠∅∴62215m m -≤-⎧⎨-≥⎩,解得3≤m ≤4,∴实数m的取值范围为[3,4];(2)∵B⊆A,①当B=∅时,m+1>2m﹣1,即m<2,②当B≠∅时,+12112215m mmm≤-⎧⎪+≥-⎨⎪-≤⎩,解得2≤m≤3,综上所述,实数m的取值范围为(﹣∞,3].。

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

课后训练千里之行 始于足下1.给出下列关系①{3}∈{3,4};②{}{}a a ⊆;③{3,5}={3,1,5};④∅{2};⑤{1}{x |x <2};⑥{}250x x +=⊆∅.其中正确的序号是________.2.设集合A ={x |x 2-1=0},B ={x ||x |=1},C ={-1,0,1},则集合A ,B ,C 之间的关系是________.3.集合{x ∈N |x =5-2n ,n ∈N }的真子集的个数是______________.4.已知全集U =R ,集合M ={x |x 2-4≤0},则M =________.5.若集合M ={x |x =2n +1,n ∈Z },N ={x |x =4m ±1,m ∈Z },则集合M 与N 的关系是________.6.设全集为R ,A ={x |x <0,或x ≥1},B ={x |x ≥a },若A B ,则a 的取值范围是________.7.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2},且P ={-1},求实数a 的值.8.已知集合A ={x |x <-1,或x >6},B ={x |m -1≤x ≤2m +1},全集U =R .(1)当x ∈N *时,求集合A 的子集个数.(2)若U B A ⊆ð,求实数m 的取值范围.百尺竿头 更进一步已知集合U ={x |-1≤x ≤2,x ∈P },A ={x |0≤x <2,x ∈P },B ={x |-a <x ≤1,x ∈P }(-1<a <1).(1)若P =R ,求A 中最大元素m 与B 中最小元素n 的差m -n ;(2)若P =Z ,求B 和A 中所有元素之和及(B ).参考答案与解析千里之行1.②④⑥2.A =B C3.7 解析:当n =0,1,2时,得到x 的值分别为5,3,1.∴集合{x ∈N |x =5-2n ,n ∈N }={1,3,5}.其真子集有23-1=7个,分别是,{1},{3},{5},{1,3},{1,5},{3,5}.4.{x |x <-2,或x >2} 解析:因为集合M ={x |x 2-4≤0}={x |-2≤x ≤2},全集U =R ,∴{2,2}U M x x x =<->或ð.5.M =N 解析:方法一:∵M ={…,-5,-3,-1,1,3,5,…},N ={…,-5,-3,-1,1,3,5…},∴M =N .方法二:∵n ∈Z ,∴当n 为偶数时,令n =2m ,m ∈Z .则M ={x |x =4m +1,m ∈Z },当n 为奇数时,令n =2m -1,m ∈Z ,则M ={x |x =2(2m -1)+1,m ∈Z }={x |x =4m -1,m ∈Z }.∴M =N .方法三:M 为奇数集合,而N 中元素均为奇数,∴有N M ⊆,任取x ∈M ,则x =2n +1,当n 为偶数2m 时,有x =4m +1∈N ,当n 为奇数2m -1时,仍有x =4m -1∈N ,∴M N ⊆.∴M N ⊆且N M ⊆,故M =N .6.a ≥1 解析:∵A ={x |x <0,或x ≥1},∴A ={x |0≤x <1},∵B ={x |x ≥a },∴B ={x |x <a },将集合A ,B 在数轴上表示出来,如图所示.∵A B ,∴a ≥1.7.解:∵P ={-1},∴-1∈U ,且1P -∉.∴2231,20,a a a ⎧-=-⎪⎨--=⎪⎩解得a =2.经检验,a =2符合题意. 故实数a 的值为2.8.解:(1)∵A ={x |-1≤x ≤6}.∴当x ∈N *时,A ={1,2,3,4,5,6}.∴集合A 的子集个数为26=64(个).(2)∵B ⊆A ,∴分B =∅与B ≠∅讨论.①当B =∅时,m -1>2m +1,即m <-2.②当B ≠∅时,由B ⊆A ,借助数轴(如图所示).得121,11,21 6.m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩解得502m ≤≤.综上所述,m的取值范围是m<-2或5 02m≤≤.百尺竿头解:(1)由已知得A={x|-1≤x<0,或x=2},B={x|-1≤x≤-a,或1<x≤2},∴m =2,n=-1;∴m-n=2-(-1)=3.(2)∵P=Z,∴U={x|-1≤x≤2,x∈Z}={-1,0,1,2},A={x|0≤x<2,x∈Z}={0,1},B={1}或{0,1}.∴B={0}或B=∅.即B中元素之和为0,又A={-1,2}.其元素之和为-1+2=1.故所求元素之和为0+1=1.∵B={0},或B=∅,∴(B)={-1,1,2}或(B)=∅=U={-1,0,1,2}.。

子集、全集、补集

子集、全集、补集

3∉M.
3 1∈N -1 ∈N1
P
子集、全集、 子集、全集、补集
新授课 1.子集:一般地,对于两个集合A与B,如果集合 的任何一 .子集:一般地,对于两个集合 与 ,如果集合A的任何一 个元素都是集合B的元素,我们就说集合 包含于 包含于集 个元素都是集合 的元素,我们就说集合A包含于集 的元素 包含集合 合B, 或集合 包含集合 。 , 或集合B包含集合A。 记作: 读作:A包含于 包含于B或B包含 包含A 记作:A ⊆ B或B ⊇ A 读作:A包含于B或B包含A 当集合A不包含于集合 ,或集合B不包含集合 不包含集合A时 当集合 不包含于集合B,或集合 不包含集合 时, 不包含于集合 记作: / 或 / . 记作:A ⊆ B或B ⊇ A. 规定:空集是任何集合的子集. 规定:空集是任何集合的子集.即∅ ⊆ A
(×) 那么B必是 的真子集; 必是A的真子集 ( (5)如果 A ⊇ B且 A ≠ B ,那么 必是 的真子集; √ ) ) (×)
子集、全集、 子集、全集、补集
练习: 练习: 2. 用适当的符号(∈,∉, =, . 用适当的符号( , )填空: 填空: (1)0 ____{0} ;∅ ___{0} ; ___ ∅ ; ) ∈ 0 ∉
C. .
{
}
C = {x x = 4k + 1, k ∈ Z,则A = B }
子集、全集、 子集、全集、补集
课堂小结 1.清楚子集、真子集,集合相等的概念; .清楚子集、真子集,集合相等的概念; 2.能判断两集合之间的关系. .能判断两集合之间的关系. 作业: 作业: P10 习题 习题1.2 1,2,3 , ,
子集、全集、补集 子集、全集、
子集、全集、 子集、全集、补集
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

子集、全集、补集练习题及答案
例1 判定以下关系是否正确
(2{1,2,3}={3,2,1}
(40∈{0}
分析空集是任何集合的子集,是任何非空集合的真子集.
解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.
说明:含元素0的集合非空.
例2 列举集合{1,2,3}的所有子集.
分析子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.
含有1个元素的子集有{1},{2},{3};
含有2个元素的子集有{1,2},{1,3},{2,3};
含有3个元素的子集有{1,2,3}.共有子集8个.
________.
分析 A中必含有元素a,b,又A是{a,b,c,d}真子集,所以满足条件的A有:{a,b},{a,b,c}{a,b,d}.
答共3个.
说明:必须考虑A中元素受到的所有约束.
[ ]
分析作出4图形.
答选C.
说明:考虑集合之间的关系,用图形解决比较方便.
点击思维
例5 设集合A={x|x=5-4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则下列关系式中正确的是
[ ]
分析问题转化为求两个二次函数的值域问题,事实上
x=5-4a+a2=(2-a2+1≥1,
y=4b2+4b+2=(2b+12+1≥1,所以它们的值域是相同的,因此A=B.答选A.
说明:要注意集合中谁是元素.
M与P的关系是
[ ]
A.M=U P B.M=P
分析可以有多种方法来思考,一是利用逐个验证(排除的方法;二是利用补集的性
质:M=U N=U(U P=P;三是利用画图的方法.
答选B.
说明:一题多解可以锻炼发散思维.
例7 下列命题中正确的是
[ ]
A.U(U A={A}
分析 D选择项中A∈B似乎不合常规,而这恰恰是惟一正确的选择支.
是由这所有子集组成的集合,集合A是其中的一个元素.
∴A∈B.
答选D.
说明:选择题中的选项有时具有某种误导性,做题时应加以注意.
例8已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.
分析逆向操作:A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中;所以C中元素只能是4或7.
答 C={4}或{7}或{4,7}.
说明:逆向思维能力在解题中起重要作用.
例9设S={1,2,3,4},且M={x∈S|x2-5x+p=0},若S M={1,4},则p=________.
分析本题渗透了方程的根与系数关系理论,由于S M={1,4},
∴M={2,3}则由韦达定理可解.
答 p=2×3=6.
说明:集合问题常常与方程问题相结合.
例10已知集合S={2,3,a2+2a-3},A={|a+1|,2},S A={a+3},求a的值.
S这个集合是集合A与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.
解由补集概念及集合中元素互异性知a应满足
在(1中,由①得a=0依次代入②③④检验,不合②,故舍去.
在(2中,由①得a=-3,a=2,分别代入②③④检验,a=-3不合②,故舍去,a =2能满足②③④.故a=2符合题意.
说明:分类要做到不重不漏.
[ ]
A.M=N
D.M与N没有相同元素
分析分别令k=…,-1,0,1,2,3,…得
答选C.
说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

相关文档
最新文档