特种陶瓷压电陶瓷的性能与结构
特种陶瓷

相关应用
热敏陶瓷,电阻率明显随温度变化的一类功能陶瓷。 在工作温度范围内,零功率电阻随温度变化而变化的陶 瓷材料。主要用于制作热敏电阻器、温度传感器、加热 器以及限流元件等。
谢谢 大家的观赏
特种陶瓷
传 统 陶 瓷
特种陶瓷与传统陶瓷的区别
二、结构陶瓷简介
ቤተ መጻሕፍቲ ባይዱ
结构陶瓷,是指能作为工程结构材料使用 的陶瓷。是陶瓷材料的重要分支,约占整个陶 瓷市场的25%左右。结构陶瓷以耐高温、高强 度、超硬度、耐磨、抗腐蚀等机械力学性能为 主要特征,因此在冶金、宇航、能源、机械、 光学等领域有重要的应用。在这些应用领域用 非金属代替金属是总的趋势。结构陶瓷大致分 为氧化物系、非氧化物系和结构用的陶瓷基复 合材料。
一、特种陶瓷简介 二、结构陶瓷简介 三、功能陶瓷简介
一、特种陶瓷简介
陶瓷已经是人类生活和现代化建设中不可缺少的 材料之一。 具有高强、耐温、耐腐蚀特性或具有各种敏感特 性的陶瓷材料,由于其制作工艺、化学组成、显微结 构及特性不同于传统陶瓷,而又被称为特种陶瓷。 特种陶瓷又叫先进陶瓷、新型陶瓷、高性能陶瓷、 高技术陶瓷、精细陶瓷等。 习惯上将特种陶瓷分为两大类,即结构陶瓷和功能 陶瓷。
相关应用
氮化硅陶瓷,是一种重要的结构材料,它是一种超硬物质, 密度小、本身具有润滑性,并且耐磨损,除氢氟酸外,它不与其 他无机酸反应,抗腐蚀能力强;高温时也能抗氧化。而且它还能 抵抗冷热冲击,在空气中加热到1000以上,急剧冷却再急剧加热, 也不会碎裂。正是氮化硅具有如此良好的特性,人们常常用它来 制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件。
相关应用
压电陶瓷,一种能够将机械能和电能互相转换的功能陶 瓷材料,属于无机非金属材料。压电陶瓷利用其材料在机械 应力作用下,引起内部正负电荷中心相对位移而发生极化导 致材料两端表面出现符号相反的束缚电荷即压电效应而制作 ,具有敏感的特性,压电陶瓷主要用于制造超声换能器、水 声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴 频器、高压发生器、红外探测器、声表面波器件、电光器件 引燃引爆装置和压电陀螺等。
三极压电陶瓷片

三极压电陶瓷片摘要:一、引言二、三极压电陶瓷片的定义与特性1.定义2.特性三、三极压电陶瓷片的工作原理四、三极压电陶瓷片在科技领域的应用1.声音放大器2.传感器3.能量转换器五、三极压电陶瓷片的未来发展趋势与展望正文:【引言】随着现代科技的飞速发展,新型材料的研究与开发成为了一个热门领域。
压电陶瓷片,作为一种具有压电效应的材料,因其独特的性能而在众多领域中得到了广泛应用。
本文将重点介绍一种特殊的压电陶瓷片——三极压电陶瓷片,探讨其工作原理以及在科技领域的应用。
【三极压电陶瓷片的定义与特性】三极压电陶瓷片,顾名思义,是一种具有三个极性的压电陶瓷片。
压电陶瓷片是一种能够将机械应力转化为电信号的材料,具有正、负和双极性。
三极压电陶瓷片在原有的基础上增加了第三极性,使其在应用中具有更强的灵活性和多样性。
【三极压电陶瓷片的工作原理】三极压电陶瓷片的工作原理与其压电效应密切相关。
当三极压电陶瓷片受到机械应力时,其内部会产生电荷分布,从而产生电压。
通过施加不同的机械应力,可以控制三极压电陶瓷片产生的电压信号,实现对电子设备的控制。
【三极压电陶瓷片在科技领域的应用】三极压电陶瓷片因其独特的性能,在许多科技领域中都有着广泛的应用。
1.声音放大器:三极压电陶瓷片可以作为声音放大器的核心元件,其可以将电信号转化为机械振动,实现声音的放大。
2.传感器:三极压电陶瓷片具有高度灵敏的特性,可以作为压力、加速度等传感器的敏感元件,将机械应力转化为电信号,实现对物理量的检测。
3.能量转换器:三极压电陶瓷片可以实现电能与机械能之间的相互转换,因此被广泛应用于超声波设备、无线充电等领域。
【三极压电陶瓷片的未来发展趋势与展望】随着研究的深入,三极压电陶瓷片在性能和应用方面还有很大的提升空间。
特种陶瓷的相关介绍

特种陶瓷的相关介绍特种陶瓷是指在传统陶瓷基础上,通过改变原始的成分配比、成形工艺、烧成工艺等,制成性能优异、用途广泛、具有特殊需求的陶瓷材料。
下面将对特种陶瓷的种类、应用领域和制造工艺等进行介绍。
特种陶瓷的种类1.电子陶瓷:以氧化铝、氧化铝质玻璃、石英等为原料,制成用于半导体器件包装、介质等的电子陶瓷。
2.结构陶瓷:以氧化锆、氧化铝、碳化硅等为原料,经过加压模压、注射成型后,高温烧制而成的具有高强度、抗磨损性、耐腐蚀性等性能的结构陶瓷。
3.生物陶瓷:以氧化锆、氧化铝、磷酸三钙等为原料,经过特殊制造工艺后,制成用于人工关节、牙科医疗和植入式医疗等领域的生物陶瓷。
4.热媒体陶瓷:以氧化铝、氧化锆等为原料,经过特殊工艺处理,制成用于高温传热的热媒体陶瓷。
5.摩擦材料陶瓷:以氧化铝、氮化硅、氧化锆等为原料,经过特殊烧制工艺,制成用于汽车、飞机、铁路等领域摩擦材料的陶瓷。
特种陶瓷的应用领域1.电子领域:用于电容器、介质、射频器件、振荡器、陶瓷滤波器、压电陶瓷、声波陶瓷等领域。
2.医疗领域:用于人工关节、人牙种植体、口腔修复等领域的生物陶瓷。
3.环保领域:用于重金属和有害气体的吸附、污水处理、空气净化等领域的陶瓷。
4.新能源领域:用于氢能源技术、太阳能电池等领域的氧化锆陶瓷。
5.机械领域:用于轴承、密封、磨损件等机械领域的结构陶瓷。
特种陶瓷的制造工艺特种陶瓷的制造过程包括原料选取、配料、成型、烧结等多个工艺环节。
原料选取是关键环节,不同种类的特种陶瓷要选取不同的原料。
例如,生物陶瓷需要选用生物相容性好、生物安全性高的原料,并采用特殊的工艺进行处理,保证最终陶瓷的生物可接受性。
配料是根据要求的化学组成比配制粉末混合物的重要环节,粉末混合方法有湿法和干法两种。
成型是将混合后的陶瓷粉末通过模具成型的环节,通常包括压制、注射成型、挤出成型和印制等多种成型方式。
烧结是将成型后的陶瓷样品放入特殊的烧结设备中加热处理的环节,经过高温烧结,使得陶瓷颗粒结合更紧密、密度更高,从而得到更高的强度和硬度。
pzt-8 大功率压电陶瓷 特点

pzt-8 大功率压电陶瓷特点PZT-8(铅锆钛-8)是一种高功率压电陶瓷材料,具有以下特点:1.高电机械耦合系数:PZT-8具有较高的电机械耦合系数,能够将输入的电能有效地转换为机械振动能量。
这使得PZT-8在声波发射、接收和传感等领域具有出色的表现。
2.高机械强度:PZT-8具有较高的机械强度,使其能够承受较大的压力和负荷,具有良好的耐磨损性能。
3.宽工作温度范围:PZT-8具有较宽的工作温度范围,能够在高温和低温环境下保持稳定性能。
它适用于在恶劣环境条件下的应用,如航空航天、核工程等。
4.快速响应速度:PZT-8具有快速的响应和振动速度,能够实现快速的工作和控制。
这使其在快速响应和精准控制要求较高的领域,如超声波成像、精密加工和精确定位等方面表现出色。
5.高效能转换:PZT-8能够将电能有效地转换为机械能,并且具有较高的功率密度。
这意味着在同样输入功率的情况下,PZT-8能够提供更高的输出功率,具有较高的能量转换效率。
6.宽频响范围:PZT-8具有宽带频率特性,能够在较宽的频率范围内工作。
这使得PZT-8适用于需要在不同频率下进行振动、检测或传感的应用,如压电换能器、声波发射器和接收器等。
7.良好的温度稳定性:PZT-8在较宽的温度范围内具有较好的稳定性,能够在不同温度条件下保持一致的性能。
这使得PZT-8适用于需要在高温或低温环境中工作的应用,如热敏控制、温度传感和热能转换等。
总的来说,PZT-8大功率压电陶瓷具有高耦合系数、高机械强度、宽工作温度范围、快速响应速度、高效能转换、宽频响范围和良好的温度稳定性等特点。
这使得它在声波、震动、传感、控制和能量转换等领域具有广泛应用的潜力。
压电陶瓷

压电陶瓷压电陶瓷(Piezoelectric ceramics)是一种特殊的陶瓷材料,具有压电效应。
它具有压电效应,能够在外界施加压力或扭转时产生电荷,同时在外加电场下也能产生机械变形。
因此,压电陶瓷广泛应用于传感器、换能器、储能器、振动器等领域。
本文将介绍压电陶瓷的原理、特性以及应用领域。
首先,我们来了解一下压电陶瓷的原理。
压电现象最早是由法国物理学家庞丁(Pierre Curie)和雅克(Jacques Curie)在1880年发现的。
他们发现某些晶体,如石英和长石,在外界施加压力时会产生电荷。
这被称为正压电效应。
而如果在外加电场的作用下,这些晶体会发生机械变形,这被称为反压电效应。
接下来,我们来探讨一下压电陶瓷的特性。
压电陶瓷具有几个主要的特性。
首先,它们具有良好的压电和逆压电效应。
这使得它们成为制造传感器和换能器的理想材料。
其次,压电陶瓷还具有良好的机械强度和稳定性。
它们可以承受高压力和机械应力,并且能够在广泛的温度范围内工作。
此外,压电陶瓷具有较宽的频率范围和较高的输出功率。
这使得它们成为制造振动器和储能器的理想选择。
压电陶瓷具有广泛的应用领域。
其中一个主要应用是在传感器领域。
压电陶瓷可以用于制造压力传感器、加速度传感器、力传感器等。
这些传感器可以广泛应用于自动化、工业控制、医疗设备等领域,实现对压力、加速度、力等参数的测量和监控。
另一个主要应用是在换能器领域。
压电陶瓷可以用于制造超声换能器、声波清洗器、喇叭等。
这些换能器可以将电能转化为机械能,实现声音的放大和传播。
此外,压电陶瓷还可以应用于振动器、储能器、精密电机等领域。
总之,压电陶瓷是一种独特的陶瓷材料,具有压电效应。
它具有压电和逆压电效应、良好的机械强度和稳定性、较宽的频率范围和高输出功率等特性。
压电陶瓷在传感器、换能器、储能器、振动器等领域有广泛的应用。
它们在实际生活中发挥着重要的作用,促进了科技的发展和进步。
希望随着科技的不断发展,压电陶瓷能够在更多领域发挥重要作用,为人们的生活带来更多便利和创新。
pzt5压电陶瓷片使用手册

pzt5压电陶瓷片使用手册一、产品概述pzt5压电陶瓷片是一种具有优异压电性能的陶瓷材料,广泛应用于超声波、音频设备、传感器等领域。
它具有高灵敏度、低损耗、稳定性好等优点,能够将电能有效地转换为机械能,实现微小位移的精确控制。
二、物理特性1. 尺寸:pzt5压电陶瓷片有多种尺寸可供选择,以满足不同应用场景的需求。
2. 重量:pzt5压电陶瓷片相对较轻,方便安装和使用。
3. 机械性能:具有良好的机械强度和耐久性,能够在高压力、高温度环境下稳定工作。
4. 电学性能:具有优异的压电性能,压电常数和介电常数较高,能够实现高效的电能转换。
三、技术规格1. 压电常数:pzt5压电陶瓷片的压电常数随温度、频率、应力等条件的变化而变化,具体数值可根据实际需求进行测试和计算。
2. 介电常数:介电常数是衡量材料介电性能的参数,pzt5压电陶瓷片的介电常数与频率有关,需在特定条件下进行测量。
3. 电阻率:电阻率是衡量材料导电性能的参数,pzt5压电陶瓷片的电阻率相对较高,具有良好的绝缘性能。
4. 机械品质因数:机械品质因数是衡量材料机械性能的重要参数,pzt5压电陶瓷片的机械品质因数较高,具有较好的稳定性和耐久性。
四、驱动电路与连接方式1. 驱动电路:pzt5压电陶瓷片需要专门的驱动电路才能正常工作,驱动电路应具有稳定性好、噪声低等特点。
2. 连接方式:pzt5压电陶瓷片的连接方式有串联、并联等多种方式,具体连接方式应根据实际需求进行选择。
五、操作步骤与使用技巧1. 操作步骤:首先选择合适的驱动电路和连接方式,然后将pzt5压电陶瓷片按照规定连接方式连接到电路中,最后调整驱动电路的参数使pzt5压电陶瓷片正常工作。
2. 使用技巧:在使用过程中应注意避免对pzt5压电陶瓷片进行过大的压力或位移操作,以免损坏材料;同时应注意保持材料表面的清洁和干燥,避免影响其性能。
六、维护与保养1. 定期检查:应定期检查pzt5压电陶瓷片的连接线路是否牢固,有无松动或接触不良等现象。
压电陶瓷性能参数解析

上角标S表示机械夹持条件。
由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。
根据上面所述,沿3方向极化的压电瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。
〔2〕介质损耗介质损耗是包括压电瓷在的任何介质材料所具有的重要品质指标之一。
在交变电场下,介质所积蓄的电荷有两局部:一种为有功局部〔同相〕,由电导过程所引起的;一种为无功局部〔异相〕,是由介质弛豫过程所引起的。
介质损耗的异相分量与同相分量的比值如图1-1所示,Ic为同相分量,IR为异相分量,Ic与总电流I的夹角为δ,其正切值为(1-4)式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。
由式〔1-4〕可以看出,IR 大时,tanδ也大;IR小时tanδ也小。
通常用tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。
处于静电场中的介质损耗来源于介质中的电导过程。
处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。
此外,具有铁电性的压电瓷的介质损耗,还与畴壁的运动过程有关,但情况比拟复杂,因此,在此不予详述。
〔3〕弹性常数压电瓷是一种弹性体,它服从胡克定律:"在弹性限度围,应力与应变成正比〞。
设应力为T,加于截面积A的压电瓷片上,其所产生的应变为S,则根据胡克定律,应力T与应变S之间有如下关系S=sT (1-5) T=cS (1-6) 式中,S为弹性顺度常数,单位为m2/N;C为弹性劲度常数,单位为N/m2。
但是,任何材料都是三维的,即当施加应力于长度方向时,不仅在长度方向产生应变,宽度与厚度方向上也产生应变。
设有如图1-2所示的薄长片,其长度沿1方向,宽度沿2方向。
沿1方向施加应力T1,使薄片在1方向产生应变S1,而在方向2上产生应变S2,由〔1-5〕式不难得出S1=S11T1(1-7)S2=S12T1(1-8)上面两式弹性顺度常数S11和S12之比,称为迫松比,即(1-9)它表示横向相对收缩与纵向相对伸长之比。
完整版压电陶瓷片的原理及特性

完整版压电陶瓷片的原理及特性压电陶瓷是一种可压电材料,当施加外力时会产生电荷累积,从而产生电压。
压电陶瓷的原理是基于压电效应,即当施加外力时,材料内部的正负电荷会重新排列,形成电荷不平衡。
这种电荷不平衡会导致材料产生电位差,即产生电压。
压电陶瓷片由于具有良好的压电性能,广泛应用于传感器、超声换能器、无线电设备、换能器、纳米位移器、振动器等领域。
它的特点和特性如下:1.高压电系数:压电陶瓷片具有较高的压电系数,能够将机械能转化为电能,并且具有较高的能量转化效率。
这使得压电陶瓷片在能量采集、传感和控制领域应用广泛。
2.宽温度范围:压电陶瓷片的工作温度范围通常较宽,可以在极端的高温或低温环境下正常工作。
这使得它在航天、航空以及极地等恶劣环境中的应用具有独特的优势。
3.频率响应范围广:压电陶瓷片能够在较宽的频率范围内工作,通常从几千赫兹到几百兆赫兹。
因此,在超声波成像、荧光光谱仪和无线电通信等领域中具有重要的应用。
4.稳定性好:压电陶瓷片的性能稳定,具有优异的机械和电学性能。
它不易受到外界环境的影响,具有较长的使用寿命。
5.易于加工与制造:压电陶瓷片可以通过多种加工方法加工成不同形状和尺寸,如切割、打孔、磨削等。
这使得它在不同应用场合下可以满足不同形状和尺寸的需求。
6.低功率消耗:压电陶瓷片的功率消耗较低,适合用于需要低功耗的场合,如无线传感、医疗设备等。
7.较高的精度和稳定性:由于压电陶瓷片的工作原理和特性,它可以实现较高的精度和稳定性。
可以采集到更加准确和稳定的电信号或实现更加精确的控制。
总而言之,压电陶瓷片具有高压电系数、宽温度范围、频率响应范围广、稳定性好、易于加工与制造、低功率消耗和较高的精度和稳定性等特点和特性。
这使得它在诸多领域中有着广泛的应用前景。
特种陶瓷第五讲 压电陶瓷

压电陶瓷应用
压电探鱼仪:探鱼仪是一种用来探测水下鱼群的声纳设 备。其声波发射部分和接收部分用压电陶瓷制成。压电 陶瓷在交变电场作用下,会产生伸缩振动,从而向水中 发射声波。声波在向前传播时遇到鱼群即被反射回来, 压电陶瓷接收部分收到回波后,即将它变换成电信号, 经过电路处理就会显示出鱼群的规模、种类、密集程度、 方位和距离等,便于捕捞作业。 压电探鱼仪其发射功率已达到兆瓦级。用压电陶瓷制成 的接收部分有很高的灵敏度,根据回波的强弱可以判断 是海底、礁石,还是鱼群,甚至可以判断鱼群的种类、 大小和分布情况。
压电陶瓷应用
压电超声医疗仪中应用最广的是 B 型超声诊断仪。这种诊断仪中有 用压电陶瓷制成的超声波发生探 头,它发出的超声波在人体内传 输,体内各种不同组织对超声波 有不同的反射和透射作用。反射 回来的超声波经压电陶瓷接收器 转换成电信号,并显示在屏幕上, 据此可看出各内脏的位臵、大小 及有无病变等。 B 型超声诊断仪通 常用来检查内脏病变组织 ( 如肿块 等)。
压电陶瓷应用
积层式压电变压器:用于笔记本电脑液晶显示 器、桌上型电脑液晶显示器、个人数码助理 (PDA)、数码相机(DSC)、数码摄影机(DSC)之 冷阴极管电源模组等。
压电超声马达
世界上最小的马达(电机):重36mg,长5mm,直径 1mm,可作为人造心脏的驱动器。 原理:当给定子加上电之后,由于逆压电效应,定子表 面就会产生超声振动。由于定子和转子之间的摩擦力的 作用,转子也会跟着运动起来。 优点:结构简单、启动快、体积小、无电磁干扰。
机电耦合系数K是一个综合反映压电陶瓷的机械能与电能之间 耦合关系的物理量,是压电材料进行机—电能量转换能力的反映。 机电耦合系数的定义是:
压电陶瓷详解

1简介压电陶瓷是一类具有压电特性的电子陶瓷材料。
与典型的不包含铁电成分的压电石英晶体的主要区别是:构成其主要成分的晶相都是具有铁电性的晶粒。
由于陶瓷是晶粒随机取向的多晶聚集体,因此其中各个铁电晶粒的自发极化矢量也是混乱取向的。
为了使陶瓷能表现出宏观的压电特性,就必须在压电陶瓷烧成并于端面被复电极之后,将其置于强直流电场下进行极化处理,以使原来混乱取向的各自发极化矢量沿电场方向择优取向。
经过极化处理后的压电陶瓷,在电场取消之后,会保留一定的宏观剩余极化强度,从而使陶瓷具有了一定的压电性质。
2物质组成常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A 表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Bax·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
3特性介电性及弹性性质压电陶瓷的介电性是反映陶瓷材料对外电场的响应程度,通常用介电常数ε0来表示。
压电陶瓷的弹性系数是反映陶瓷的形变与作用力之间关系的参数。
压电陶瓷材料同其它弹性体一样,遵循胡克定律。
压电陶瓷的压电性压电陶瓷最大的特性是具有压电性,包括正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
4制作工艺工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。
压电陶瓷的制造特点是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。
压电陶瓷主要成分

压电陶瓷主要成分压电陶瓷是一种具有压电效应的陶瓷材料,其主要成分包括钛酸锆、钛酸铅和硅酸钠等。
压电陶瓷具有压电效应,即在受到外力作用时会产生电荷分离现象,从而产生电压差。
这种材料常被用于传感器、驱动器和压电换能器等设备中。
钛酸锆是一种重要的压电陶瓷材料,其化学式为ZrTiO4。
它具有较高的压电系数和介电常数,因此在压电陶瓷中具有广泛的应用。
钛酸锆是一种晶体材料,其晶体结构为正交晶系。
它的压电性能主要是由晶格结构变形引起的,当外力施加到钛酸锆晶体上时,晶格会发生畸变,导致正电荷和负电荷的分离,从而产生电压。
钛酸铅是另一种常见的压电陶瓷材料,其化学式为PbTiO3。
它具有良好的压电性能和介电性能,因此在压电器件中得到广泛应用。
钛酸铅是一种钙钛矿结构的陶瓷材料,其晶体结构具有较高的对称性,因此表现出优异的压电性能。
钛酸铅的压电效应是由晶体结构的畸变引起的,当外力作用到钛酸铅晶体上时,晶格会发生畸变,导致电荷的分离。
硅酸钠是一种常用的玻璃基质材料,它的化学式为Na2SiO3。
硅酸钠在压电陶瓷中常用作玻璃相的添加剂,可以提高陶瓷的烧结性能和机械强度。
硅酸钠的加入可以改善压电陶瓷的工艺性能,并且对陶瓷的压电性能没有明显的影响。
除了以上主要成分外,压电陶瓷中还可能含有其他添加剂,如氧化铁、氧化钴等。
这些添加剂的加入可以改变陶瓷的物理性能和电学性能,从而适应不同的应用场景。
压电陶瓷具有许多优异的性能,如高压电系数、宽工作频率范围、稳定性好等。
它在传感器领域中被广泛应用,如压力传感器、加速度传感器等。
此外,压电陶瓷还可以用于声波发生器、压电换能器等设备中。
压电陶瓷的应用领域非常广泛,涉及到电子、通信、医疗、汽车等多个行业。
压电陶瓷是一种具有压电效应的陶瓷材料,其主要成分包括钛酸锆、钛酸铅和硅酸钠等。
这些成分赋予了压电陶瓷优异的压电性能和介电性能,使其在传感器、驱动器和压电换能器等设备中得到广泛应用。
压电陶瓷的发展将为电子技术的进步和应用提供强大的支持。
压电陶瓷ppt课件

其它几种重要的压电陶瓷包括
PbTiO3- PbZrO3;
Pb(Mg1/3Nb2/3)O3- PbTiO3- PbZrO3 ;
Pb(Co1/3Nb2/3)O3- PbTiO3- PbZrO3 ;
Na0.5K0.5NbO3 ;Pb0.6Ba0.4Nb2O6 ;
BNT(B0.5Na0.5TO3)、KNN(K0.5Na0.5NbO3)等。
还具有热电性;铁电体也是一种极性晶体,属于热电体,因 而也是压电体。
2
3. 压电陶瓷
陶瓷—多晶体—各晶粒之间的压电效应会相互 抵消;
人工极化:经直流强电场极化处理过的铁电陶 瓷,使晶粒中的所有电畴都尽可能地转向了电 场的方向,铁电晶体所固有的压电效应就会在 陶瓷材料上呈现出来。因此,压电陶瓷实际上 也就是经过直流强电场极化处理过的铁电、压 电陶瓷。
3
表征参数
机电偶合系数K
or:
K
2
由压电效应转换的电能 储入的机械能总量
K
2
由逆压电效应转换的机械能 储入的电能总量
K值越大,材料的压电耦合效应越强。 除此之外,还有压电系数d、机械品质因素Q、
弹性系数S和频率常数N等。
4
主晶相结构
钙钛矿型、钨青铜型、焦绿石型、含钛层状结构。
目前应用最广泛的是BaTiO3、PbTiO3、 PbZrO3等, 都属钙钛矿型晶胞结构。
§9.5 压电陶瓷
压电陶瓷(piezoelectric ceramics) ——具有压电效应的陶瓷材料,
即能进行机械能与电能相互转变的 陶瓷; 制备方便,成本低廉,发展迅速, 一类重要的功能陶瓷材料; 目前,压电陶瓷在工程方面的应用, 甚至超过了压电晶体。
1
一、压电效应及陶瓷压电机制
压电陶瓷材料的主要性能及参数

压电陶瓷材料的主要性能及参数自由介电常数εT33(free permittivity)电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。
相对介电常数εTr3(relative permittivity)介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。
介质损耗(dielectric loss)电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。
损耗角正切tgδ(tangent of loss angle)理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。
即:电学品质因数Qe(electrical quality factor)电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。
若用并联等效电路表示交变电场中的压电陶瓷的试样,则Qe=1/ tgδ=ωCR机械品质因数Qm(mechanical quanlity factor)压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之比称为机械品质因数。
它与振子参数的关系式为:泊松比(poissons ratio)泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示:δ= - S 12 /S11串联谐振频率fs(series resonance frequency)压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即并联谐振频率fp(parallel resonance frequency)压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p =谐振频率fr(resonance frequency)使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。
绪论-特种陶瓷材料及工艺

的雷达天线罩、导弹鼻锥等部件。
其他领域应用案例
环保领域
特种陶瓷材料可用于环保领域,如制造高温烟气过滤器、催化剂载 体等,具有优异的耐高温、耐腐蚀和催化性能。
新能源领域
特种陶瓷材料在新能源领域中也有广泛应用,如用于太阳能电池板、 燃料电池中的电解质材料等。
高端装备制造
特种陶瓷材料还可应用于高端装备制造领域,如高精度轴承、超硬刀 具等,提高装备的耐磨性、精度和使用寿命。
感谢您的观看
THANKS
等静压成型
利用液体介质不可压缩的性质和均匀传递压力的特点,将 原料粉末装入橡胶或塑料等软模中,在各方向均匀加压, 得到密度均匀、形状复杂的坯体。
烧结过程控制及优化
根据原料的性质和特种陶瓷的性能要求,选择合适的 烧结温度和时间,以获得致密的显微结构和优异的性
能。
输入 气标氛控题制
在烧结过程中,通过控制气氛的组成和分压,可以实 现对陶瓷材料的氧化、还原、氮化等反应的控制,从 而得到具有特定性能的特种陶瓷。
化学稳定性及耐腐蚀性
耐酸碱腐蚀
特种陶瓷材料如氧化铝、氮化硅等,在 强酸、强碱环境下具有优异的耐腐蚀性。
耐化学腐蚀
特种陶瓷材料在多种化学介质中具有 很高的稳定性,不易发生化学反应。
抗氧化性
高温下,特种陶瓷材料能够抵抗氧化 气氛的侵蚀,保持稳定的化学性质。
生物相容性
部分特种陶瓷材料具有良好的生物相 容性,可用于医疗、生物工程等领域。
成型方法及设备简介
干压成型
将干燥的原料粉末放入模具中,通过压力机施加压力,使 粉末颗粒紧密结合形成所需形状的坯体。
热压铸成型
在加热加压的条件下,使原料粉末与有机添加剂混合后形 成的料浆注入金属模具中,冷却后得到所需形状的坯体。
特种陶瓷第五讲压电陶瓷详解演示文稿

压电材料的主要特性参数
➢ 压电常数 ➢ 弹性常数 ➢ 介电常数 ➢ 机电耦合系数 ➢ 电阻 ➢ 居里点
1)、压电常数d33
压电常数是反映力学量(应力或应变)与电学量(电 位移或电场)间相互耦合的线性响应系数。
当沿压电陶瓷的极化方向(z轴)施加压应力T3时,
在电极面上产生电荷,则有以下关系式:
D3 d33T3
在32种点群的晶体中,只有20种非中心对称点 群的晶体才有压电效应。
将这些原材料在高温下致密烧结,制成陶瓷, 并将制好的陶瓷在直流高压电场下进行极化处 理,才能成为压电陶瓷。
常用的压电陶瓷有钛酸钡、钛酸铅、锆钛酸铅 以及三元系压电陶瓷等。
1先9后42在年美,国第、一前个苏压联电和陶日瓷本材制料成—,—但钛其酸压钡电(性Ba随Ti温O3度) 变化较大。
120℃以下,BaTiO3晶体 结构稍有畸变,为四方 结构,Ba2+和Ti4+相对于 O2-产生了一个位移,结 果沿C 轴方向正负电荷 中心不重合,产生了极 化(自发极化),通常 把这种转变温度称为居 里温度或居里点(Tc)。
120℃到5℃自发极化沿 C轴[001]方向。
铁电晶体中存在着自发极化 方向不同的小区域,那些自 发极化方向相同的区域称为 电畴(黑色粗线为畴壁)。
2)、机电耦合系数Kp
机电耦合系数K是一个综合反映压电陶瓷的机械能与电能之间耦
合关系的物理量,是压电材料进行机—电能量转换能力的反映。 机电耦合系数的定义是:
K
2
通过逆压电效应转换所 得的机械能 转换时输入的总电能
或
K2
通过正压电效应转换所 得的电能 转换时输入的总机械能
压电陶瓷振子(具有一定形状、大小和被覆工作电极的压电陶瓷 体)的机械能与其形状和振动模式有关,不同的振动模式将有相 应的机电耦合系数。
压电陶瓷特点

压电陶瓷特点
压电陶瓷是一种特殊的陶瓷材料,具有压电效应,即在施加或取消机械压力时会产生电荷分布的变化。
以下是压电陶瓷的一些特点:
1. 压电效应:压电陶瓷的最显著特点是具有压电效应。
当施加压力或拉伸力时,其晶格结构发生变化,导致正电荷和负电荷在陶瓷内部的分布发生变化,从而产生电荷。
这个电荷分布的变化产生的电场使得压电陶瓷呈现出电荷的极性。
2. 压电材料应用广泛:压电陶瓷广泛应用于传感器、换能器、声波器件等领域。
例如,压电陶瓷可以用于制造压电传感器,用于检测和测量压力、力、温度等物理量。
3. 高频响应:压电陶瓷具有较高的频率响应能力,因此常被应用于声波器件,如扬声器、超声波发生器等。
4. 机械刚性好:压电陶瓷具有较好的机械刚性,可以在较大的压力范围内保持其稳定性,这使得它在一些需要耐高压力环境的应用中具有优势。
5. 温度稳定性:压电陶瓷具有相对较好的温度稳定性,能够在一定温度范围内保持压电效应的稳定性。
6. 易加工:压电陶瓷易于制备和加工,可以通过陶瓷成型和烧结等工艺进行制造,使其形成不同形状和尺寸的器件。
7. 良好的电机械能换能性能:压电陶瓷具有良好的电机械能换能性能,即可以将电能转换为机械能,也可以将机械能转换为电能。
8. 耐腐蚀性:压电陶瓷具有较好的耐腐蚀性,可以在一些特殊环境下使用。
总体而言,压电陶瓷以其独特的压电性能在多个领域有广泛的应用,从传感器到声学器件等,都发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结课论文开题报告2014 年4月 13日特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数引言: 随着新技术革命的,功能陶瓷愈来愈受到世界各国的重视,品种日益增多,应用也愈来愈普遍。
几乎在工业、宇航、军工等所有的领域都可以找到特种题 目: 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数学 院: 化学工程学院专业班级: 材料化学112班学生姓名: 顾鹏 学 号: 2011121272 指导教师:陶瓷的应用。
应该指出,许多陶瓷都具有十分优异的综合性能。
摘要:特种陶瓷是发展高新技术的物质基础,也是改造传统产业的必备条件,因此材料科学被列为对世纪六大高科技领域之一。
特种陶瓷是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光等物理特点,它在国民中的能源、电子、航空航天、机械、汽车、冶金和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。
除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推动作用。
Abstract: special ceramics is the material basis for the development of high technology, is the transformation of traditional industries essential condition, so the materials science is listed as the six major high-tech fields. Special ceramics is a part of the new material, because it has excellent resistance to various other materials do not have, high temperature resistance, high strength, light weight, corrosion resistance, wear resistance, excellent electrical, magnetic, acoustic, optical and other physical characteristics, it is in the national energy, electronics, aerospace, machinery, automobile, metallurgy and biological aspects have broad application prospects, has become the industry technology is the key technology in the essential material, in the modernization of national defense construction, the development of weapons and equipment also cannot do without special ceramic materials. In addition, the environmental protection as an important consideration in the world, with environmental protection, life optimization as the background of the environmental research and development of functional ceramics are bound to improve human living environment, implementing the strategy of sustainable development plays a positive role in promoting.关键词:特种陶瓷、压电陶瓷、性能1特种陶瓷定义特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。
如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。
如压电、热电、电光、声光、磁光等功能。
2特种陶瓷的力学性能2.1金属的变性特征金属材料在室温静拉伸载荷下,断裂前一般都要经过弹性变形和塑性变形两个阶段,而陶瓷材料一般都不出现塑性变形。
极微小应变的弹性变形后出现脆性断裂。
延伸率和断面收缩都几乎为零。
材料的弹性变形符合虎克定律,即弹性形变—虎克定律σ=EεE为弹性模量,是材料原子间结合力的反映。
陶瓷材料的弹性模量比金属的大很多。
陶瓷材料形变的另一特点是压缩时的弹性模量大大高于拉伸时的弹性模量。
即E 压>> E拉与此同时,陶瓷材料压缩时还可以产生少量的压缩塑性变形。
2.2陶瓷的脆性断裂和材料强度的韦伯(Weibull)分布1920年格里菲斯提出了脆性断裂理论。
这一理论认为,材料内部存在原始裂纹,当材料受力时,在裂纹的尖端处产生应力集中,如果尖端处的应力超过材料的理论强度时,裂纹就迅速扩展,最后使材料断裂,这就是为什么材料实际强度比理论强度低很多的原因。
实际材料中存在的孔隙、裂纹、夹杂和其他群贤均可视格里菲斯模型中的裂纹。
事实上,在不同的村性材料中裂纹的分布服从统计规律,那么材料的强度也服从概率分布,这一分布最早由韦伯提出。
韦伯数大,材料强度分布狭窄,说明原料和工艺稳定,相反则说明原料和工艺不稳定,所以韦伯数是材料可靠性的重要亮度。
2.3陶瓷材料的断裂韧性断裂韧性是材料抵抗裂纹扩展的能力,是本征属性,与裂纹的大小、形状以及外力大小无关。
对陶瓷材料而言,在室温至小于0.5Tm的温度范围内很难产生塑性变形,因此呈脆性断裂。
陶瓷材料对裂纹的敏感性很强,断裂韧性是评价陶瓷材料力学性能的重要指标,常用线弹性力学研究裂纹扩展和断裂的问题。
2.4陶瓷的强韧化及其机理(1)陶瓷韧化的分类陶瓷材料的增韧按机理可分为两大类:一类是在裂纹尖端分布着非弹性变性区,它们是因为相变或微裂纹两者共同引起的;另一类是裂纹桥联,是由纤维、晶须、颗粒等第二相引起的。
如果分的细一点,又常将陶瓷的韧化机制分为相变增韧、微裂增韧、纤维或晶须增韧、颗粒等第二相增韧等。
(2)相变增韧当陶瓷材料处于张应力作用下,裂纹尖端就有一张应力。
当裂纹尖端的张应力大于材料的断裂应力时,裂纹扩展,材料脆断。
如果实际张力低于材料的断裂应力时,裂纹扩展停止,这种固体相变而形成的韧化过程被称为相变增韧。
(3)微裂纹和残余应力增韧如果弹性应变能超过基体的断裂强度,基体开裂,沉声许多微裂纹。
材料中只有那些大于等于2C的裂纹才会扩展,材料才会脆断。
至于材料中的那些小于2C,特别是远小于2C的裂纹在断裂应力的作用下是无害的,材料是安全的。
当住裂纹扩展,遇到这些裂纹时,主裂纹发生偏转、分叉,吸收断裂问,使材料在更高的载荷下才能断裂,这一机制被称为微裂纹增韧机制(4)桥联增韧①多晶体陶瓷中局部晶粒的桥联。
有两种主要的桥联类型,局部未破坏晶粒所组成的桥联和内部摩擦互锁裂纹面所造成的桥联。
②延性颗粒和县委(晶须)补强(5)主要的增韧方法和材料要提高作为裂纹扩展抗力的韧性,需要缓和裂纹尖端的应力集中,增大断裂所需的能。
对于除高温以外无法依靠塑性变形的陶瓷,其断裂机理有以下几种:相变、显微裂化、裂纹弯曲、裂纹转向、拉脱、桥接效应和残留应变能效应。
相变仅适用于氧化锆等有限的材料,因此,显微裂化、裂纹弯曲和裂纹转向便成为含例子分散系的陶瓷烧结体的重要强韧化机理。
虽然相变以外的机理也起作用,但各种机理所起的作用尚不能定量表达。
拉脱和桥接效应可望通过晶须和粒子分散实现复合化,也可认为与晶须等引起的裂纹弯曲、转向等有关联。
裂纹弯曲、转向是局部不均匀的裂纹,可理解为显微裂纹的形成-扩展,也可认为包含显微裂化。
残留应变能效应可以缓和显微裂纹形成的主裂纹应力集中,进而提高韧性,在理论上是可行的,对于不能依靠塑性变形的脆性材料是一个重要机理。
3特种陶瓷今后的发展前景特种陶瓷是发展高新技术的物质基础,也是改造传统产业的必备条件,因此材料科学被列为对世纪六大高科技领域之一。
特种陶瓷是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光等物理特点,它在国民中的能源、电子、航空航天、机械、汽车、冶金和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。
除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推动作用。
(1)、特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等;(2)、超导陶瓷的研究;(3)、特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究;(4)、陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,目前国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅;(5)、陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点。
(6)、在非氮化物陶瓷中,目前国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等;(7)、随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。
4压电陶瓷的定义压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。
这是一种具有压电效应的材料。
压电效应:某些电介质定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。