《自动控制理论教学课件》第五章 控制系统的频域分析.ppt

合集下载

自动控制理论教学课件-第五章 控制系统的频域分析.ppt

自动控制理论教学课件-第五章 控制系统的频域分析.ppt
第五章 线性系统的频域分析法
§5-1 频率特性及其与时域响应的关系 §5-2 典型环节的频率特性
§5-3 系统开环频率特性的极坐标图
§5-4 系统开环对数频率特性的绘制 §5-5 乃奎斯特稳定判据和系统的相对稳定性 §5-6 控制系统对数坐标图与稳态误差及瞬态
响应的关系
*§5-7 系统的闭环频率特性
UmG(j )
2j
UmG(j)sinG(j)t0
A ( ) G ( j ), ( ) G ( j )
通常,把 G(j)G(j)ej()称为系统的频率特性。它
反映了在正弦输入信号作用系。系统稳态输出信号与输入正弦信号的幅值比
A()G(j) 称为幅频特性,它反映了系统对不同频率的正
§5-8 根据闭环频率特性分析系统的时域响应
§5-1 频率特性及其与时域响应的关系
一、频率特性的基本概念
频率响应:在正弦输入信号的作用下,系统输出的稳态 分量。
频率特性:系统频率响应与正弦输入信号之间的关系。 频域分析法:应用频率特性研究线性系统的经典方法。其
特点是根据系统的开环频率特性去判断闭环系统的性能。
按 L ()2 0 lgG (j)2 0 lg A ()线性分度,单位是分贝
( d B ) 。对数相频特性曲线的纵坐标按 ( ) 线性分度,单 位为度 ( ) 。由此构成的坐标系称为半对数坐标系。
仍以RC电路为例:
L()20lg 1 20lg120lg 122
122
() arctanarctan 1
如图,设初始 u o(0 ) 0 , u i U m sint。 R
当输出阻抗足够大时有:
i(t)
C
u
i
Ri
uo
1

自动控制理论第五章

自动控制理论第五章
a G(s) A 2j
因为 G(j)G(j)ej() G(j)G(j)ej()
所以 C (t)AG (j)S(in t)
2019/11/13
第五章 频率响应
3
自动控制理论
图5-1
例:
E E 1 2((ss))1R 1 C ,E 1(Ss)S2A 2
20lg1 jT 20lg 1 1 jT
arg(1 jT) arg( 1 ) 1 jT
3. 积分、微分因子
1 1)积分因子 j
( j)1
L()20 lg
2019/11/13
图5-10
第五章 频率响应
10
自动控制理论
()90
2)微分因子 j
()20 lg
() a G 1 ( r j) g a G 2 r ( j) g a G n r ( j) g
例5-2 G(S)H(S)10 (10.1S) S(10.5S)
解 (1)幅频特性 10(1 j )
G( j)
j(1
10
j)
2
2019/11/13
2019/11/13
图5-2
第五章 频率响应
4
自动控制理论
e2(t)
A S
1T22
i(n tarcTta) n
G(j) 1TA22 ()tg1T
图5-3
2019/11/13
第五章 频率响应
5
自动控制理论
二、由传递函数确定系统的频率响应
例5-1 G (s) S 1 2 (4 S 0 S 1 ) 1 3 (S 2 1 j( 3 S )0 S ( 1 )2 j3 ) 试绘制系统的幅频和相频特性曲线。

自动控制理论 ppt 详解

自动控制理论 ppt  详解

代数式 极坐标式 指数式
A( )
1
2T 2 1
∠G(jω)=-arctanTω
j
=∞
0 = 100 =5
=0 1 =1
=3 =2
2. 对数频率特性曲线(Bode 图)
由对数幅频曲线和对数相频曲线组成,是工程中广泛应用的一组曲线。
对数幅频曲线的横坐标采用对数分度lg(ω), 单位为弧度/秒(rad/s) 对数幅频曲线的纵坐标是对幅值 用 L()=20lgA(ω) 进行线性分度, 单位是分贝(dB) 。 对数相频特性图的纵坐标则对相 角进行线性分度,单位为度(o), 仍用 ( )表示。
(红色线)
j 0

幅相曲线
L(ω)=-20lgω φ(ω)=-90o
L
20
0
1
两重积分 G( j ) ( j )2
(蓝色线)
1
0 0.1 -20
10 20 dB dec

0 -90
-180
40 dB dec

L 20 lg
1
G j 180
对于某一特定频率 ω下的G(jω)总可以用复平面上的一个向量与之对 应,该向量的长度为A(ω),与正实轴的夹角为(ω)。
例:RC电路的幅相频率特性。
Uo ( j ) 1 1 G( j ) Ui ( j ) 1 RCj 1 Tj
ui
R C uo
G(jω)=R(ω)+jI(ω) =|G(jω)|∠G(jω) =A(ω)ejφ(ω)
§ 5.1 频率特性
§5.1.1 频率特性的基本概念
例:RC 电路如图所示,ui(t)=Asinωt, 求uo(t)=?

自动控制原理 第五章 频率特性) ppt课件

自动控制原理   第五章 频率特性)  ppt课件
无法观察到这种稳态响应。从理论上讲,系统动态过程的稳态分 量(从全解的形式中理解)总可以分离出来。
系统微分方程的全解=齐次通解+稳态特解 稳态特解就是稳态分量,即频率特性定义中要用到的量。
2019/11/12
PPT课件
19
19
(5)频率特性的求取
① 根据定义求取 对已知系统的微分方程,把正弦输入函数代入,求出其稳态
数给定了,则系统的频率特性也完全确定。
② 系统的稳态输出量与输入量具有相同的频率 当输入量频率改变,则输出、输入量的幅值之比A()和
它们的相位移()也随之改变。所以 A()和()都是 的函数。这是由于系统中的储能元件引起的。
2019/11/12
PPT课件
18
18
③ 频率特性是一种稳态响应,但表示的是系统动态特性 频率特性是在系统稳定的前提下求得的,对于不稳定系统则
b() d ()
2019/11/12
关于ω的奇PP次T课件幂多项式
13
13
G( j) arc tan( b ) arc tan( d )
a
c
G( j) arc tan( bc ad )
ac bd
tan(a b) tan a tan b 1 tan a tan b
uo
t t
8
8
RC网络的输入与输出的关系为:
T
duo dt
uo

ui
式中,T RC ,为时间常数。取拉氏变换并代入初始条件得
1
1 A
Uo (s)

Ts
1[Ui (s)
Tuo0
]
Ts[ 1s源自22 Tuo0
]
拉氏反变换得

自动控制理论最新版精品课件第5章 频率法

自动控制理论最新版精品课件第5章 频率法

5-1 频率特性的概念
一、频率特性的基本概念
➢频率响应:系统对正弦输入的稳态响应。
u1 U1 sint
在稳态情况下,输出电压 u2 U2 sinωt
1

U2

U1
jC
R 1
jC
1
1 j RC
1
1 jT
➢频率特性的定义:
该电路的频率特性
零初始条件的线性系统或环节,在正弦信号作用下, 稳态输出与输入的复数比。
➢与传递函数的关系:
G(j) G(s) s j

A() G(j)
U2

G( j )
A( )e j ( )
U1
1
1 (T )2
() G(j)


U 2 U1 arctan(T)
A(ω) 称幅频特性,φ(ω)称相频特性,G(jω) 称为幅相频率 特性。
二、频率特性的求取
➢已知系统的运动方程,输入正弦函数求其稳态解,取输出稳
特征点1: n 时
A,
An 1 2
n
2
特征点2: 令
dA d 0
1 0
0.3
0.5 0.707
r
n
谐振频率 r n 1 2 2 0.707
1
2
谐振峰值 Ar 2 1 2
0.5 0.3
0 0.707,出现谐振
0.707 阶跃响应既快又稳,比较理想(也称为“二阶最佳”)
G( j )
1
1
n
2 n2
2
2
2
n
2
j 1
2 n2
2 n
2 2
n
2

2019《自动控制理论教学课件》第五章 控制系统的频域分析.ppt

2019《自动控制理论教学课件》第五章 控制系统的频域分析.ppt

暂态分量
稳态分量
响应的稳态分量为: 1 uos U m sin t ( ) U m A( ) sin t ( ) 2 2 1 1 1 式中: A( ) 2 2 1 j 1
( ) arctan

1 s j 1 G (s ) G (j ) G (s ) s j e arctan 1 s 1 2 2 可见, A( )、 ( ) 分别为 G (j ) 的幅值 G (j )
和相角 G (j ) 。 设线性定常系统的传递函数为:
G (s ) C (s ) N (s ) N (s) R(s ) D(s ) (s p1 )(s p2 ) (s pn )
§5-8 根据闭环频率特性分析系统的时域响应
§5-1 频率特性及其与时域响应的关系
一、频率特性的基本概念
频率响应:在正弦输入信号的作用下,系统输出的稳态 分量。 频率特性:系统频率响应与正弦输入信号之间的关系。 频域分析法:应用频率特性研究线性系统的经典方法。其 特点是根据系统的开环频率特性去判断闭环系统的性能。
第五章
线性系统的频域分析法
§5-1 频率特性及其与时域响应的关系 §5-2 典型环节的频率特性 §5-3 系统开环频率特性的极坐标图
§5-4 系统开环对数频率特性的绘制 §5-5 乃奎斯特稳定判据和系统的相对稳定性 §5-6 控制系统对数坐标图与稳态误差及瞬态 响应的关系
*§5-7 系统的闭环频率特性
L( ) dB
( )
L( )
0 20
40
( )
0.01 0.1
1
0 30 60 90 10 100
1 ,1 用描点法绘制出 ( ) 曲线如图,图中令:

【精品】自动控制原理-第五章-频域分析法幻灯片

【精品】自动控制原理-第五章-频域分析法幻灯片
系统开环传函的频率特性称为开环频率特性。
控制系统一般总是由若干环节组成的, 设其开环 传递函数为 :
G(s)=G1(s)G2(s)…Gn(s)
系统的开环频率特性为:
G ( j) G 1 ( j) G 2 ( j) G n ( j)

A ( ) e j( ) A 1 ( ) e j 1 ( ) A 2 ( ) e j2 ( ) A n ( ) e jn ( )
在图中 T=0.5, 1/T=2 (rad/sec)
La() 0 2l0o gT
1/T 1/T
惯性环节的对数幅频特性曲线近似为两段直线。两直线 相交,交点处频率 1/T ,称为转折频率。
两直线实际上是对数幅频特性曲线的渐近线,故又称为 对数幅频特性渐近线。
用渐近线代替对数幅频特性曲线,最大误差发生在转折 频率处,即 1/T 处。
➢为了说明对数幅频特性的特点,引进斜率的概念, 即横坐标每变化十倍频程(即变化)所对应的纵坐 标分贝数的变化量。
☆对数幅相频率曲线(尼柯尔斯图)
以角频率为参变量,横坐标是相位,单位采用角度;纵坐 标为幅值,单位采用分贝。
Bode图的优点
幅值的乘除简化为加减; 可以用叠加方法绘制Bode图; 可以用简便方法近似绘制Bode图; 扩大研究问题的范围; 便于用实验方法确定频率特性对应的传递函数。
对数幅频特性:
L ( ) 2 0 lg A ( )~ (lg )
对数相频特性:
()~(lg)
对数幅频特性曲线:横坐标 采用对数分度,取
10为底的对数 lo g 10 ,纵坐标采用线性分度用分贝数
(dB)表示。
对数相频特性曲线:横坐标为角频率仍采用对数分 度,纵坐标采用线性分度用角度表示。

自动控制原理课件第五章

自动控制原理课件第五章

1 幅相频率特性
• • •
曲线或极坐标图。 在复平面,把频率特性的模和角同时表示出来的图就是 幅相曲线或极坐标图。 它是以 为参变量,以复平面上的矢量 G ( j ) 表示的一 种方法。 例 惯性环节幅相频率特性
G ( j ) k 1 jT k 1 T
2 2
•幅相频率特性曲线:又称奈奎斯特(Nyquist)
模从- 相角从-/2-3/2
-1
Im
ω

Re
ω ω
0
系统开环对数频率特性例题2
系统开环对数频率特性
系统开环对数频率特性例题3
系统开环传函:
G (s)
-1 -1 0.05 0.1 1 2 10 100 -2 -90°
20 lg 40 20 lg 1 0 . 05 20 lg
L( )
为横坐标,
为纵坐标。
5-3 典型环节及开环频率特性 一、典型环节的频率特性p177
•要求掌握以下各环节幅相频率特性及对数频率 特性。
比例环节、微分环节、 积分环节、 惯性环 节、 振荡环节、 一阶微分环节、 二阶微分 环节、 延时环节。 非最小相位环节 开环传函中包含右半平 面 的零点或极点。
比例 G( s ) k , G( j ) k , 积分 ( s ) , G ( j ) G , s j 微分
1 1
k, 0
1


, 90

G( s ) s, G( j ) j ,
, 90

惯性环节(对比一阶微分环节)
G( s) 1 Ts 1 1 1 T
s
G ( j ) e
j
cos j sin

自动控制理论5-4频域:奈氏判据

自动控制理论5-4频域:奈氏判据
自动控制理论5-4频 域:奈氏判据
目录
• 引言 • 奈氏判据的基本原理 • 奈氏判据的应用 • 实例分析 • 结论
01
引言
目的和背景
目的
理解并掌握奈氏判据在自动控制理论中的应用,掌握如何使用奈氏判据判断系统 的稳定性。
背景
随着工业自动化水平的提高,自动控制系统在各个领域得到广泛应用。为了确保 系统的稳定运行,需要借助自动控制理论对系统进行分析。频域分析是自动控制 理论的重要分支,而奈氏判据则是频域分析中的一种重要方法。
05
结论
奈氏判据的重要性和意义
1 2 3
确定系统的稳定性
通过奈氏判据,可以确定一个线性时不变系统的 稳定性,这对于控制系统的设计和分析至关重要。
预测系统行为
奈氏判据提供了一种方法,用于预测系统在不同 频率下的行为,这对于理解系统的动态特性和性 能至关重要。
优化系统设计
通过使用奈氏判据,可以在设计阶段优化控制系 统的性能,从而提高系统的可靠性和稳定性。
复杂系统
在实际的工程应用中,控制系统往往比较复杂,由多个环节和元件组成,其传递函数也较为复杂。
奈氏判据应用
对于复杂系统,需要先进行简化或分解,然后对每个子系统分别应用奈氏判据进行稳定性分析。如果 所有子系统都稳定,则整个系统稳定;否则,整个系统不稳定。
实际应用中的奈氏判据
实际应用
在工业控制、航空航天、交通运输等领域,控制系统发挥着至关重要的作用。
基于奈氏曲线的几何特性,通过观察曲线在实轴上的投影,可以判断系统的稳定性。具体 来说,如果曲线没有穿越实轴,则系统是稳定的;如果曲线穿越实轴且在穿越点附近存在 无穷大的斜率,则系统是不稳定的。
应用范围
奈氏判据适用于线性时不变系统的频域分析,对于具有开环极点的系统尤为适用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 4 5
根据频率特性的概念,系统的稳态输出为:
y() 1 ( j) sin[ 4 t 23.1 ( j)]
3
5
1 6 sin[ 4 t 23.1 53.1]
3
5
2sin( 4 t 30) 5
二、频率特性与时域响应的关系
⒈ 频率特性,传递函数,微分方程三种系统描述之间关系
1 j 1 2 2
有:
Re
G(j
)
1 2
2
Im2
G(j)
1 2
2
表明RC 网络的幅相
曲线是以 ( 1 , j0)为圆心,
半径为
1
2 的半圆,如右
2 图所示。
j 1
2 Re G(j)
0
Im G(j)
0
② 对数频率特性曲线:又称伯德(Bode)图,由对数幅频曲线
和对数相频曲线组成。对数频率特性曲线的横坐标按 lg
可见,A()、() 分别为 G(j) 的幅值 G(j)
和相角 G(j) 。
设线性定常系统的传递函数为:
C(s) N (s)
N (s)
G(s)
R(s) D(s) (s p1)(s p2 ) (s pn )
为方便起见设系统无重极点,则:
C(s) G(s)R(s)
N (s)
R(s)
(s p1)(s p2 ) (s pn )
s p
微分方程
传递函数
系统
p j
s j
频率特性
⒉ 频率特性为什么能反映系统动态特性?
物理上:正弦输入与阶跃输入不同,由于是强迫振荡 所以能反映系统动态特性。
数学上: G(j) G(s) ,G(j) 中的时间常数等反映 s j 了系统结构。
三、频率特性的几何表示法
① 幅相频率特性曲线:又称极坐标图或幅相曲线
i 1
式中:
b1
G(s)
(s
Um
j)(s
j)
( cos0
s sin0 ) (s
j)
s j
G( j) Um e j0 G( j) e jG(j) Um e j0
2 j
2 j
b2
G(s) (s
Um
j)(s
j)
( cos0
s sin0 ) (s
j)
s j
G(j) Um e j0 G(j) e jG(j) Um e j0
(对数)分度,单位是 rad s;对数幅频特性曲线的纵坐标
按 L() 20lg G(j) 20lgA() 线性分度,单位是分贝
(dB) 。对数相频特性曲线的纵坐标按 ()线性分度,单
已知某闭环系统的传递函数为: (s) C(s) 30
R(s) 5s 3
当输入为 r(t) 1 sin( 4 t 23.1) 时,试用频率特性的概念 35
求其稳态输出。
解: ( j) 30 5 j 3
( j) 30
6
25 2 9 4
5
( j) arctan 5 53.1
如图,设初始 uo (0) 0,ui Um sint。
R
当输出阻抗足够大时有:
i(t)
C
ui Ri uo
uo
1 C
ห้องสมุดไป่ตู้ idt
消去 i
duo dt
uo
ui
ui (t)
( RC)
uo (t)
对上式进行拉氏变换得: UO (s) 1 UI (s) s 1
U
O
(s
)
1 s
1
U
I
(s)
1 s
A() G(j) ,() G(j)
通常,把 G(j) G(j) e j()称为系统的频率特性。它 反映了在正弦输入信号作用下,系统稳态响应与输入正弦信
号之间的关系。系统稳态输出信号与输入正弦信号的幅值比
A() G(j) 称为幅频特性,它反映了系统对不同频率的正
弦输入信号的衰减(放大)特性。系统稳态输出信号对正弦输 入信号的相移 () G(j) 称为系统的相频特性,它表示系 统输出对于不同频率正弦输入信号的相移特性。
设:r(t) Um sin (t 0 ) Um sint cos0 Um cos t sin0
则:R(s)
Um
s2 2
(
cos0
s
sin0 )
C(s)
N (s)
(s p1)(s p2 )
(s
pn
)
Um
s2 2
(
cos 0
s
sin0
)
n
c(t) aie pit b1e jt b2e jt
§5-8 根据闭环频率特性分析系统的时域响应
§5-1 频率特性及其与时域响应的关系
一、频率特性的基本概念
频率响应:在正弦输入信号的作用下,系统输出的稳态 分量。
频率特性:系统频率响应与正弦输入信号之间的关系。 频域分析法:应用频率特性研究线性系统的经典方法。其
特点是根据系统的开环频率特性去判断闭环系统的性能。
第五章 线性系统的频域分析法
§5-1 频率特性及其与时域响应的关系 §5-2 典型环节的频率特性
§5-3 系统开环频率特性的极坐标图
§5-4 系统开环对数频率特性的绘制 §5-5 乃奎斯特稳定判据和系统的相对稳定性 §5-6 控制系统对数坐标图与稳态误差及瞬态
响应的关系
*§5-7 系统的闭环频率特性
1 sint ()
1 2 2
暂态分量
稳态分量
1
2 2
响应的稳态分量为:
uos Um
1
1
2 2
sint
()
Um
A() sint
()
式中:A() 1 1 1 22 1 j
G(s)
( )
1
arctan
s j
G(j)
1
1
j
G(s)
1 s
s j
1
earctan
1 22
G(j) X () jY () —— 实数和虚数的形式 G(j) e j() —— 复指数形式
幅频特性为 的偶函数,相频特性为 的奇函数,因
此, 从 0 和 0 的幅相曲线关于实轴对称,
一般只绘制 0 的幅相曲线。小箭头指示
时幅相曲线的变化方向。
对于RC 网络:
G(j) 1 1 j
1
U m s2
2
U m 1 22
s
1
1
1
U
m
2
2
s2
2
U 1
m 2
2
s2
s
2
拉氏反变换得:
uo (t)
U m 1 2 2
et
Um
1 2 2
sint
U 1
m 2
2
cos t
U m 1 2 2
et
Um
1 2 2
1
2 2
sin t
1 cost 1 2 2
U m 1 2 2
et
Um
2j
2j
cs (t)
lim c(t)
t
b1e
jt
b2e
jt
G( j) e jG(j) Um e j0 e jt G(j) e jG(j) Um e j0 e jt
2 j
2j
Um
G(j)
e jG(j )+0 t
e jG(j )+0 t 2j
Um G(j) sinG(j) t 0
相关文档
最新文档