全国数学竞赛预赛试题分类:数列

合集下载

2024年全国高中数学联赛北京赛区预赛一试试题(解析版)

2024年全国高中数学联赛北京赛区预赛一试试题(解析版)

2024年全国高中数学联赛北京赛区预赛一试试题考试时间:8:00-9:20填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合{}12345A a a a a a =,,,,,若A 中所有三元子集的三个元素之积组成的集合为{}30,15,10,6,5,3,26,10,15B =------,,则集合A =.2.已知函数()201ln 102x x f x x x +<⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩,,若关于x 的方程()()f f x m =恰有三个不相等的实数根123,,x x x 且满足123x x x <<,则()1229ln 4x x ++的取值范围是.3.从1,2,,2024 中任取两个数()a b a b ≤,,则37a b +的值中,个位数字为8的数有个.4.设复数z 满足32i 6z -=,令21107457iz z z z -+=-+,则1z 的最大值是.5.已知函数()*,1,,,N ,,,x x f x q q x p q p q p q p p ⎧⎪=+⎨=∈>⎪⎩若为无理数若其中且互质,则函数()f x 在区间89,910⎛⎫ ⎪⎝⎭上的最大值为.6.对于0c >,若非零实数a b ,满足224240a ab b c -+-=,且使2a b +最大,则342a b c -+的最小值为.7.已知函数()44cos sin sin4f x x x a x b =++-,且π6f x ⎛⎫+ ⎪⎝⎭为奇函数.若方程+=0在[]0,π上有四个不同的实数解1234,,,x x x x ,则12344x x x x f +++⎛⎫ ⎪⎝⎭的平方值为.8.已知{}1,2,,2625A ⊆ ,且A 中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式202320240()i i f x x cx ==+∑,其中{}1,0,1i c ∈-.记N 为()f x 的正整数根的个数(含重根).若()f x 无负整数根,N 的最大值是.10.在棱长为4的正方体1111ABCD A B C D -中,E 为棱1AA 上的一点,且11,A EF =为截面1A BD 上的动点,则AF FE +的最小值等于.11.数列{}n a 定义如下:设()()2!!2024!n n n +写成既约分数后的分母为(),n A n a 等于()2A n 的最大质因数,则n a 的最大值等于.2024年全国高中数学联赛北京赛区预赛二试试题考试时间:9:40-12:3012.设,,a b c 是三个正数,求证:++13.如图所示,锐角ABC V 的三条高线AD ,BE ,CF 交于点H ,过点F 作//FG AC 交直线BC 于点G ,设 CFG 的外接圆为O O ,与直线AC 的另一个交点为P ,过P 作//PQ DE 交直线AD 于点Q ,连接OD ,OQ .求证:OD OQ =.14.有n 个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.15.设12n a a a ,,,为n 个两两不同的正整数且12n a a a 恰有4048个质因数.如果12n a a a ,,,中任意多个数相乘均不是一个整数的4049次方,求n 的最大值.1.{}2,1,1,3,5--【分析】依据总的乘积,绝对值最大的乘积,绝对值最小的乘积去分析集合A 中的各元素即可.【详解】A 中所有三元子集共有35C 10=个,A 中的每个元素在这些三元子集中均出现了10365⨯=次,故()()()()()()()612345301510653261015a a a a a =-⨯-⨯-⨯-⨯-⨯-⨯⨯⨯⨯,1234530a a a a a =,因为集合B 中的元素有6个负数4个正数,故集合A 中的元素有2个负数3个正数,所以1234530a a a a a =,不妨设12345a a a a a ≤≤≤≤,三个元素之积绝对值最大时,34530a a a =-,121a a =-,又A 为整数集合,所以11a =,21a =-或者11a =-,21a =;三个元素之积绝对值最小时,1232a a a =,又121a a =-,所以32a =-,4515a a =,因为集合A 中的元素有2个负数3个正数,故4a 、5a 均为正整数,所以43a =,55a =,故{}2,1,1,3,5A =--.故答案为:{}2,1,1,3,5--.【点睛】关键点点睛:本题考查集合的子集,关键是理解题目的意思,并从“总的乘积,绝对值最大的乘积,绝对值最小的乘积”这些不同的角度去分析集合A 中的各元素.2.11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭【分析】求出嵌套函数解析式4,2,1(())ln 2,20,211ln ln 11,022x x f f x x x x x ⎧⎪+<-⎪⎪⎪⎛⎫=+-≤<⎨ ⎪⎝⎭⎪⎪⎡⎤⎛⎫++≥⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎩,作出其图象,得到0ln 2m ≤<,化简得()121ln 229221ln 4ln 2x x m ⎛⎫- ⎪+=- ⎪++ ⎪⎝⎭,设右边为新函数,根据其单调性得到范围.【详解】当2x <-时,则20x +<,则()()224f f x x x =++=+,当20x -≤<时,022x £+<,则()()()11ln 21ln 222f f x x x ⎡⎤⎛⎫=++=+ ⎪⎢⎥⎣⎦⎝⎭,当0x ≥时,()()11ln ln 1122f f x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,即4,2,1(())ln 2,20,211ln ln 11,022x x f f x x x x x ⎧⎪+<-⎪⎪⎪⎛⎫=+-≤<⎨ ⎪⎝⎭⎪⎪⎡⎤⎛⎫++≥⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎩方程(())f f x m =恰有三个不相等的实数根等价于直线y m =与函数(())y f f x =的图象有三个不同交点,因此0ln 2m ≤<.此时14x m +=且21ln 22x m ⎛⎫+= ⎪⎝⎭,则14x m =-,()2ln 4ln 2x m +=+,从而()121ln 22921221ln 4ln 2ln 2x m x m m ⎛⎫- ⎪++==- ⎪+++ ⎪⎝⎭,设()1ln 2221ln 2h m m ⎛⎫- ⎪=- ⎪+ ⎪⎝⎭,则其在[0,ln 2)上单调递增,因此()1229ln 4x x ++的取值范围是11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭.故答案为:11,1ln 22ln 2⎡⎫+⎪⎢⎣⎭.【点睛】关键点点睛:本题的关键是利用分段函数的解析式求出()()y f f x =的表达式,然后利用转化法、数形结合思想进行求解.。

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编 数列 真题汇编与预赛典型例题(解析版)

全国高中数学联赛与各省市预赛历届(2009-2019)试题汇编  数列 真题汇编与预赛典型例题(解析版)

专题01数列真题汇编与预赛典型例题1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为.【答案】80【解析】设,则有,①.②用t表示中值为2的项数.由②知t也是中值为2的项数,其中t∈{0,1,2,3}.因此的取法数为.取定后,任意指定的值,有22=4种方式.最后由①知,应取使得为偶数,这样的b1的取法是唯一的,并且确定了整数a1的值,进而数列唯一对应一个满足条件的数列.综上可知,满足条件的数列的个数为20×4=80.2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。

则的所有可能值为___________。

【答案】13、20【解析】由条件,知均为正整数,且。

由于,故.反复运用数列的递推关系知,。

而,故①注意到,则②当时,式①②分别化为无解。

当时,式①②分别化为得到唯一的正整数,此时。

当时,式①②分别化为:,得到唯一的正整数此时综上,的所有可能值为13、20。

故答案为:13、203.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为________. 【答案】40【解析】由柯西不等式知,等号成立的充分必要条件为:,即成等比数列.于是,问题等价于计算满足的等比数列的个数.设等比数列的公比,且.记,其中,m、n为互素的正整数,且.先考虑的情形.此时,.注意到,互素,故.相应地,分别等于,它们均为正整数.这表明,对任意给定的,满足条件并以q为公比的等比数列的个数,即为满足不等式的正整数l的个数,即.由于,故仅需考虑的情形,相应的等比数列的个数之和为.当时,由对称性,知亦有20个满足条件的等比数列.综上,共有40个满足条件的有序数组4.【2014年全国联赛】已知数列满足.则___________.【答案】【解析】由题意知记数列的前n项和为.则.上面两式相减得故.5.【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有.则这样的数列的个数为______.【答案】491【解析】令.则对每个符合条件的数列,满足条件,且.反之,由符合上述条件的八项数列可唯一确定一个符合题设条件的九项数列.记符合条件的数列的个数为.显然,中有;从而,有个2,个1.当给定时,的取法有种,易见的可能值只有0、1、2,故.因此,由对应原理,知符合条件的数列的个数为491.6.【2011年全国联赛】已知.则数列中整数项的个数为______. 【答案】15【解析】注意到.要使为整数,必有均为整数,即.当时,均为非负整数.所以,为整数,共有14个.当时,,在中,中因数2的个数为.同理,可计算得中因数2的个数为82,中因数2的个数为110.故中因数2的个数为.从而,是整数.当时,.同理,中因数2的个数小于10.从而,不是整数.因此,整数项的个数为.故答案为:157.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.【答案】【解析】设的公差为的公比为.则解得.从而对一切正整数都成立.于是,.解得.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.【答案】答案见解析【解析】取最小值时.每个或1,.设中,n有个.则任意.令,则.由隔板法的解数为.因此所求有个,最小值.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.【答案】(1)证明见解析;(2)证明见解析.。

高中数学竞赛5数列部分参考答案

高中数学竞赛5数列部分参考答案

全国高中数学联赛试题分类汇编5.数列部分参考答案2019B 8.◆答案:5★解析:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则()1121a d a k d +=+-,即()12k d a -=,因此必有2k ≠,且12a d k =-. 这样就有()111112n n a a n d a a k -=+-=+-,而此时对任意正整数n ,()()()()1211111222n n n n n a a a na d a n k d --⎡⎤+++=+=+--+⎢⎥⎣⎦,确实为{}n a 中的一项.因此,仅需考虑使()12|k a -成立的正整数k 的个数.注意到20193673=⨯,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.2019B 二、★证明:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--……………10 分 易得11,k d d n ==,12k nd d -=,23k nd d -=,代入上式得3222123nn d d d n n d d d d --=--, 即()()2232231d d d d -=-,由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30 分 从而序列21321,,,k k d d d d d d ----为232121,,,,k k p p p p p p p ------,即12,,,k d d d为211,,,,k p p p -,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥.………40分。

2018A 8、◆答案:80★解析:记{}2,11∈-=+i i i a a b (9,,2,1 =i ),则有92111012b b b a a a +++=-= ① 7655825432b b b a a a a b b b ++=-=-=++②下面用t 表示432,,b b b 中2的项数。

2023全国高中数学联赛山东省预赛试题(答案)

2023全国高中数学联赛山东省预赛试题(答案)

2023全国数学联赛山东省预赛试题(答案)一、填空题(每小题8分,共80分)1、已知},33811|{1Z x x A x ,},032|{N x x x x B ,则集合},,|{B y A x xy m m C 的元素个数是答案:7解析:由已知得}2,1,0,1,2{ A ,}2,1,0{ B ,所以}4201124{,,,,, C 2、已知:3tan sin 41))2,0((,则 是答案:18解析:由已知得)6sin (22sin 2,所以易得183、已知关于x 的方程023 c b x a x x 的三个非零实数根成等比数列,则33b c a 的值是答案:0解析:设这三个根是2,,dq dq d ,则由韦达定理得c qd b q d q d q d adq dq d 33322222整理得c ab3)(,所以033 b c a 4、正方体1111D C B A ABCD 的底面1111D C B A 内有一个动点M ,且CAD BM 1//平面,则MD D 1tan 的最大值是答案:2解析:由已知点M 在线段11C A 上运动,所以2tan 111MD DD MD D ,且当点M 是11C A 中点时等号成立.5、数列}{n a 中,11 a ,),2,1(211na a nn ,那么n a 答案:),2,1(1)2(32na nn 解析:由递推关系得)1(211nnn a a a ,)2(121nnn a a a 所以2122111n n n n a a a a ,所以nn n n a a a a )2(21)2(21111 所以),2,1(1)2(32na nn6、已知0,, z y x ,则zy x x zz yy xf539164222222的最小值是答案:55解析:由柯西不等式得y x y x24122,z y z y441422,xz x z8411622所以zy x x zz yy xf539164222222555539842)(z y x xz z y y x 且当x z y 2 时取等号7、设ABC 的内心为I ,而且满足0652 IC IB IA ,则B cos 的值是答案:85解析:设ABC 的三边长为c b a ,,,由熟悉的结论:0 IC c IB b IA a 得6:5:2:: c b a ,所以85cosB 8、已知双曲线H :221x y 上第一象限内一点M ,过M 的作H 的切线l ,与双曲线H 切于M ,交H 的渐近线于P ,Q 两点(P 在第一象限),R 与Q 在同一渐近线上.则RP RQ的最小值为.答案:21解析:设点00(,)M xy ,11(,)P x y ,22(,)Q x y ,则00:10l x x y y .02121=x y y x x y 且2211222200x y x y ,12211221212x x y y y y x x,注意到02121=x y y x x y 1201222x x y y y x1201222x x y y y x即M 为PQ 的中点.222221111||||4444RP RQ RM P Q P OP QO Q.考虑到M 在第一象限,故22O Q21142RP RQ O Q9、小张参加一次十道选择题的测试,做对一道得一分,做错一道扣一分,不做得零分.他的目标是至少得7分,7分及格.小张现在确定他前六道题的答案是正确的,而剩下的每道题做对的概率为21,小张应该做______多少道题,及格的概率最大答案:7或9解析:做对6道题.再做一道题及格的概率为1P p ,再做两道题及格的概率为22P p ,再做三道题及格的概率为322233(1)(32)P p C p p p p ,再做四道题及格的概率为433344(1)(43)P p C p p p p .显然1234P P P P ,.因此,只需比较1P 与3P 的大小.当13P P ,即2(32)pp p时,解得112p .因此,当112p 时,13P P ,此时回答九道题及格的概率最大;当102p 时,13P P ,此时回答七道题及格的概率最大;当12p 时,13P P ,此时回答七道题或回答九道题及格的概率最大10、设实数y x ,使得y x ,22y x ,33y x 均为素数,则y x 的值是答案:3解析:设p y x ,q y x22,r y x 33,期中r q p ,,都是素数,pq yx y xy x22所以)(21p pq x,)(21p pq y代入r y x 33整理得)4(332p rp q故23|q p ,所以3 p 或q p ,经检验只能3 p 二、解答题(共70分)11、(本题15分)已知:O 是ABC 的外心,E D ,分别是边AB AC ,上的点.线段CE BD DE ,,的中点分别为R Q P ,,.DE OH垂足为H .求证:H R Q P ,,,四点共圆证明:设ADE 的三个内角分别为E D A ,,,ABC 的外接圆半径为R 由ACRP AB QP//,//知EQPH sinsin,A QPR sinsin ,DHPR sinsin又2,2CD PRBE PQ ,故HR Q P ,,,四点共圆 QPRPHQPH PR RPH PQ sinsin sinAPHECD DBE sin sin 2sin 2DEPH AD CD AE BE 2 )()()()(2222EHDH EH DH ODRDER2222EHDH OE ODDEOH得证12、(本题15分)在区间)2,2(32n n 中任取1212 n 个奇数.求证:在所取出的数中,必有两个数,其中一个数的平方不能被另一个数整除.13、(本题20分)已知:c b a ,,为正实数.证明:)(9)2)(2)(2(222ca bc ab c b a 证明:由抽屉原理,c b a ,,中必有两个数同时不大于1,或同时比小于1,设为b a ,则由0)1)(1(22 b a 得22221b a b a 所以)2)(422()2)(2)(2(22222222 c b a b a c b a )11)(1(3222c b a 2)(3c b a )(9ca bc ab 14、(本题20分)1010 的表格上填入1到100,第i 行第j 列填入j i )1(10.每次操作如下:取一个格子,或者将此格数字减少2,将两个相对的邻格同时加1;或者将此格数字增加2,将两个相对的邻格同时减1.证明:如果经过一些步骤后表格中又得到1到100的数字,则它们是按原来的顺序排列的.证明:设一开始填数字k 的格子为k a ,令 1001i iia A 则A 在操作中是不变量,始终为33835010012 i i 又因此数为表格中1到100所能得到的最大值,故等号成立,所以顺序不变.。

数学竞赛预赛试题及答案

数学竞赛预赛试题及答案

数学竞赛预赛试题及答案试题一:代数问题题目:解下列方程组:\[ \begin{cases}x + y = 5 \\2x - y = 1\end{cases} \]答案:首先将方程①和方程②相加,得到3x = 6,解得x = 2。

将x = 2代入方程①,得到y = 3。

因此,方程组的解为:\[ \begin{cases}x = 2 \\y = 3\end{cases} \]试题二:几何问题题目:已知直角三角形ABC,其中∠A为直角,AB = 6,AC = 8,求斜边BC的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ BC = \sqrt{AB^2 + AC^2} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \]所以,斜边BC的长度为10。

试题三:数列问题题目:数列1, 1, 2, 3, 5, 8, ... 被称为斐波那契数列。

求第10项的值。

答案:斐波那契数列的定义是每一项都是前两项的和。

已知第9项为34,第8项为21,第7项为13,第6项为8,第5项为5,第4项为3,第3项为2,第2项为1,第1项为1。

根据定义,第10项为第8项和第9项的和,即:\[ 34 + 21 = 55 \]所以,斐波那契数列的第10项是55。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:总共有8个球,其中5个是红球。

抽到红球的概率是红球数量除以总球数,即:\[ P(\text{红球}) = \frac{5}{8} \]试题五:组合问题题目:有7个人参加一个会议,需要选出3个人组成一个委员会。

求不同的委员会组合数。

答案:这是一个组合问题,可以用组合公式计算:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中n是总人数,k是委员会的人数。

将数值代入公式,得到:\[ C(7, 3) = \frac{7!}{3!(7-3)!} = \frac{7 \times 6 \times5}{3 \times 2 \times 1} = 35 \]所以,可以组成35种不同的委员会组合。

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国高中数学联赛(浙江预赛)试题(含答案)

2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计96分)1.设集合10,21x A xx ⎧−⎫=≤⎨⎬−⎩⎭集合2{20}B x x x m =++≤。

若A B ⊆,则实数m 的取值范围为 。

2.设函数{}{}:1,2,32,3,4f → 满足 ()()1()ff x f x −=,则这样的函数有_______个。

3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。

4.已知数列{}n x满足:11,12n x x x n +==≥,则通项n x =__________。

5 .已知四面体A BCD −的外接球半径为1,1,60BC BDC =∠=,则球心到平面BDC 的距离为______________。

6.已知复数z 满足24510(1)1zz =−=,则z =__________________。

7.已知平面上单位向量,a b 垂直,c 为任意单位向量,且存在(0,1)t ∈,使得向量(1)a t b +−与向量c a −垂直,则a b c +−的最小值为__________________________。

8. 若对所有大于2024的正整数n ,成立202420240, ii n i i na C a ==∈∑,则12024a a +=_________。

9.设实数,,(0,2]a b c ∈,且3b a ≥或43a b +≤,则max{,,42}b a c b c −−−的最小值为 ___ __ __。

10.在平面直角坐标系xOy 上,椭圆E 的方程为221124x y +=,1F 为E 的左焦点;圆C 的方程为222())x a y b r −+−=( ,A 为C 的圆心。

直线l 与椭圆E 和圆C 相切于同一点(3,1)P 。

则当1OAF ∠最大时,实数r =_____________________。

竞赛中的数列问题

竞赛中的数列问题

竞赛中的数列问题【实用版】目录1.竞赛中的数列问题概述2.数列问题的分类3.数列问题的解题技巧4.实例解析5.总结与展望正文【1.竞赛中的数列问题概述】在各类数学竞赛中,数列问题是一个重要的题型,它涉及的知识点广泛,题型多样,既能考查学生的基本运算能力,也能考查学生的思维能力和创新能力。

数列问题主要围绕等差数列、等比数列及其性质、求和公式、通项公式等知识点展开。

【2.数列问题的分类】数列问题主要分为以下几类:(1)等差数列问题:主要涉及等差数列的性质、求和公式、通项公式等。

(2)等比数列问题:主要涉及等比数列的性质、求和公式、通项公式等。

(3)混合数列问题:涉及等差数列与等比数列的结合,需要运用分类讨论的思想进行求解。

(4)数列的极限问题:涉及数列的收敛性、发散性、极限等概念。

【3.数列问题的解题技巧】(1)熟练掌握等差数列、等比数列的性质和公式,这是解决数列问题的基本功。

(2)善于运用分类讨论的思想,对于混合数列问题,要能够根据题目条件进行分类讨论,寻找解题思路。

(3)对于数列的极限问题,要能够运用数列的收敛性、发散性、极限等概念进行分析。

【4.实例解析】例题:已知数列{an}满足 an=2an-1+3an-2(n≥2),求数列{an}的前n 项和。

解:根据题目条件,我们可以判断这是一个等差数列问题。

首先,根据 an 的表达式,我们可以得到 an-2 和 an-1 的关系:an-2=2an-3+3an-4,进一步可以得到 an-3 和 an-2 的关系:an-3=2an-4+3an-5,以此类推,我们可以得到:an-k=2an-k-1+3an-k-2(k≥2)将上述各式相加,可以得到:an=2(an-1+an-2+...+an-k)+3(an-1+an-2+...+an-k-1)根据等差数列的求和公式,我们可以得到:an=2(n-k)an-k/2+3(n-k-1)an-k-1/2化简得:an=(4n-5)an-k-1/2+(2n-3)an-k/2由此,我们可以求得数列{an}的前 n 项和。

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案

全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。

2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。

3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。

试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。

2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。

3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。

试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。

2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。

3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。

试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。

2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。

3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。

试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。

2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。

数列真题与预赛典型例题集答案

数列真题与预赛典型例题集答案

数列真题汇编与预赛典型例题1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为 .2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。

则的所有可能值为___________。

3.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为_______ _.4.【2014年全国联赛】已知数列满足.则___________. 【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有. 5.则这样的数列的个数为______.6.【2011年全国联赛】已知.则数列中整数项的个数为_____ _.7.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.10.【2018年全国联赛】数列定义如下:a1是任意正整数,对整数n≥1,a n+1是与互素,且不等于的最小正整数.证明:每个正整数均在数列中出现.11.【2017年全国联赛】设数列定义为求满足的正整数r的个数。

12.【2016年全国联赛】设p与p + 2均为素数,p > 3.定义数列,其中,表示不小于实数x的最小整数.证明对,均有.13.【2014年全国联赛】已知数列满足.求正整数m使得.14.【2013年全国联赛】给定正数数列满足,,其中,.证明:存在常数,使得.15.【2013年全国联赛】给定正整数.数列定义如下:,对整数,.记.证明:数列中有无穷多项是完全平方数.16.【2012年全国联赛】已知数列的各项均为非零实数,且对于任意的正整数都有.(1)当时,求所有满足条件的三项组成的数列.(2)是否存在满足条件的无穷数列,使得若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由.17.【2011年全国联赛】 已知数列{}n a 满足:()123,1a t t R t =-∈≠±,()()()112321121n n n n n n t a t t a n N a t +++-+--=∈+-.(1)求数列{}n a 的通项公式; (2)若0t >,试比较1n a +与n a 的大小. 18.【2011年全国联赛】证明:对任意整数,存在一个次多项式具体如下性质: (1)均为正整数;(2)对任意的正整数及任意个互不相同的正整数,均有.19.【2011年全国联赛】设是给定的正实数,.对任意正实数,满足的三元数组的个数记为.证明:.20.【2010年全国联赛】证明:方程恰有一个实数根,且存在唯一的严格递增正整数数列,使得.21.【2010年全国联赛】给定整数,设正实数满足,记.求证:.22.【2009年全国联赛】已知是实数,方程有两个实根,数列满足).(1)求数列的通项公式(用表示);(2)若,求的前项和.23.【2009年全国联赛】在非负数构成的数表中,每行的数互不相同,前六列中每列的三数之和为1,均大于1.如果的前三列构成的数表满足下面的性质:对于数表中的任意一列)均存在某个使得.①求证:(1)最小值)一定去自数表的不同列;(2)存在数表中唯一的一列)使得数表仍然具有性质().1.【2018年湖南预赛】如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设是第n次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),则前n次挖去的所有小三角形面积之和的值为____________________.2.【2016年吉林预赛】在公差不为0的等差数列中,,且成等比数列.则数列的通项公式为________.3.【2016年上海预赛】数列定义如下:,则____ _______。

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)一、填空题:本题共8小题,每小题8分,共64分。

1.若实数m>1满足log9(log8m)=2024,则log3(log2m)的值为______.2.设无穷等比数列{a n}的公比q满足0<|q|<1.若{a n}的各项和等于{a n}各项的平方和,则a2的取值范围是______.3.设实数a,b满足:集合A={x∈R|x2−10x+a≤0}与B={x∈R|bx≤b3}的交集为[4,9],则a+b的值为______.4.在三棱锥P−ABC中,若PA⊥底面ABC,且棱AB,BP,BC,CP的长分别为1,2,3,4,则该三棱锥的体积为______.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a,b.若事件“a+b=7”发生的概率为17,则事件“a=b”发生的概率为______.6.设f(x)是定义域为R、最小正周期为5的函数.若函数g(x)=f(2x)在区间[0,5)上的零点个数为25,则g(x)在区间[1,4)上的零点个数为______.7.设F1,F2为椭圆Ω的焦点,在Ω上取一点P(异于长轴端点),记O为△PF1F2的外心,若PO⋅F1F2=2PF1⋅PF2,则Ω的离心率的最小值为______.8.若三个正整数a,b,c的位数之和为8,且组成a,b,c的8个数码能排列为2,0,2,4,0,9,0,8,则称(a,b,c)为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a<b<c的幸运数组(a,b,c)的个数为______.二、解答题:本题共3小题,共56分。

解答应写出文字说明,证明过程或演算步骤。

9.(本小题16分)在△ABC中,已知cosC=sinA+cosA2=sinB+cosB2,求cosC的值.10.(本小题20分)在平面直角坐标系中,双曲线Γ:x2−y2=1的右顶点为A.将圆心在y轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P,圆心距为d,求d|PA|的所有可能的值.11.(本小题20分)设复数z,w满足z+w=2,求S=|z2−2w|+|w2−2z|的最小可能值.参考答案1.40492.[−14,0)∪(0,2)3.74.345.196.117. 648.5919.解:由题意知,sinA +cosA =sinB +cosB ,所以 2sin (A +π4)= 2sin (B +π4),所以A +π4=B +π4或(A +π4)+(B +π4)=π,即A =B 或A +B =π2,当A =B 时,C =π−2A ,且A ∈(0,π2),由cosC =sinA +cosA 2,知cos (π−2A)=sinA +cosA 2,即−2cos2A =sinA +cosA ,所以2(sin 2A−cos 2A)=sinA +cosA ,所以2(sinA +cosA)(sinA−cosA)=sinA +cosA ,因为A ∈(0,π2),所以sinA +cosA ≠0,所以sinA−cosA =12,又sin 2A +cos 2A =1,所以(12+cosA )2+cos 2A =1,解得cosA =7−14或cosA =− 7−14(舍负),所以cosC =−cos2A =1−2cos 2A =1−2×(7−14)2= 74;当A +B =π2时,C =π2,所以cosC =0,此时sinA +cosA = 2sin (A +π4)=0,而A ∈(0,π2),所以A +π4∈(π4,3π4),所以sin (A +π4)>0,与sin (A +π4)=0相矛盾,所以cosC =0不成立,综上,cosC = 74. 10.解:考虑以(0,y 0)为圆心的好圆Ω0:x 2+(y−y 0)2=r 20(r 0>0).由Ω0与Γ的方程联立消去x ,得关于y 的二次方程2y 2−2y 0y +y 20+1−r 20=0.根据条件,该方程的判别式Δ=4y20−8(y20+1−r20)=0,因此y20=2r20−2.对于外切于点P的两个好圆Ω1,Ω2,显然P在y轴上.设P(0,ℎ),Ω1,Ω2的半径分别为r1,r2,不妨设Ω1,Ω2的圆心分别为(0,ℎ+r1),(0,ℎ−r2),则有(ℎ+r1)2=2r21−2,(ℎ−r2)2=2r22−2,两式相减得2ℎ(r1+r2)=r21−r22,而r1+r2>0,故化简得ℎ=r1−r22,进而(r1−r22+r1)2=2r21−2,整理得r21−6r1r2+r22+8=0①,由于d=r1+r2,A(1,0),|PA|2=ℎ2+1=(r1−r2)24+1,而①可等价地写为2(r1−r2)2+8=(r1+r2)2,即8|PA|2=d2,所以d|PA|=22.11.解:根据z+w=2,得w=2−z,可得|z2−2w|=|z2−2(2−z)|=|z2+2z−4|=|z+1+5|⋅|z+1−5|.|w2−2z|=|(2−z)2−2z|=|z2−6z+4|=|z−3+5|⋅|z−3−5|.以上两式的最右边各项分别是z到复平面中实轴上的点(−1−5,0),(−1+5,0),(3−5,0),(3+5,0)的距离,将z=x+yi换成其实部x时,各个距离都不会增大,因此只需考虑函数f(x)=|x2+2x−4|+|x2−6x+4|在R上的最小值.由x2+2x−4=0的根为−1±5,x2−6x+4=0的根为3±5,且−1−5<3−5<−1+5<3+5,分以下几种情况讨论:①若x≤−1−5,则f(x)=2x2−4x,f(x)在(−∞,−1−5]上的最小值为f(−1−5)=16+85;②若x∈(−1−5,3−5],则f(x)=−8x+8,此时f(x)的最小值为f(3−5)=−16+85;③若x∈[3−5,−1+5],则f(x)=−2x2+4x,此时f(x)的最小值为f(3−5)=f(−1+5)=−16+85;④若x∈[−1+5,3+5],则f(x)=8x−8,此时f(x)的最小值为f(−1+5)=−16+85;⑤若x≥3+5,则f(x)=2x2−4x,f(x)在[3+5,+∞)的最小值为f(3+5)=16+85.综上所述,f(x)在R上的最小值为f(3−5)=f(−1+5)=85−16.即S=|z2−2w|+|w2−2z|的最小可能值是85−16.。

备战2020年全国高中数学联赛与各省市预赛 历届数列解答题省赛试题汇编解析版(21页)

备战2020年全国高中数学联赛与各省市预赛 历届数列解答题省赛试题汇编解析版(21页)

数列解答题省赛试题汇编1.【2018年广西预赛】设为非负数,求证:. 【答案】见解析【解析】当n=1时,结论显然成立.假设当n=k时,结论对于任意k个非负数成立.则当n=k+1时,对于任意k+1个非负数,根据归纳假设有,从而.下面证明①由柯西不等式可得.即.于是有.故.从而.即①式成立.由数学归纳法可知,对任意的非负实数结论均成立.2.【2018年湖南预赛】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列前n项和为,且满足. (1)求数列的通项公式:(2)若,求正整数m的值;(3)是否存在正整数m,使得恰好为数列中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.【答案】(1)(2)(3)【解析】试题分析:(1)数列通项分奇偶求:方法为待定系数法,注意项数,由可解得公差及公比,从而,因此(2)由于数列通项分奇偶,因此从奇偶分别讨论:若,解得;若,即,解得,舍(3)先求和,限定,而为正整数,即只能为,分类讨论得.试题解析:(1)设的公差为d.的公比为,则由故故4分(2)由,若,则即,即若,即即为正整数为正整数,即即,此时式为不合题意综上,. 9分(3)若中的一项,则为正整数又故若中的某一项只能为①若无解②若,显然不符合题意,符合题意当时,即,则即为增函数,故,即为增函数故,故当时方程无解即是方程唯一解③若综上所述,. 16分考点:等差数列及等比数列综合应用3.【2018年甘肃预赛】设等比数列的前项和为,且).(1)求数列的通项公式;(2)在之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:.【答案】(1)(2)见解析【解析】(1)由两式相减得,所以).因为等比,且,所以,所以.故.(2)由题设得,所以,所以,则,所以.4.【2018年吉林预赛】数列为等差数列,且满足,数列满足的前n项和记为.问:当n为何值时,取得最大值,说明理由.【答案】16【解析】因为,所以.解得.所以d<0,.故是首项为正数的递减数列.由,即,解得.即,所以,所以,而.故,又所以最大,即n=16时,取得最大值.5.【2018年河南预赛】在数列中,是给定的非零整数,.(1)若,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数项.【答案】(1)1(2)见解析【解析】(1)因,,….所以自第20项起,每三个相邻的项周期的取值为1,1,0.又,故.(2)首先证明:数列必在有限项后出现“0”项.假设中没有“0”项,由于,所以当时,都有.若,则.若,则.即要么比至少小1,要么比至少小1,令,2,3,…,则.由于是确定的正整数,这样下去,必然存在某项,这与矛盾,故中必有“0”项.若第一次出现的“0”项为,记,则自第项开始,每三个相邻的项周期的取值0、,即,1,2,…所以数列中一定可以选取无穷多项组成两个不同的常数列.6.【2018年河北预赛】已知数列满足:.记的值。

2023年全国高中数学联赛新疆赛区预赛试卷真题

2023年全国高中数学联赛新疆赛区预赛试卷真题

102023年新疆预赛一、填空题(每小题8分,共计64分)1.对于数列{a n },记b n =a n +1−a n ,则数列{b n }为数列{a n }的阶差数列,记c n =b n +1−b n ,则数列{c n }为数列{a n }的二阶差数列.以此类推,可得到数列{a n }的p 阶差数列.若{a n }的p 阶差数列是非零常数列,则称数列{a n }为p 阶等差数列.已知数列{a n }是二阶等差数列,a 10=23,a 20=23,且二阶差数列{c n }中,c n =20,则a 30=.2.在△ABC 中,M,N 分别是线段AB,AC 上的点,且AM =12AB ,AN =13AC ,E,F,G 是线段BC 上的三个动点,且 »AE + »AF + »AG =x »AM +y »AN (x,y ∈R ),则2x +3y 的最小值是.3.如图,在四棱锥P −ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =P B =2,AD =6,点M,N 分别在棱AB,BC 上.当空间四边形P MND 的周长最小时,二面角P −MN −D 的余弦值为.4.若对任意的x ∈(0,+∞),不等式ae aex +a ≥ln (ex +1)恒成立,则a 的取值范围是.5.函数f (x )=…x 416+x 22+1+…x 416−4x +8的最小值为.6.在△ABC 中,a,b,c 分别为三个内角A,B,C 对应的三边,若7b 2+25c 2−25a 2=0.试求A −C 取得最大值时,sin (2A −C )=.7.已知非零数列{a n }满足a 1=1,a 2=3,a n (a n +2−1)=a n +1(a n +1−1),n ∈N ∗.则C 02023a 1+C 12023a 2+C 22023a 3+···+C 20232023a 2024的值为.(用整数指数幂表示)8.设A 是任意个7元实数集合,令集合B ={xy |x,y ∈A 且x =y },记集合B 中元素个数为|B |,则|B |max +|B |min =.二、解答题(第9题满分16分,第10题、第11题满分20分,共计56分)9.已知向量»a=(sin x,2cos x),»b=(√3cos x−sin x,cos x),函数f(x)=2»a·»b−1.(1)若方程f2(x)−(m+3)f(x)+3m=0在[0,π]上有四个不同的实数根,求m的值.(2)是否同时存在实数a和正整数n,使得函数h(x)=f(x)−a在区间[0,nπ]上恰有2023个零点?若存在,请求出所有符合条件的a和n的值;若不存在,请说明理由.10.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为12,上下焦点为F1,F2,右顶点为D.过F1做垂直于DF2的直线交椭圆C于A,B两点,且|BD|−|AF1|=8√3 39.(1)求|AD|+|BD|的值.(2)过A,B做椭圆C的两条切线交于点E,若F1E交x轴于P,F2E交x轴于Q,求|P Q|的值.11.设a0,a1,a2,···是个无限实数列,满足不等式a n−1+a n+12≥a n对切正整数n都成立,证明:a0+a n+12≥a1+a2+···+a nn.。

高中数学竞赛试题汇编六《数列》

高中数学竞赛试题汇编六《数列》

高中数学竞赛试题汇编六《数列》1.【2010全国】{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中13a =,11b =,22a b =, 533a b =,则n a = ,n b =答案:d=6,q=92.【2013山东】数列{}n a 的前n 项和n S 满足1n n S a =-,则n a =答案:12nn a ⎛⎫= ⎪⎝⎭3.【2010河南】设n S 是等差数列{}n a 的前n 项和,若59S S =,则35:a a = A.9:5 B. 5:9 C. 3:5 D. 5:34.【2010河北】从满足12211,(1)n n n a a a a a n ++===+≥的数列{}n a 中,依次抽出能被3整除的项组成数列{}n b ,则100b = A.100a B.200a C.300a D.400a 答案:易知4k a 能被3整除,故选D5.【2010山西】数列{}n a 满足2111,n n a a a n +=+=-,则15a =答案:15104a =-6.【2013福建】数列{}n a 满足1132,2n n a a a n +=+=,则na n的最小值为 答案:累加法,(1)32n a n n =-+,321n a n n n =+-,n=6 最小313.7.【2010福建】数列{}n a 满足1112,22n n n a a a ++=-=,则满足10n a >的最小正数n=答案:11122n nn na a ++-=,3n =. 8.【2010江西】数列{}n a ,{}nb 满足1,1,2,3,k k a b k ⋅==L ,已知数列{}n a 前n 项和为1n nA n =+,则数列1n b ⎧⎫⎨⎬⎩⎭前n 项和为n B = 答案:9.【2010湖北】数列{}n a 满足12211,3,n n n a a a a a ++===-,前n 项和为n S ,100S =答案:9k k a a +=,故100991001210111()89S S a a a a a =+=++++=L 10.【2010江苏】数列{}n a ,{}n b 满足235212312,log ()n n n n a b a a a a n+==L ,则n b = 答案:2(123)5(4)5512322n nn n n a a a a ++++++==L L ,1(4)(4)55n n n n b n ++==11.【2013湖北】数列{}n a 满足0120,1,n n a a a a ===,211n n a a +=+,2013a = 答案:912.【2010江苏】数列{}n a 满足1112,1nn na a a a ++==-,123n n T a a a a =L ,则2010T = 答案:1234112,3,,23a a a a ==-=-=,123441,n n a a a a a a +==, 2010200820092010126T T a a a a =⨯⨯==-13.【2010浙江】数列{}n a {}n b 分别为等差数列和等比数列,且11444,1a b a b ====,则 A. 22a b > B. 33a b < C. 55a b > D. 66a b >答案:A14.【2013江苏】数列{}n a 满足()()4+1+19,130n n n n a a a a a =---=,满足条件的1a 的所有可能值之积是答案:49a =,33a =,21a =,10a =;015.【2013安徽】数列{}n a满足12121,(3)n n n a a a a n --===-≥,则2013a =答案:116.【2013浙江】等比数列{}n a 满足13a =且第1项至第8项的几何平均数为9,则3a = A.B.C.D.答案:B,2733,q a ==16.【2012天津】数列{}n a 的前n 项和22n S n n =-,则317a a +=A. 36B. 35C. 34D. 33 答案:C16.【201河南】已知n a n =,则数列11321n n n a a n c n -+⎧=⎨⨯+⎩为奇数为偶数的前2n 项和2T n = 答案:2122T 222n n n n +=++-3.【2012山西】设等差数列的前n 项和n S ,若10a >,311S S =,则当n S 取得最大值时n = 答案:7n =.3.【2012山东】等差数列{}n a 中,201a a =,2011a b =,20121a c=,则 199********ac bc ab --=答案:0.3.【2012湖北】已知数列{}n a 满足:1a 为正整数,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩偶为数为奇数,① 若12a =,则4a = ;② 若12329a a a ++=,则1a = ; 答案:5.3.【2012四川】设等比数列{}n a 的前n 项和n S ,满足2(1)4n n a S +=,则20S =答案:0.3.【2012黑龙江】数列{}n a 满足11a =,212a =,1111()2n n n n n a a a a a -+-++=⋅,则2012a = 答案:C3.【2012江苏】在等差数列{}n a 中,44S ≤,515S ≥,则4a 的最小值是199********ac bc ab --= 答案:0.1.【2011天津】正实数1239,,,a a a a L 构成等比数列,且1234a a +=,345615a a a a +++=, 则789a a a ++= 答案:()1314a q +=①,()2231115a q q q q +++=②;②/①得2q =,114a =,789112a a a ++=2.【2011辽宁】设正数数列{}n a 的前n 项之和为n b ,数列{}n b 的前n 项之积为n C ,且满足1n n b c +=,则1na = 答案:1,n n n cbc -=1112b c ==,11n n n c c c -+=,所以1111n n c c --=,易得1,11n n n c b n n ==++ 11(1)n n n a b b n n -=-=+3.【2011福建】已知,n n S T 分别是等差数列{}n a ,{}n b 的前n 项和,且2142n n S n T n +=-, 则1011318615a ab b b b +=++答案:1010101112020111131861512012012012020a a a a a a S a ab b b b b b b b b b b b T +++=+===++++++4.【2011湖北】数列{}n a 满足12a =,21a =,1212n n n n n n a a a a a a ++++⋅⋅=++,则122011a a a +++=L答案:40225.【2011四川】设等比数列{}n a 的前n 项和n S ,若103010,70S S ==,则40S = 答案:150.6.【2011浙江】已知等差数列{}n a 的前15项和1530S =,则1815a a a ++= 答案:150.。

数学竞赛数列题解析

数学竞赛数列题解析

数学竞赛数列题解析数学竞赛常常涉及各种各样的数列题目,这些题目既有挑战性,又需要坚实的数学基础和巧妙的解题思路。

在本文中,我们将一起来解析数学竞赛中常见的数列题目,帮助读者更好地理解并掌握解题方法。

一、等差数列等差数列是数学竞赛中最常见的一类数列题型。

在等差数列中,每一个数与它前一个数之间的差值是固定的。

我们记这个差值为d,那么等差数列的通项公式为an=a1+(n-1)d。

其中,an表示数列中第n个数,a1表示数列中的第一个数。

下面,我们通过一个实例来解析等差数列题目。

实例1:找规律并计算等差数列中第n项的值。

已知等差数列的第2项是7,第5项是16,求第13项的值。

解析:首先我们可以通过已知条件列出方程。

根据等差数列的性质,我们可以得到以下方程:a2 = a1 + da5 = a1 + 4d其中,a2表示等差数列的第2项,a5表示等差数列的第5项。

根据已知条件,我们可以得到:7 = a1 + d16 = a1 + 4d通过求解这个方程组,我们可以得到d的值为3,a1的值为4。

接下来,我们可以使用等差数列的通项公式计算第13项的值:a13 = a1 + 12d= 4 + 12*3= 40因此,等差数列的第13项的值为40。

二、等比数列等比数列是数列中的每一项与前一项的比值都相等的数列。

我们记这个比值为q,那么等比数列的通项公式为an = a1 * q^(n-1)。

其中,an表示数列中的第n个数,a1表示数列中的第一个数。

接下来,我们通过一个实例来解析等比数列题目。

实例2:计算等比数列的和。

已知等比数列的第一个数是3,公比是2,计算前6项的和。

解析:首先,我们使用等比数列的通项公式计算前6项的值:a1 = 3q = 2a2 = a1 * q= 3 * 2= 6a3 = a2 * q= 6 * 2= 12a4 = a3 * q= 12 * 2= 24a5 = a4 * q= 24 * 2= 48a6 = a5 * q= 48 * 2= 96接下来,我们求解前6项的和:S6 = a1 * (q^6 - 1) / (q - 1)= 3 * (2^6 - 1) / (2 - 1)= 3 * (64 - 1) / 1= 3 * 63= 189因此,等比数列的前6项的和为189。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A卷)与答案

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A卷)与答案

说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,102024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12.又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12.…………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21mC m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x . 若021mm,则121m a k m .若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121ma a r kr r r m . …………30分另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n ma m m,由二项式展开可知11(211)(1)2121n n n m ma m K m m,其中K 为整数,故21n m a m .这意味着21mC m 满足要求.从而满足要求的C 的最大值为212(1)m rm r.综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)rr . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CFCB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF ABAL KA. …………20分同理,记,DQ CA 的延长线交于点L ,则KE ADAL KA.又由||,||KE AB KF AD 知KE CK KFAB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2bS n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2wS n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥. 综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ; (4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S . 证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。

数学竞赛-数列试题及答案

数学竞赛-数列试题及答案

所 以 , 数 列 an
2
2 2 n1 2 a1 n1 . .所以 an
n1 成 公 比 为 的 等 比 数 列 , 其 首 项 为

an


n 1
故 a100 101 298 . 2. (09)已知 p , q q 0 是实数,方程 x2 px q 0 有两个实根 , ,数列 an 满足 a1 p , 4, a2 p2 q , an pan1 qan2 n 3 , (Ⅰ)求数列 an 的通项公式(用 , 表示) ; (Ⅱ)若 p 1 , q ,求 an 的前 n 项和. 方法一: (Ⅰ)由韦达定理知 q 0 ,又 p ,所以 an pxn1 qxn2 an1 an2 , n 3 , 4, 5, 整理得 an an1 an1 an2 2, .所以 bn 是公比为 的等比数列. 令 bn an1 an ,则 bn1 bn n 1, 数列 bn 的首项为:
1 1 1 , ( a1 0 ), b1 a1 2 2 n(n 1)
有 bn 1 1 bn ,故 bn
2
1 ,所以 a n 1n 1 . n 2 n(n 1) 2
4. (07) 已知等差数列{an}的公差 d 不为 0, 等比数列{bn}的公比 q 是小于 1 的正有理数。 若 a1=d, 2 2 2 a a2 a3 b1=d2,且 1 是正整数,则 q 等于________。 b1 b2 b3 已知等差数列{an}的公差 d 不为 0,等比数列{bn}的公比 q 是小于 1 的正有理数。若 a1=d,b1=d2, 2 2 1 a 2 a2 a3 且 1 是正整数,则 q 等于 。 2 b1 b2 b3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国数学竞赛预赛试题分类:数列IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】2014数学预赛试题分类:数列天津3.等比数列{n a }的前n 项和为n S ,并且对任意正整数n 成立243n n S S +=+,则2a 的值是()(A).2(B).6(C).2或6(D).2或-6天津9.数列{n a }满足11,2n n n a a a n +-=+≥.若78a =,则1210a a a +++等于. 河北11、设{n a }是等差数列,且满足:①n a ∈N *,②项数≥3,③d>0,记{n a }所有项的和为S.(1)写出满足S=30的所有{n a };(2)求证:对大于8的合数m ,总存在{n a }使得S=m. 河北14、数列{n a }满足:211,111-==+n n a a a 。

(1)求证:32≥n a ; (2)求证:27102<-n n a a . 山西1、将正整数数列1,2,3,…按如下方式自左至右分段,使得第一段有1×2个数,第二段有2×3个数,…,第n 段有n ×(n+1)个数,…,则2014位于第段。

山西10、数列{n a },{n b }满足条件:n n n n n n b a b b a a b a +=+===++1111,2,1;证明:对每个正整数n ,下式成立:(1)2,2221212><--nn n n b ab a ; (2)2211-<-++nn n n b ab a 辽宁5.正项数列{}n a 满足*12121111()n n n n n n n a a a a a a ++++++=∈N ,136a a +=,1a ,2a ,3a 单调递增且成等比数列,n S 为{}n a 的前n 项和,则[]2014S 的值是(其中表示不超过实数的最大整数)() A .5368B .5367C .5363D .5362辽宁15.(本小题满分25分)已知数列{}n a 中,12a =,对于任意的*,p q ∈N ,有p q p q a a a +=+. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足13124234(1)2121212121n n n nb b b b ba -=-+-++-+++++*()n ∈N ,求数列{}n b 的通项公式;(3)设*3()n n n C b n λ=+∈N ,是否存在实数λ,当*n ∈N 时,1n n C C +>恒成立,若存在,求实数λ的取值范围;若不存在,请说明理由.吉林5、若五项的数列{n a }:54321,,,,a a a a a 满足543210a a a a a <<<<≤,且对任意的i ,j(1≤i ≤j ≤5),均有i j a a -在该数列中。

①1a =0;②254a a =;③{n a }为等差数列;④集合A={j i a a +1≤i ≤j ≤5}含9个元素。

则上述论断正确的有()个。

A 、1B 、2C 、3D 、4 山东6、已知数列{n a }满足:)1()1(11122≥+++=n n n a n ,且其前n 项和为n S ,则n S 的最大整数部分为。

山东14、数列{n a }中,)3(,,1211321≥+====--+n a a a k a m a a a n n n n ,其中k 、m 均为正整数且(k ,m )=1.问k 为何值时,对任意的n ∈N ,a n 均为整数?福建11.已知{}na为递增的等比数列,且126a a+=,3424a a+=。

2(1)nnnaba=-,数列{}n b的前n项和为n T,求证:对一切正整数n均有,3nT<。

江西1.如果2014是一个正整数等差数列的第八项,那么该数列首项的最小值是.江西6.等差数列{}n a,{}n b的前n项和分别为n S,n T,若对任意的正整数n都有5321nnS nT n-=+,则207ab=.河南4、等差数列{na}满足1021021≤+aa,则191110...aaaS+++=的取值范围是。

河南12、递增数列1,3,4,9,10,12,13,…由一些正整数组成,它们或者是3的幂或者是若干个不同的3的幂的和,求第2014项的值。

湖北1.已知正整数数列}{na满足nnnaaa+=++12,∈n*N.若15711=a,则1a=.湖北6.去掉集合{|10000,A n n n=≤∈*N}中所有的完全平方数和完全立方数后,将剩下的元素按从小到大的顺序排成一个数列,这个数列的第2014项为.湖北13.在单调递增数列}{n a中,12a=,24a=,且12212,,+-nnnaaa成等差数列,22122,,++nnnaaa成等比数列,,3,2,1=n.(1)求数列}{na的通项公式;(2)设数列}1{na的前n项和为nS,证明:43(3)nnSn>+,*n∈N.四川3、已知公差为d的等差数列}{na满足:d>0,正整数n,都有,则公差d的取值范围是()四川15、已知k 为给定正整数,数列}{n a 满足,其中是}{n a 的前n 项和,令。

,求k 的所有可能值。

陕西2、已知等差数列}{n a 、}{n b 的前n 项和分别为n S 、n T ,且对于一切正整数n ,都有1312+-=n n b a n n , 则=56T S 。

陕西加2、已知数列}{n a 的各项均为正数,其前n 项和为n S ,且对任意n ∈N +,都有0)()1(222=+--+-n n S n n S n n。

甘肃1、在数列{n a }中,3,121==a a ,且)(*12N n a a a n n n ∈-=++,则2014a =。

甘肃11、在数列{n a }中,11=a ,*1,22N n n a a n n ∈+-=+.求数列{n a }的前n 项和n S .黑11、已知数列{n a }满足n a =)10,(*<<∈⋅p N n p n n ,下面说法正确的是() A 、①②B 、③④C 、②④D 、②③ ①当p=21时,数列{n a }为递减数列;②当21<p<1时,数列{n a }为不一定有最大项; ③当0<p<21时,数列{n a }为递减数列;④当p p -1为正整数是,数列{n a }必有两项相等的最大项;江苏4、已知等比数列{n a }的公比为q ,前n 项和n S >0(n=1,2,3,…),则q 的取值范围是。

江苏9、设数列{n a }的前n 项和为n S ,*111,232,0N n a S S a n n ∈=-≠+。

(1)证明数列{n a }为等比数列(2)若1a 、)3(≥p a p 两项均为正整数,且存在正整数m ,使11-≥p m a ,1)1(-+≤p p m a ,求n a 。

贵州9.(本小题满分16分)已知数列{}n a 中,11a =,且121n n a a +=+. (1)求数列{}n a 的通项公式;(2)设数列}1)n a +的前n 项和为n S ,求证:22(1)(41)3n nn n S +-≤.安徽10.设数列{}n a 满足21131,,12n n na a a n a ++==≥.求证:(1)当2n ≥时,n a 严格单调递减.(2)当1n ≥时,1|nn a +-=2r =浙江4.已知等比数列{a n }:a 1=5,a 4=625,则201415511log log k k k a a =+∑=()A .20142015 B .20132014C .20124028D .20134030浙江20.设数列{a n }定义为a 1=a ,a n +1=1+1211n a a a ++⋅⋅⋅+-,n ≥1,求所有实数a ,使得0<a 1<1,n ≥2.湖南3.若{}n a 是等差数列,首项10a >,201320140a a +>,201320140a a ⋅<,则使前n 项和0n S >成立的最大自然数n 是()A .4025B .4026C .4027D .4028 湖南10.已知一无穷等差数列中有3项(顺次排列但不一定相连):13,25,41,则可以判断得出2013(填“是”、“不是”、“不能确定”)数列中的一项.湖南16.(本小题满分20分)已知数列{}n x 满足:212n n n x x x ++=+,12x =,26x =;数列{}n y 满足:212n n n y y y ++=+,13y =,29y =.求证:存在正整数0n ,使得对任意0n n >都有n n x y >.新疆1、已知一个等比数列前2014项之和为200,前4028项之和为380,则前6042项之和为。

全国4、 全国10、。

相关文档
最新文档