六年级上册数学西师大版知识要点(全)
西师版《小学数学六年级上册》复习知识要点
西师版《小学数学六年级上册》复习知识要点1、分数乘以整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。
一个数乘以分数的意义是求这个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积做分子,分母相乘的积做分母。
在计算时,可以先约分在计算,结果注意化为最简分数或带分数,不能出现假分数。
3、求一个数的几分之几是多少,用乘法计算,即用单位“1”的量×分率=部分量4、商品打折:把一件商品打几折,即是按商品的十分之几出售,故该商品现价为:原价×折扣,原价为现价÷折扣,折扣为:现价÷原价,但结果表示为分数。
5、圆是由曲线围成的一种封闭的平面图形。
画圆的工具是圆规。
画圆时固定的点是圆心。
圆心一般用字母O表示。
圆心决定圆的位置。
圆上任意一点到圆心的线段是半径,用字母r表示,半径决定圆的大小。
通过圆心并且两端都在圆上的线段是直径,直径一般用字母d表示。
圆的半径和直径都有无数条。
在同圆和等圆中,所有的半径都相等,所有的直径都相等。
直径是半径的2倍。
半径是直径的二分之一。
用字母表示为d=2r; r=d÷26、圆是轴对称图形,每条直径所在的直线是它的对称轴,圆有无数条对称轴。
正方形有4条对称轴;长方形有2条对称轴;等腰三角形有1条对称轴;等边三角形有3条对称轴;等腰梯形有1条对称轴;7、有两条半径组成,顶点在圆心的角叫圆心角。
由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。
扇形是轴对称图形,它有一条对称轴。
8、围成圆的曲线的长叫圆的周长。
圆的周长除以直径的商叫圆周率,用字母π表示,它是一个无限不循环小数,在计算时一般取3.14.圆周长计算公式C=2πr C=πd,半圆周长C=5.14r 9、如果圆的半径或直径扩大若干倍,周长也扩大相同的倍数;如果圆的半径或直径缩小若干倍,周长也缩小相同的倍数10、圆所占平面的大小叫做圆的面积。
圆的面积计算公式S=πr2,11、如果圆的半径、直径、周长扩大若干倍,面积也扩大该倍数的平方;如果圆的半径、直径、周长缩小若干倍,面积也缩小该倍数的平方。
西师大版六年级上册数学分数乘法知识树解说(共22张PPT)
欢迎批评指导
第一单元 分数乘法
分数乘法的计算
单元 主题 图
分 数 乘 法
解决问题
三、 本单元教学目标
探索分数乘法计算方 法的过程,使学 生自主发现并归 纳出分数乘法的 计算法则。
借助整数乘法的意义, 理解掌握“求一个数的 几分之几是多少”的解决 方法。
。
从熟悉的生活情境中 ,抽象出求一个数的 几分之几用乘法计算 的数量关系,并能解 决求一个数的几分之 几是多少的问题
在教学时结合具体的问题 情境,引导学生理解分数 乘整数的意义。为了避免 单纯的机械计算。将计算 学习与解决问题有机结合, 联系生活实际。根据实际 问题的数量关系列出算式 就容易多了。
在教学时采取折纸、涂色等动手操
作方式,把抽象的数学概念变为小
学生看得见、摸得着、理解得了的
数学事实,让学生在“动手操作----
《分数乘法》知识树解说
——西师大版六年级数学上册第一单元
第 一 一、新课标对高段数学教学的要求 单 二、本单元教材的地位 元 三、本单元教学目标
四、本单元教学重难点
分 五、教学建议
数 乘 法
六、教学策略 七、考点链接
一、课标对本学段的要求
新课程标准对本学段的基本要求
经历从现实生活中抽象 出数及简单数量关系过 程。探索物体与图形的 形状、大小、运动和位 置关系的过程。经历收 集、整理、分析数据的 过程。
让学生理解分数乘法的算理,尤其 是分数成分数的算理,是本单元教学 的难点。要充分借助学生已有的知识 基础,通过观察、实验、操作、推理 等探索性与挑战性的活动,去理解算 理,同时培养学生的观察、动手、分 析和推理能力。
西师大版六年级数学上册全册知识点汇总
西师大版六年级数学上册全册知识点汇总一分数乘法1.⑴分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
⑵求一个数的几分之几是多少,用乘法计算,即用这个数×几分之几。
一个数乘分数的意义就是求这个数的几分之几是多少。
分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
结果不是最简分数的,要约分,为了简化计算,可以先约分,再计算。
分数乘整数可以看作分数乘分母为1的分数。
⑶两个数相乘,如果一个因数等于0,那么积等于0。
两个大于0的数相乘,如果一个因数大于1,那么积大于另一个因数;如果一个因数等于1,那么积等于另一个因数;如果一个因数小于1,那么积小于另一个因数。
2.⑴“求一个数的几分之几是多少”的应用题的解题方法是:用乘法计算,即用这个数×几分之几。
⑵“连续求一个数的几分之几是多少”的应用题的解题方法是:第一种:用已知数量(原始单位“1”的量)依次乘已知各分率。
第二种:先把已知各分率相乘,求出所求数量占已知数量(原始单位“1”的量)的分率,再用已知数量(原始单位“1”的量)乘这个分率。
⑶“按原价的几分之几出售”的应用题的解题方法是:商品的现价=原价×几分之几;降低的价钱=原价-现价=原价-原价×几分之几=原价×(1-几分之几)。
几折就是零点几或十分之几。
二圆1.⑴①圆是由一条曲线围成的图形。
通常用圆规画圆,用圆规的一只脚固定在一个点上,另一只脚绕着这个点旋转1圈,就能画出一个圆。
②画圆时,固定的点是圆心,圆心一般用字母O表示。
圆心决定圆的位置。
③圆心到圆上任意一点的线段是半径,半径一般用字母r表示。
圆有无数条半径;在同圆或等圆中,所有半径的长度都相等;画圆时,圆规的两只脚之间的距离等于半径的长度;半径决定圆的大小。
西师大版六年级数学上册总复习全册知识点归纳汇总
西师版小学数学六年级(上)知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算(2)求一个数的几分之几是多少强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的十分之一,3.5折表示现价是原价的百分之三十五。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
(二)分数加减乘除法的计算方法:1、分数加减法计算:如果分母不同,要先通分,然后分母不变,把分子相加减。
西师大版-数学-六年级上册-《第二单元整理与复习》
第二单元整理与复习(教材16~41页)单元知识整理单元考点复习一、填空。
1.两个圆的半径比是1∶2,那么两个圆的面积比是( )。
2.一个圆的直径是5 cm,如果这个圆的直径增加到10 cm,这个圆的周长增加到( )cm。
3.在周长为80 cm的正方形纸上剪下一个最大的圆,这个圆的周长是( ),面积是( )。
4.一个半圆的周长是10.28 dm,它的面积是( )dm2。
5.一个环形,外圆半径是3 dm ,内圆直径是4 dm ,这个环形的面积是( )dm 2。
二、判断。
1.半径一定是直径的12。
( ) 2.圆的面积大于扇形的面积。
( )3.圆环是轴对称图形,它有无数条对称轴。
( ) 4.经过圆心的线段是直径。
( ) 三、选择。
1.一个圆的半径扩大4倍,它的周长扩大( )倍。
A. 4 B. 8 C. 162.一个半圆的周长等于( ) 。
A.2CB. πr +2d C. πr +2r3.两个圆的周长不相等,是因为它们的( ) 。
A. 圆心位置不同B. 圆周率大小不相等C. 直径不相等 四、求下面图形的周长。
(单位:cm)五、解决问题。
1.伦敦市的标志性建筑——大本钟,巨大而华丽,它的时针的长度是2.75 m 。
大本钟的时针针尖一昼夜走过的路程是多少米?2.自行车车轮的外直径是0.6 m 。
如果它每分转200圈,那么要通过一座长753.6 m 的桥,需要多少分?3.一个圆形花坛的直径是8 m ,在它的周围铺一条1 m 宽的小路。
这条小路的面积是多少平方米?思维拓展题求下图中阴影部分的面积。
(单位:dm)一、1. 1∶4 2. 31.4 3. 62.8cm 314 (crn2) 4. 6.28 5. 15.7二、1.× 2.× 3.√ 4.×三、1A 2.C 3.C四、分析:图形的周长相当于一个直径是40cm的圆的周长再加2条60 crn的线段长。
解答:3.14⨯40+60⨯2=245.6 (cm)五、1. 2⨯3.14⨯2.75⨯2=34.54(m)2.753.6÷(3.14⨯0.6⨯200)=2(分)3.3.14⨯(82+1) 2-3.14⨯ (82)2=28.26(m 2)思维拓展题3.14⨯(8÷2) 2⨯2-8⨯8=36.48(dm 2)。
六年级上册数学同步拓展-二单元圆的知识点总结|西师大版(2014秋)
六年级数学——圆一、圆的认识1、日常生活中的圆2、画图、感知圆的基本特征(1)实物画图(2)系绳画图3、对比,感知圆的特征:我们以前学过的长方形、正方形、平行四边形、梯形、三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形。
【归纳】:圆是由一条曲线围成的封闭图形二、圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置。
2、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
半径决定圆的大小。
3、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
三、圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
d 用字母表示为:用字母表示为:d=2r r =12用文字表示为:直径=半径×2 半径=直径÷23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
圆是轴对称图形且有无数条对称轴。
对称轴就是直径所在的直线。
四、圆的周长的认识1、围成圆的曲线的长叫做圆的周长。
2、周长与圆的直径有关,圆的直径越长,圆的周长就越大。
五、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
3、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
4、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
西师版六年级数学(上册)总复习资料全
..
..
.
六年级上册知识要点
一、分数乘法
(一)分数乘法的意义 (只看第二个因数) 1、分数乘整数(第二个因数为整数时) :求几个相同加数和的简便运算。
2
例: 3 × 3,表示:
或
2、一个数乘分数(第二因数为真分数时) :表示这个数的几分之几是多少。
5 例:( 1) 6× 12 ,表示:
27 ( 2) 7 ×8 ,表示:
(2) 半圆的周长:等于圆的周长的一半加直径。 计算方法:π r +2r 即 5.14 r
(3) 半圆面积 : 等于圆面积的一半。 计算方法: S=πr2 ÷ 2
.下载可编辑 .
.
..
..
.
(三)圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母 S表示。
2、扇形:由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
分母
分数值
一个数
( 1)在比中,比的
不能为 0,在除法中,
不能为 0,分数中,
不能为 0。
( 2)体育比赛中出现两队得分是 2∶0等,这只是一种记分形式,不是比。
( 二) 比的基本性质
1、根据比、除法、分数的关系:
( 1)商不变的性质:被除数和除数同时 乘或除以 相同的数 (0 除外 ) ,商不变。
(1) 圆周率 π 是一个无限不循环小数。在计算时,一般取 π 的近似值(π ≈ 3.14 或 π ≈ 3
(2) 世界上第一个把圆周率算出来的人是 我国 的数学家 祖冲之 。
(3) 圆的周长总是直径的 3 倍多一些。
3、圆的周长公式:
C= π d —→ d = C ÷ π
或 C=2π r —→ r = C ÷2π
西师版小学数学六年级(上册)知识点汇总
西师版小学数学六年级(上)教学知识点一、分数乘、除法(第1、3单元):(一)分数乘法1、分数乘法的意义:(1)与整数乘法相同,是求几个相同加数的和的简便计算【如:×5表示5个的和是多少或的5倍是多少】;(2)求一个数的几分之几是多少【8× 表示8的是多少】。
强调:根据意义写算式可以交换因数的位置(可列两个算式),但根据算式说意义不能交换因数的位置来说意义,只能像上面那样说。
2、分数乘法的计算:用分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的要先约分再计算,这样更简便;遇到整数,把整数看作分母是1的分数。
3、两个因数的积与其中一个因数比较大小,关键看另一个因数:另一个因数大于1,积就更大;另一个因数小于1,积就更小。
4、打折:如一折表示现价是原价的(或),3.5折表示现价是原价的。
(二)分数除法:1、倒数的认识:(1)倒数的意义:乘积是1的两个数互为倒数。
【强调:倒数表示两个数之间的关系,它们具有相互依存的特点,不能单独说一个数是倒数。
】(2)求一个数的倒数的方法:分子、分母调换位置。
【若遇到小数、带分数时,要先化成假分数,再求它的倒数;遇到整数就把整数看作分母是1的分数。
】(3)1的倒数是1,0没有倒数。
2、分数除法的意义:与整数除法相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
3、分数除法的计算:甲数÷乙数=甲数×乙数的倒数(乙数≠0)【①被除数不变②除号变为乘号③除数变为它的倒数】4、两个数的商与被除数比较大小,关键看除数:除数大于1,商就更小;除数小于1,商就更大。
【与乘法恰好相反】二、分数混合运算及解决问题(第6单元):(一)分数混合运算的运算顺序与整数混合运算的运算顺序相同(加减法为第一级运算,乘除法为第二级运算)1、只有加减法或只有乘除法,要从左往右依次计算;2、既有加减法又有乘除法,先算乘除法后算加减法;3、如果有括号,先算小括号里的,再算中括号里的,最后算括号外的。
西师版数学六年级(上册)知识点汇总
西师版数学六年级上册知识要点第一:数的认识1、负数:0既不是正数,也不是负数.“-”号不能省略,正数和负数可以用来表示相反意义的量.2、以前学的:自然数,整数,小数,分数,奇数、偶数,质数、合数,互质数.第二:数的运算和解决问题一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同.都是求几个相同加数的和的简便运算.2、分数乘分数是求一个数的几分之几是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变.(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母.3、为了计算简便,能约分的要先约分,再计算.注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.(四)、分数混合运算的运算顺序和整数的运算顺序相同.(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用.乘法交换律:a × b = b × a乘法结合律:〔 a × b )×c = a ×〔 b × c )乘法分配律:〔 a + b )×c = a ×c + b× c a×c-b×c=〔a-b〕×c ;其它:a―b―c=a-〔b+c〕; a-〔b-c〕=a-b+c =a+c-b ; a÷b÷c=a÷〔b×c〕; a÷b×c=a×c÷b二、分数乘法的解决问题已知单位“1”的量,求单位“1”的几分之几是多少.(用乘法计算)1、画线段图:(1)两个量的关系:画两条线段图;〔2)部分和整体的关系:画一条线段图.2、找单位“1”: 在分率句中分率“的”前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍. 求一个数的几分之几是多少: 一个数×几几. 4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1加或减分率)=分率对应量三、倒数1、倒数的意义: 乘积是1的两个数互为倒数.强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在. (要说清谁是谁的倒数).2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置.(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置.(3)、求带分数的倒数:把带分数化为假分数,再求倒数.(4)、求小数的倒数: 把小数化为分数,再求倒数.3、1的倒数是1; 0没有倒数. 因为1×1=1;0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1.四、分数除法1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算.2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数.规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数.“[ ]”叫做中括号.一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的.3、找规律填空:分析相邻数字之间的关系,用加、减、乘、除去试一试.五、分数除法解决问题已知单位“1”的几分之几是多少,求单位“1”的量.(用除法计算)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1加或减分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答.(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就是一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或: ① 求多几分之几:大数÷小数 — 1 或 〔大数 — 小数〕÷小数② 求少几分之几: 1 — 小数÷大数 或 〔大数 — 小数〕÷大数5、工程问题:工作总量看作单位“1”,甲队独做a 天完成,那么工作效率就是a 1,乙队独做b 天完成,那么工作效率就是b 1,两队合做的天数 = 1÷〔a 1+b1〕.有时先独做再合做;先合做再独做,抓住基本公式:工作时间 = 工作总量÷工作效率〔和〕六、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比.2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.〔比值通常用分数表示,也可以用小数或整数)3、比可以表示两个相同量的关系,即倍数关系.也可以表示两个不同量的比,得到一个新量.例: 路程∶时间=速度.连比如:3∶4∶5读作:3比4比5〔∶不是除号〕4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示. 比值:相当于商,是一个数,可以是整数,分数,也可以是小数.5、比和除法、分数的联系:比前项比号“:” 后项比值一种关系除法被除数除号“÷” 除数商一种运算分数分子分数线“—” 分母分数值一个数6、根据比与除法、分数的关系,可以理解比的后项不能为0.〔除数、分母也是〕体育比赛中出现两队得分是2∶0等,这只是一种记分形式,不表示两个数相除的关系.(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变.2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.3、根据比的基本性质,可以把比化成最简单的整数比.4.化简比:(2)用求比值的方法.注意:最后结果要写成比的形式.如:15∶10 = 15÷10 = 3/2 = 3∶25.按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.前项+后项=总共的份数路程一定,速度比和时间比成反比.(如:路程相同,速度比是4∶5,时间比则为5∶4)工作总量一定,工作效率比和工作时间比成反比.(如:工作总量相同,工作时间比是3∶2,工作效率比则是2∶3)第三:图形一、认识圆形1、圆的定义:圆是由封闭的曲线围成的一种平面图形.2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心.一般用字母O 表示.它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径.一般用字母r 表示.把圆规两脚分开,两脚之间的距离就是圆的半径.4、直径:通过圆心并且两端都在圆上的线段叫做直径.一般用字母d 表示.直径是一个圆内最长的线段.5、圆心确定圆的位置,半径确定圆的大小.6、在同圆或等圆内,有无数条半径,有无数条直径.所有的半径都相等,所有的直径都相等.7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21. 用字母表示为:d=2r 或r=21d 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形. 折痕所在的这条直线叫做对称轴.9、长方形、正方形和圆都是对称图形,都有对称轴.这些图形都是轴对称图形.10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆. 只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环.二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长.用字母C 表示.2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长. 发现一般规律,就是圆周长与它直径的比值是一个固定数(π).3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率. 用字母π(pai) 表示.(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数.圆周率π是一个无限不循环小数.在计算时,一般取π ≈ 3.14.(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍.(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之.4、圆的周长公式:C= πd—→ d = C ÷π或C=2πr—→ r = C ÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽.6、区分周长的一半和半圆的周长:周长的一半:等于圆的周长÷2 计算方法:2π r÷ 2 即π r(2)半圆的周长:等于圆的周长的一半加直径. 计算方法:πr+2r即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积. 用字母S表示.2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形.顶点在圆心的角叫做圆心角.3、圆面积公式的推导:(1)用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体.(2)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形.(3)拼出的图形与圆的周长和半径的关系.圆的半径= 长方形的宽圆的周长的一半= 长方形的长因为:长方形面积 = 长× 宽所以:圆的面积 = 圆周长的一半× 圆的半径S圆= πr× r圆的面积公式:S圆= πr ——→r = S ÷π4、圆环形的面积:一个环形,外圆的半径是R,内圆的半径是r.(R=r+圆环的宽度.)S环= πR - πr或圆环形的面积公式:S圆环= π(R - r ).2 22 2 2 25、扇形的面积计算公式:S 扇 = πr × 360n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小的倍数是这倍数的平方倍.例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍.7、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方.例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶98、任意一个圆的外接或内接正方形的面积之比都是一个固定值,即:4∶π∶29、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小.反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短.10、确定起跑线:(1)每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度.(2)每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度.(因此起跑线不同)(3)每相邻两个跑道相隔的距离是: 2×π×跑道的宽度(4)当一个圆的半径增加a 厘米时,它的周长就增加2πa 厘米;当一个圆的直径增加a 厘米时,它的周长就增加πa 厘米.11、常用各π值结果:π = 3.14 2π = 6.28 3π = 9.42 4π = 12.56 5π = 15.76π = 18.84 7π = 21.98 8π = 25.12 9π = 28.26 16π = 50.24 25π = 78.5 36π = 113.04 64π = 200.96 96π = 301.44四、图形的变换和确定位置1、图形的放大或缩小:图形的形状不变,大小不同.2、比例尺: 图上距离与实际距离的比.即 图上距离∶实际距离=比例尺比例尺分为数字比例尺〔无单位〕和线段比例尺〔有单位〕.比的前项为“1”是缩小比例尺,比的后项为“1”是放大比例尺.已知图上距离和比例尺求实际距离,实际距离=图上距离÷比例尺;已知实际距离和比例尺求图上距离,图上距离=实际距离×比例尺〔画图确定物体的位置〕.23、物体位置的确定:确定观测点后,知道物体的方向和距离就能确定物体的位置.上北下南左西右东,以观测点画“十字”坐标确定方向,以比例尺确定图上距离或实际距离.用数对确定点的位置,如(3,5)表示:(第三列,第五行)第四:概率可能性:用分数来表示可能性的大小,以总数为分母,可能出现的次数为分子.〔约分〕第五:常用单位1、长度单位:千米〔公里〕 1000 米 10 分米 10 厘米 10 毫米 1000 微米km m dm cm mm2、面积单位:平方千米 100 公顷〔平方百米〕 10000 平方米 100 平方分米 100 平方厘米 km2 hm2㎡dm2 cm2 1平方米是边长为1m的正方形的面积;其它依次类推.大母指的指甲壳的面积大约是1平方厘米.3、体积或容积单位:立方米 1000 立方分米〔升〕 1000 立方厘米〔毫升〕m3 L mL 1立方米是棱长为1m的正方体的体积;其它依次类推.两本字典或两瓶矿泉水的体积大约是1立方分米.4、时间:年 12〔365或366天〕月 28、29、30、31 天〔日〕24 时 60分 60秒第六:常用数量关系1、加数+加数=和;加数=和-另一个加数;被减数-减数=差;被减数=减数+差;减数=被减数-差;因数×因数=积;因数=积÷另一个因数;被除数÷除数=商;被除数=除数×商;除数=被除数÷商.2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价;速度×时间=路程;路程÷速度=时间;路程÷时间=速度;工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;收入-支出=结余现价=原价×折数;原价=现价÷折数;折数=现价÷原价.。
西师大版小学数学六年级上册知识点思维导图(可打印)
分数乘整数的零义与整数乘法的零义相同, 都尾求几个相同加数的和的简便运算
用分子乘整数的积作积的分子, 分母不变
= 嘉 ~7 X21 ~7 = 15
能纣分的可以先纣分 ,再计算, 结果相同
干一5
X
3 ~
=
15
分数乘整数
一个数乘分数的零义就里求这个数的几分之几
分子相乘的积作积的分子 \
需要修的天数为:l 式.1:.++.1:.) = —30 (天)
S 6 11
两个数相除,又叫作这两个数的比,所得的商就尾比值
6
6 : 4 =6;-4=- =l.5
Ll L
4
前比后
比
项号项
值
用比的前顶除以后顶
求比值
比的前顶和后顶同肘乘或除以相同的数(0除外),比值不变
-;-4
12 : 28=3 : 7
\ 勹:i比。它:?;二图上距离lCln相当于
线段比例尺
}
比例尺, I
I
图中一个线段,相当于实际10m
0 10 20m
文字比例尺
图上1厘米相当于地面距离500米
确定参昭点后,根据物体相对于参昭点的 方向和距离就能确定物体的位置
冗r
S=n(d+2)'= 亢d' +4 S=讯 (乒2亢)2=0+(4亢)
圆环的面积
竺.皿O
\ S喊沪啤勺
(R表示大圆的半径,浔弓示小因的半径)
LAOB 尾圆心角 圆心角具备的两个条件:
@顶点县回心 @角的两条边县圆的半径
图的周长除以亘径的商县一个定值,即圆周率 用志良示圆周率,通常取3 .14 ,有时也取3
西师版数学六年级上册知识要点
西师版数学六年级上册知识要点 第一 1、负数0既不是正数以用来表示相反意义的量。
2、以前学的问题 一、分数乘法 (一)分数乘法的意义1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
(二)、分数乘法的计算法则 1、分数与整数相乘(整数和分母约分) 2、分数与分数相乘3、为了计算简便再计算。
注意(三)、规律(乘法中比较大小时) 一个数(0除外)乘大于1的数 一个数(0除外)乘小于1的数(0除外) 一个数(0除外)乘1(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律乘法也同样适用。
乘法交换律 a × b = b × a 乘法结合律( a × b )×c = a × ( b × c ) 乘法分配律 ( a + b )×c = a ×c + b × c a ×c b ×ca b c 其它a ―b ―c a b c a b c ab c a c b a ÷b ÷c a ÷b ×c a ÷b ×ca ×c ÷b 二、分数乘法的解决问题 已知单位“1”的量1”的几分之几是多少。
(用乘法计算) 1、画线段图 (1)两个量的关系; (2)部分和整体的关系2、找单位“1 或 “占”、“是”、“比”的后面 3 一个数×几倍。
一个数×几几。
4 (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ ” (2) 单位“1”的量×分率=分率对应量 (3)分率前单位“1”的量×(1加或减分率)=分率对应量 三、倒数 1、倒乘积是1的两个数互为倒数。
(要说清谁是谁的倒数)。
六年级上册数学教案确定物体的位置第1课时确定物体的位置(一)_西师大版
六年级上册数学教案确定物体的位置第1课时确定物体的位置(一)_西师大版教学内容:教科书第55页例3,按比例分配问题——分摊运费问题。
教学提示:学生差不多认识了东、南、西、北以及东南、东北、西南、西北等方向,学习了用数对表示具体情境中物体的位置,以及有关角和比例尺的知识,这些差不多上学生学习本节课知识的重要基础。
本节课要紧让学生明白得确定物体的位置必须明白方向和距离,将学生已有的能用“东南、东北、西南、西北”等方式描述物体位置的体会加以提升,教学用方向角结合相应的距离来更加精确地描述物体的位置,进一步进展学生的空间观念。
本节课安排了两道例题,例1是通过对相同距离不同方向和相同方向不同距离两种情形的探讨,强调要明白物体的方向和距离,才能确定位置。
例2是以学校为参照物,依照图上距离和所标注的角度,运算出实际距离来描述物体的位置。
教学时要先测量出图上距离,然后依照比例尺运算出实际距离,再依照方向和距离确定物体的位置。
教学目标:1.知识与技能:结合具体情境,让学生体会明白物体的方向和距离,才能确定物体的位置,能用方向与距离来准确描述物体的位置。
2.过程与方法:通过依照方向和距离在十字图上表述物体的位置,培养学生的观看能力和识图能力。
3.情感态度与价值观:在探究物体的位置关系过程中,进一步进展学生的空间观念。
让学生感受到数学与日常生活的紧密联系,体会数学的应用价值。
重点难点:教学重点:能依照方向与距离确定物体的位置。
教学难点:能依照方向与距离确定物体的位置。
教学预备:教具预备:多媒体课件学具预备:刻度尺、练习本等教学过程:(一)新课导入投影出示海上救援的场景。
谈话:俗语说,天有不测风云,在海上航行有时遇到狂风、触礁等各种缘故造成的灾难,因此防范和搜救工作专门重要。
在2009年10月19日,青岛远洋运输公司所属的“德新海”轮在印度洋被索马里海盗劫持,船上有25名船员。
20日中国护航编队前往事发地点,同时展开外交救援。
小学数学六年级上册(西师大版)第九单元第4课时《总复习》课件
420、:2千敏87淘而.1万好4.浪学20虽,20辛不20苦耻:2,下87吹问.1尽。4.黄。20沙72.10始42.0到2:02金2802。707.:12.1484.:23.2002720.102470..:2120482.220002:2008:22807:2.1842:3.020:0228002:208:2:380:3020:28:30
这醉人春芬春去芳去春的春又季又回节回,,新愿新桃你桃换生换旧活旧符像符。春。在天在那一那桃样桃花阳花盛光盛开,开的心的地情地方像方,桃,在在 54、勿海不以内要恶存为小知它而已的为,结之天束,涯而勿若哭以比,善邻应小。当而为Tu不它es为的da。开y,始TJuu而elys笑d1a。4y,,72J.01u24ly0.2J10u42l,y022700.21T04uJ.2eu0slyd2a02y20,0TJ:u2ue8lys2d10a4:2y,,82J20u02l:y02781/:413,402/220002:20087:/3104/2020 花这一这醉样醉人美人芬丽芬芳,芳的感的季谢季节你节,的,愿阅愿你读你生。生活活像像春春天天一一样样阳阳光光,,心心情情像像桃桃 65、莫天愁生生前命我路的才无成必知长有已,用,需。天要下吃8时谁饭2人,8分不还8识需时君要28。吃分苦81时4,-2J吃8u分l亏-28。0时7T.21u84e分.s2d10a42y-0J, uJlu-l2y0174.1,42.022002J0uly 20Tuesday, July 14, 20207/14/2020
5 5
=1
5 6
0
1
6
④ 球上的数不是5的可能性是几分之几? 4 5 56
李老师有9把钥匙,其中有2把可 以打开教室的门。她任意取了1把 钥匙却打不开门,再任意取另1把 钥匙去开门,这一次能打开门的可
(西师大版)数学六年级上册各单元的知识要点
(西师大版)数学六年级上册各单元的知识要点第一单元分数乘法◆分数乘整数1.分数乘整数的意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算方法:用分数的分子乘整数的积作分子,分母不变。
分母能和整数约分的可以先约分,再计算。
运用上面的规律可以不用计算很快地解决下面类型的题目:(3)“按原价的几分之几出售”的应用题:现价=原价×几分之几,降低的价钱=原价×(1-几分之几)。
第二单元圆◆圆的认识1.圆的各部分名称(1)圆中心的一点叫做圆心,一般用字母O表示。
(2)连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。
(3)通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
一个圆有一个圆心,有无数条半径和无数条直径。
(4)圆心决定圆的位置,半径决定圆的大小。
2.圆的特征(1)在同圆或等圆中,半径的长度都相等,直径的长度也都相等,直径的长度是半径长度的2倍,用字母表示为d=2r或r=d/2。
(2)(2)圆是轴对称图形,圆有无数条对称轴。
3.用圆规画圆的方法(1)把圆规的两脚分开,定好两脚之间的距离作为半径。
(2)把带有针尖的脚固定在一点上作为圆心。
(3)把装有铅笔的脚旋转一周,就画出一个圆。
◆圆的周长1.圆的周长:围成圆的曲线的长叫做圆的周长,一般用字母C表示。
2.圆周率:圆的周长与它的直径的比值叫做圆周率,用字母“π”表示。
(计算时,“π”通常取3.14)3.圆的周长计算公式:4.半圆的周长:半圆的周长等于圆的周长的一半加上1条直径(或2条半径)。
◆圆的面积1.圆的面积:圆所占平面的大小叫做圆的面积,一般用字母S表示。
2.圆的面积计算公式推导过程:我们可以把圆先平均成2份,然后把这2份又分别平均分成若干份,(如下图)把它们拼成一个近似的长方形。
在圆变成长方形的过程中,面积不变。
3.求圆的面积有三种不同的情况,我们要根据不同情况灵活地运用圆的面积计算公式:4.圆环的面积计算公式:5.有关“外方内圆”的问题:在正方形内画一个最大的圆,这个圆的直径等于正方形的边长。
西师大版数学六年级上册 圆的面积(2)
义务教育西师大版六年级上册
二
圆
第6课时 圆的面积(2)
探究新知
3 修建一个半径是30m的圆形鱼池,它的占地面 积是多少平方米?
已知圆的半 径,要求鱼池的 占地面积就是求 圆的面积。
自己试着计算一下!
3 修建一个半径是30m的圆形鱼池,它的占地面 积是多少平方米?
S=πr² 3.14×30²
30×30
= 3.14×900
注意单位要书写m2 。
4 量得一张圆桌的周长是3.14m。这张圆桌的面积 是多少平方米?
思考:应该先算什么,再算什么?
C = πd =2πr
r = C÷2π
半径: 3.14÷3.14÷2=0.5 (m) 面积: 3.14×0.5²= 0.785(m²)
面积: 3.14×7² = 3.14×49 = 153.86(m²)
答:塔基占地153.86 m2 。
1.找一个圆形物品,量出圆的直径或周长,再算出面积。
2.议一议,怎样在一张正方形纸上画出一个最大的圆? 动手试一试。
课堂练习
1.填空。
5
8
9
18
31.4 25.12
78.5 50.24 254.34
我被主人用一根2米长 的绳子拴在了这棵小树 上,你知道我走一圈的 路程是多少吗?
2米
我能吃到的草地面 积最大是多少?
3.14×2×2=12.56(米) 3.14×2²=12.56(平方米)
答:马儿走一圈的路程是12.56米,能吃 到的草地面积最大是12.56平方米。
2.用下面这张长方形纸剪出一个最大的圆。
提示:用一张长方形纸剪出一个最大的圆, 圆的直径就是长方形的宽。 圆的直径:14cm 圆的面积:3.14×(14÷2)2=153.86(cm2)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
四、课堂小结评价:
通过本节课的学习, 谁来说说自己学到了哪些 知识?也可以对自己或他 人做出客观评价。
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
五、课外知识链接:
《九章算术》对分数四则运算法则就有详细论述,里面记录的方 法步骤与我们今天的基本相同。 《九章算术》是我国流传至今最古老的数学专著之一,成书于 西汉时期。 书中卷一第九题的原文是:“又有二分之一,三分之二,四分之 三,五分之四。问:合之得几何?答曰:得二、六十分之四十三 。合分术曰:母互乘子,并以为实;母相乘为法。” 与我们今天的分数加法运算法则基本相同。 书中卷一第十一题的原文是:“又有四分之三,减其三分之一。问 :余几何?答曰:十二分之五。减分术曰:母互乘子,以少减多 ,余为实。母相乘为法。” 也与我们今天的分数减法运算法则基本相同。
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六、能力提升:
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
七、课后作业:
完成教材第80页“练习二十”的第1、2题。
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
三、达标检测:
六年级上册数学 分数混合运算 西师大版精品PPT(1)
六年级上册数学 分数混合运算 西师大版精品PPT(1)
三、达标检测:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②把一个圆平均分成若干偶数份,剪开后可以拼成一个近似平行四边形,这个近似平行四边形的底相当于圆的周长的一半,高相当于圆的半径,因为平行四边形的面积=底×高,所以圆的面积=
C×r=
×2πr×r=πr²。
③周长都相等的所有四边形中,正方形的面积最大;周长都相等的所有平面图形中,圆的面积最大。
面积都相等的所有四边形中,正方形的周长最短;面积都相等的所有平面图形中,圆的周长最短。
⑵①扇形的面积的计算公式是:扇形的面积=圆的面积×
;半圆的面积的计算公式是:半圆的面积=圆的面积的一半。
②圆环的面积的计算公式是:圆环的面积=外圆的面积-内圆的面积=外圆的半径的平方×圆周率-内圆的半径的平方×圆周率=(外圆的半径的平方-内圆的半径的平方)×圆周率,用字母表示为:
,其中外圆的半径=内圆的半径+环宽,外圆的直径=内圆的直径+环宽×2。
③求一个不规则图形的面积,可以将其转化为求一个规则图形的面积,或将其转化为求几个规则图形的面积的和或差。
三分数除法
1.⑴①乘积是1的两个数互为倒数。
例如:因为
×
=1,所以
与
互为倒数,
的倒数是。
因为
×
=1,所以
与
互为倒数,
的倒数是。
因为1×1=1,所以1与1互为倒数,1的倒数是1。
因为0乘任何数都不等于1,所以0没有倒数。
②求一个非0数的倒数,只要把这个非0数的分子和分母交换位置就可以了。
例如:
的倒数是
,
的倒数是38,27的倒数是
,
的倒数是
,
的倒数是
,3.65的倒数是
,a的倒数是
(a≠0)。
③0没有倒数;-1和1的倒数等于它本身;小于-1的数和大于0且小于1的数的倒数大于它本身;大于-1且小于0的数和大于1的数的倒数小于它本身。
⑵①加减法的关系:加数+加数=和,一个加数=和-另一个加数;被减数-减数=差,被减数=差+减数,减数=被减数-差。
乘除法的关系:因数×因数=积,一个因数=积÷另一个因数;在没有余数的除法里,被除数÷除数=商,被除数=商×除数,除数=被除数÷商;在有余数的除法里,余数小于除数,被除数=商×除
数(单位“1”的量)是未知的,其常用解题方法是:先设这个数为x再列方程解答。
四比和按比例分配
1.⑴①求两个数量之间的关系要用一个数除以另一个数,我们还可以把这两个数量之间的关系用比来表示。
例如:5÷4可以写成5∶4或
,都读作“5比4”。
两个数相除又叫做这两个数的比。
在5∶4或
中,5是比的前项,“∶”或“—”都是比号,4是比的后项。
两个量的比可以是同类量的比,也可以是不同类量的比;比有顺序;比没有单位名称。
②比的前项除以后项所得的商,是这个比的比值。
例如:求比值300∶12=300÷12=25,
,
=5÷4=。
②化简分数比,通常先用比的前项和后项同时乘它们分母的最小公倍数将分数比转化成整数比。
例如:化简比∶。
③化简小数比,通常先用比的前项和后项同时乘10或100或1000或……将小数比转化成整数比。
例如:
化简比2.75∶1.5=(2.75×100)∶(1.5×100)=275∶150=(275÷25)∶(150÷25)=11∶6。
2.把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。
“按比例分配”的应用题的常用解题方法是:先用“已知的数量÷已知的数量对应的份数”求出每份的数量,再用“每份的数量×未知的数量对应的份数”求出未知的数量。
五图形变化和确定位置
1.能够完全重合的两个图形的大小和形状完全相同。
图形放大或缩小得到的图形与原图形相比,大小不同,形状相同。
在方格纸上将一个多边形放大或缩小,要先数出这个多边形各边的格数,再计算出这个多边形各边按相同的比放大或缩小后的新多边形各边的格数,最后画出新多边形。
注意:斜边的放大或缩小可以转化成直角三角形的两条直角边的放大或缩小;角的大小(度数)不能放大或缩小;如果一个多边形的各边按n∶1放大即各边放大到原来的n倍,那么这个多边形的周长按n∶1放大即周长放大到原来的n倍,面积按n²∶1放大即面积放大到原来的n²倍;如果一个多边形的各边按1∶n缩小即各边缩小为原来的
,那么这个多边形的周长按1∶n缩小即周长缩小为原来的
,面积按1∶n²缩小即面积缩小为原来的。
2.比例尺是图上距离与实际距离的比,就是
=比例尺;
①在没有括号的综合算式里,如果只有加减法或者只有乘除法,要从左往右依次计算。
②在没有括号的综合算式里,如果既有加减法又有乘除法,要先算乘除法,再算加减法。
③在有括号的综合算式里,要先算括号里面的,再算括号外面的。
⑵我们学过的运算律和运算性质,在分数运算中同样适用。
①两个数相加,交换两个加数的位置,和不变。
这就是加法交换律。
如果用a 和b表示两个数,那么加法交换律可以表示为:a+b=b+a
②3个数相加,先把前两个数相加,再加第3个数;或先把后两个数相加,再加第1个数,和不变。
这就是加法结合律。
如果用a,b,c表示三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)
③减法的运算性质可以表示为:a-b-c=a-(b+c);a-b+c=a-(b-c)
④两个数相乘,交换两个因数的位置,积不变。
这就是乘法交换律。
如果用a 和b表示两个数,那么乘法交换律可以表示为:a×b=b×a
⑤3个数相乘,先把前两个数相乘,再乘第3个数;或先把后两个数相乘,再乘第1个数,积不变。
这就是乘法结合律。
如果用a,b,c表示三个数,那么乘法结合律可以表示为:(a×b)×c=a×(b×c)
⑥除法的运算性质可以表示为:a÷b÷c=a÷(b×c);a÷b×c=a÷(b÷c)。