第九章磁参数的测量
电气测量学第九章 磁性测量技术
N0 B0 S CΦ
得
CΦ Δ Δ N
所以,根据磁通改变前后磁通表的指针偏转角的变化,可
以决定磁通的变化量。
七、核磁共振法
根据塞曼(P.Zeeman)效应原理,在外磁场的作用下, 原子的能级将发生分裂,当用一个等于塞曼跃迁频率的电磁 场作用在原子上时,塞曼能级之间将发生感应跃迁,这种现 象称为磁共振。
Q CQm
得
NΔ RCQm
Δ Cφ m N
则
式中的 Cφ RCQ 叫做检流计的磁通冲击常数。 在确定磁通冲击常数后,即可计算出被测磁通的变化量。 至于被测磁通与它的变化量之间的关系,要视此变化量按何种 方式变化而确定。如果将测量线圈从被测磁场中突然移开或从 场外突然置入,则磁通变化量都等于Φ;如果将测量线圈在被 测磁场中以线圈平面为轴旋转180º ,则磁通变化量等于2Φ 。
组成部分。
磁性测量技术主要包括三个方面的内容: 1.磁场和磁性材料的测量;(宏观) 2.分析物质的磁结构,观察物质在磁场中的各种磁性效应; (微观) 3. 非磁量的磁测量。(边缘) 本章主要介绍磁场和磁性材料的基本测量原理和测量方法。
第一节 磁性测量的基本知识
一、磁感应强度和磁通
1.磁感应强度 磁感应强度是描述磁场性质和强弱的物理量,它是一个矢 量,用B 表示,B 的大小表示该点磁场的强弱,磁场中某点的 方向表示该磁场的方向。国际单位制单位是韦伯/米(Wb/m2) , 电磁单位制单位是高斯(GS)。
滤波
2 f0
选 频 放 大
2 f0
相 敏 检 波
直 流 放 大
N2
i1
N1
直流电 f0 2 f0 倍频器 移相器 压表 或记录 仪表
交流励磁源
精选第九章 磁参数的测量资料
13
第九章 磁参数的测量
2019/7/5
14
第九章 磁参数的测量
2019/7/5
15
霍尔高斯计
霍尔元件
2019/7/5
16
霍尔传感器用于测量磁场强度
测量铁心 气隙的B值
霍尔元件
2019/7/5
17
二、磁敏传感器
磁敏电阻:半导体材料的电阻率随磁场强度的 增强而变大,这种现象称为磁阻效应,利用磁阻效 应制成的元件称为磁敏电阻。
2019/7/5
31
第九章 磁参数的测量
2019/7/5
32
第九章 磁参数的测量
2019/7/5
33
第九章 磁参数的测量
四、核磁共振法
核磁共振的基本原理
分子的磁性质
原子核
带正电荷的粒子
当它的质量数和原子序数有一个是奇数时,
它就和电子一样有自旋运动。
11H, 136C,199F 和 3115P 有自旋现象
封装)
26
磁敏电阻小型探矿仪
上海直川信息技术有限公司研制
的磁阻探矿仪及数据统计曲线图
2019/7/5
27
磁阻IC用于转速测量
磁力线集中 磁力线分散
2019/7/5
28
磁阻IC用于笔式验钞器
验9/7/5
29
第九章 磁参数的测量
2019/7/5
30
第九章 磁参数的测量
2019/7/5
18
第九章 磁参数的测量
2019/7/5
20
磁敏电阻的应用
磁敏电阻可用于 测量地球磁场的方向 及强度的变化。
2019/7/5
指南针只能指示 地球磁场的方向。
材料的磁学性能-材料性能学-金属力学性能-课件-北京工业大学-09
§9.2材料的抗磁性与顺磁性
第二节 材料的抗磁性与顺磁性
一、材料抗磁性与顺磁性的物理本质
M 顺磁
0
抗磁
H
材料性能
第九章材料的磁学性能
§9.2材料的抗磁性与顺磁性
1.抗磁性
材料被磁化后,磁化矢量与外加磁场方向相反的称为抗磁 性,χ<0。 材料的抗磁性来源于电子循轨运动时受外加磁场作用所产生 的抗磁矩。 电子循轨运动所产生的轨道磁矩为 ml=0.5eωr2。 式中:e为电子电荷;ω为电子循轨运动的角速度;r为轨道半 径。 电子循轨运动的受力状态如图。
材料性能
第九章材料的磁学性能
§9.1材料的基本磁学性能
3.磁感应强度
任何物质被磁化时,由于内部原子磁矩的有序排列,除了外磁场外 还要产生一个附加磁场。在物质内部,外磁场H和附加磁场H’ 的和乘以
μ0 称为磁感应强度B,单位为韦伯/米2(Wb/m2)。
亦即,通过物质内部磁场中某点,垂直于磁场方向单位面积的磁力 线数。它与磁场强度H 的关系是 B=μ0(H+H’) 或 B=μ0(H+M) B=μ0(1+χ)H=μ0μrH=μH 式中μr为相对磁导率;μ为磁导率或导磁系数,它反应了磁感应强度B 随外磁场H变化的比率(或速率)。
χ=C’/(T+Δ)
式中C’是常数,Δ对某一种物质也是常数,其值可大于0和小于0。 铁磁性物质在居里点以上是顺磁性的,其磁化率大致服从居里—外斯 定律,这时的Δ为-θ,θ表示居里温度。
材料性能
第九章材料的磁学性能
§9.2材料的抗磁性与顺磁性
3.相变及组织转变的影响
材料发生同素异构转变,由于晶格类型及原子间距发 生了变化,会影响电子运动状态而导致磁化率的变化。例 如, 正方晶格的白锡转变为金刚石结构的灰锡时,磁化率 明显变化。但影响的规律比较复杂。 加工硬化使金属的原子间距增大而密度减小,从而使 材料的抗磁性减弱。例如,当高度加工硬化时,铜可以由 抗磁变为顺磁。退火与加工硬化的作用相反,能使铜的抗 磁性重新得到恢复。 材料性能 第九章材料的磁学性能
《电磁测量技术》课件 李宝树 第九章
0
Bm
t
H'
e
图9-9(e) 磁感应强度B'的不对称梯形波
0
图9-9(b) 励磁磁场 H的交流三角波
t
T1 T2
图9-9(f) 电动势e’的不对称方波
如果将探头放在被测直流磁场H0中,铁芯除了受交流磁场H作用外,还 受直流磁场H0作用,铁芯中的合成磁场为H’。在交流磁场与直流磁场方向相 同的半周期中,铁芯提前进入饱和区,滞后退出饱和区;在交流磁场与直流 磁场方向相反的半周期,铁芯滞后进入饱和区,提前退出饱和区。因此,铁 芯中的磁感应强度B’是不对称的梯形波,如图9-9(e)所示。在测量线圈中感应 出的电动势e’也是不对称的方波,如图9-9(e)所示。(图中T1<T2;如果直流磁 场是-H0,则T1>T2),此方波中不但有奇次谐波,还包含偶次谐波,偶次谐波 的大小和相位分别反映了直流磁场的大小和方向,测出测量线圈中的感应电 动势偶次谐波电压的幅值和相位,即可测得直流磁场的大小和方向。
图9-10是磁通门磁强 计总体结构框图。给磁场 探测器通入频率为f0的交 流励磁电流i1,把探测器 放入被测磁场中,在输出 线圈两端就会出现二倍频 的电动势,在经过放大、 检波后,便能在指示器上 指示出被测磁场的强度。 相敏检波的作用是反映而 次谐波的相位,以反映被 测直流磁场的相位。
滤波
2 f0
或
m SQ Q Q CQ m
其中SQ称为冲击检流计的冲击灵敏度,CQ=1/SQ,称为冲击常数, 由实验测定。
1.用冲击检流计测定磁通的原理 将匝数为N,面积为S的测量线圈放到被测的磁场中,线圈平 面要和磁场垂直。这时通过测量线圈的磁通就是要测的磁通。把 测量线圈与冲击检流计回路相连,如图9-6所示,设整个回路的电 阻为R,电感为L。 B 测量时,要使穿过测量线圈的磁 通发生变化,例如设法使磁通消失、 反向或突然将线圈从磁场中移开,此 时线圈两端产生感应电动势,并通过 检流计构成的回路中形成感应电流, 这个电流持续时间很短,并与感应电 G R 动势有下列关系 L d di e N Ri L 图9-6 用冲击检流计测磁通的电路 dt dt 对上式两边从电流开始通过的时间t1=0到电流结束的时间t2=τ求定 积分:
第九章 9-4 磁介质
B B H M m H 0 0
l
B dl I
l
磁介质中的毕奥—萨伐尔定律
B H r B0
dB d(r B0 ) r dB0 r 0 Idl er Idl er dB 2 2 4π r 4π r
无外磁场: 因分子的无规则热运动, 分子磁矩取向混乱, 物质 并不显磁性——未磁化状 态。 加外磁场: 分子固有磁矩将受到外磁 场的磁力矩作用,转向外 磁场的方向排列,各个分 子磁矩将沿外磁场方向产 生附加的磁场。
Is
B0
3、抗磁质磁化机理——电子轨道在外磁场作用下发生变化
无外磁场: 分子中每个轨道磁矩和自旋磁矩的矢量和不为零,但 是分子的固有磁矩等于零,所以不显磁性。 加外磁场: 分子中每个电子的轨道运 动将受到影响,从而引起 与外磁场的方向相反的附 加的轨道磁矩,结果出现 与外磁场方向相反的附加 磁场,因而抗磁质的磁感 应强度比外磁场的磁感应 强度要略小一点。
§9.4
一、磁介质的分类 什么是磁介质? 能够磁化的物质称作磁介质。 磁介质的磁化
磁介质
磁介质在磁场的作用下所发生的变化,称为磁介质的磁化, 其结果是产生了附加磁场。
§9.4
磁介质
真空中某点的磁感应强度为B0, 磁介质磁化产生的附加磁场为B', 磁介质中磁感应强度为B。
B B0 B
第九章 学习要求
思考题:《普通物理学》(P333) 9-2, 9-3,9-10 练习题:《普通物理学》(P334) 9-3, 9-4, 9-6, 9-7, 9-11, 9-14 作业题: 教材P334 9-8, 9-10
《大学物理学习指导》模拟题:三、六 测试题:《学习指导》 一、选择题 1,3,4, 5
2019高中物理鲁科版大复习学案第九章 磁场的描述及磁场对电流的作用
基础课1磁场的描述及磁场对电流的作用知识点一、磁场磁感线通电直导线和通电线圈周围磁场的方向1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用.(2)方向:小磁针的N极所受磁场力的方向。
2.磁感线在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致.3.几种常见的磁场(1)常见磁体的磁场(如图1所示)图1(2)电流的磁场知识点二、磁感应强度1.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)大小:B=错误!(通电导线垂直于磁场)。
(3)方向:小磁针静止时N极的指向。
(4)单位:特斯拉(T)。
2.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场.(2)特点:疏密程度相同、方向相同的平行直线.知识点三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小(1)磁场和电流垂直时:F=BIL。
(2)磁场和电流平行时:F=0。
2.安培力的方向图2左手定则判断:(1)伸出左手,让拇指与其余四指垂直,并且都在同一个平面内.(2)让磁感线从掌心进入,并使四指指向电流方向。
(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。
[思考判断](1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的强弱有关。
()(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
()(3)在磁场中磁感线越密集的地方,磁感应强度越大。
() (4)相邻两条磁感线之间的空白区域磁感应强度为零。
()(5)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
()(6)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小。
()(7)安培力可能做正功,也可能做负功.()答案(1)×(2)×(3)√(4)×(5)×(6)×(7)√磁场及安培定则的应用1.理解磁感应强度的三点注意(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比。
第九章 核磁共振波谱法
TMS
Si 1.8
4.26
3.40
3.05
2.68
2.16
0.23
0.0
吸电子作用强,电子云密度降低,屏蔽作用减弱, 信号峰在低场出现。
36
(1) 诱导效应
CH3 , =1.6~2.0;-CH2I, =3.0 ~ 3.5
37
(1) 诱导效应
间隔键数增多,诱导效应减弱 CH3Br Nobel Prize in Chemistry 2002
"for the development of methods for identification and structure analyses of biological macromolecules" "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules"
47
自旋偶合与自旋裂分
48
自旋偶合与自旋裂分
49
乙 醇 谱的 高 分 辨 与 低 分 辨
峰面积 1:2:3
NMR
自旋偶合与自旋裂分
裂分峰是由于分子内部邻近氢核自旋的相互 干扰引起的。 邻近氢核自旋之间的相互干扰作用称为自旋耦合。
由自旋耦合引起的谱线增多现象称为自旋裂分。
51
自旋偶合与自旋裂分
Ä (ppm) ¦
影响化学位移的因素
(1)诱导效应
(2)共轭效应 (3)磁各相异性效应 (4)范得华效应 (5)氢键去屏蔽效应
改变电子 云密度
35
(1) 诱导效应
高考物理真题分类汇编 第九章 磁场
第九章磁场9.1磁感应强度9.2安培力9.2.1磁场对通电导线的作用9.2.2电流与电流之间的作用力9.2.3等效法在安培力中的应用9.2.4安培力的实际应用9.2.5用“电流天平”测定磁感应强度9.3带电粒子在单一磁场中的运动9.3.1带电粒子在非匀强磁场中的运动9.3.2带电粒子在匀强磁场中的运动(选择+填空)9.3.3“云室”问题9.3.4带电粒子在匀强磁场中的运动(计算题)9.3.5带电粒子在圆形磁场中的偏转9.4带电粒子在复合场中的运动9.4.1带电粒子在组合场中的运动9.4.2带电粒子在叠加场中的运动(选择题)9.4.3带电粒子在叠加场中的运动(计算题)9.5带电粒子在复合场中运动的应用实例9.5.1速度选择器(质谱仪)9.5.2磁流体发电机9.5.3电磁流量计9.5.4回旋加速器9.5.5霍尔元件9.6带电粒子在有界磁场中运动的临界极值问题9.7带电粒子在磁场中运动的多解问题9.8带电粒子在交变磁场中的运动9.1磁感应强度2002全国13.磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是磁感应强度,μ是磁导率,在空气中μ为一已知常量.为了近似测得条形磁铁磁极端面附近的磁感强度B,一学生用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁拉开一段微小距离Δl,并测出拉力F,如图所示,因为F所做的功等于间隙中磁场的能量,所以由此可得磁感应强度B与F、A之间的关系为B=___________.2012全国18.如图,两根互相平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。
a、o、b在M、N的连线上,o 为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到o点的距离均相等。
关于以上几点处的磁场,下列说法正确的是A.o点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同2013上海13.如图,足够长的直线ab靠近通电螺线管,与螺线管平行。
9第九章_电与磁教师版
《电与磁》一、磁现象:1、磁性:磁铁能吸引铁、钴、镍等物质的性质(吸铁性)2、磁体:定义:具有磁性的物质分类:永磁体分为天然磁体、人造磁体3、磁极:定义:磁体上磁性最强的部分叫磁极。
(磁体两端最强中间最弱)种类:水平面自由转动的磁体,指南的磁极叫南极(S),指北的磁极叫北极(N)作用规律:同名磁极相互排斥,异名磁极相互吸引。
注意:☆最早的指南针叫司南。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
4、磁化:①定义:使原来没有磁性的物体获得磁性的过程。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
②钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
5、物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
注意:☆磁性材料在生活中得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
☆磁悬浮列车底部装有用超导体线圈饶制的电磁体,利用磁体之间的相互作用,使列车悬浮在轨道的上方以提高运行速度,这种相互作用是指:同名磁极的相互排斥作用。
☆放在条形磁铁南极附近的一根铁棒被磁化后,靠近磁铁南极的一端是磁北极。
二、磁场:1、定义:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
2、基本性质:磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
3、方向规定:在磁场中的某一点,小磁针北极静止时所指的方向(小磁针北极所受磁力的方向)就是该点磁场的方向。
4、磁感应线:①定义:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
②方向:磁体周围的磁感线都是从磁体的北极出来,回到磁体的南极。
③说明:A、磁感线是为直观、形象地描述磁场而引入的带方向的曲线,不客观存在。
磁参数的测量
磁参数的测量磁参数的测量是磁学基础研究和磁性材料及元器件工业的重要组成部分,电工测量技术中不可缺少的分支。
它主要包括磁场测量和磁性材料测量两方面的内容。
这部分的内容接触到高中物理的一些知识,同学们也都没有测量过磁类的参数,属于比较生疏的部分,所以先对基本知识做查询了解。
磁性元件:如收音机的磁棒,电视机中的磁芯、磁帽、偏转线圈磁环等。
磁性材料:通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。
主要分为软磁材料和硬磁材料,还有一些特种磁性材料。
金属的磁性材料主要有电工钢、镍基合金和稀土合金,非金属的主要是铁氧体材料。
磁性材料是生产、生活、国防科学技术中广泛使用的材料。
如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。
此外,它在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。
1. 磁场测量在生厂上要求一些磁性元件的部位能够产生一定强度的磁场,或者限制元件周围的磁场强度。
测量方法很多,主要有三类:(1) 利用电磁感应原理,将磁场强弱转换成测试线圈的感生电动势;(2) 利用载流导体在磁场中受电磁力作用的原理,转换为力测量;(3) 利用物体在磁场中表现特性的不同,转变成电参量测量。
以下列举了一些课本上的测量磁场的方法做初步了解。
1.1用冲击检流计测磁通测量的原理图见书图2-5-2。
电磁感应原理:闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流。
由图中可见,移动测量线圈,必将产生一个感应电动势e ,线圈回路中得到一个脉冲电流,检流计也接在这个回路之中,脉冲电流使可动线圈产生偏移,记偏最大移角为m α。
根据电路图中的电压平衡和初始值、以及偏转量与脉冲电荷q 的关系式q k q m 1=α,最后可得m α与磁通△φ的正比关系式:φα∆-=Rk w q B m 现常用的有上海电表厂的AC4/3冲击式直流检流计、及改善了的AC171.2用磁通计测量磁通磁通计是由测量线圈和一个无反作用力矩的磁电系测量机构成。
大学物理 第九章 稳衡磁场 老师课件
Φm = BS cosθ = BS⊥
Φm = B ⋅ S
dΦm = B ⋅ d S Φm = ∫ B ⋅ d S
S
s⊥
θ
s
v B
θ v B
v dS
v en
v B
v θ B
单位:韦伯 单位 韦伯 1WB=1Tm2
s
3.磁场的高斯定理 磁场的高斯定理
v B
S
v dS1 v θ1 B 1
dΦm1 = B1 ⋅ d S1 > 0
y
v v
o
v F =0
+
v v
x
实验发现带电粒子在 磁场中沿某一特定直线方 向运动时不受力, 向运动时不受力,此直线 方向与电荷无关. 方向与电荷无关.
z
当带电粒子在磁场中垂直于此特定直线运动时 受力最大. 受力最大 带电粒子在磁场中沿其他方向运动时 F垂直 与特定直线所组成的平面. 于v 与特定直线所组成的平面
l
多电流情况
I1
I2
I3
B = B + B2 + B3 1
l
∫ B ⋅ d l = µ (I
0 l
2
− I3 )
以上结果对任意形状的闭合电流( 以上结果对任意形状的闭合电流(伸向无限远 的电流)均成立. 的电流)均成立.
安培环路定理
B ⋅ dl = µ0 ∑Ii ∫
l i =1
N
真空的稳恒磁场中, 真空的稳恒磁场中,磁感应强度 B 沿任一闭合 路径的积分的值,等于µ0乘以该闭合路径所包围 路径的积分的值, 的各电流的代数和. 的各电流的代数和 注意:电流I正负 正负的规定 注意:电流 正负的规定 :I与l成右螺旋时,I 与 成 螺旋时, 之为负 为正;反之为负.
第九章 磁参数的测量共59页文档
指南针只能指示 地球磁场的方向。
21
地球磁场“导演”的极光(加拿大育空地
区)
18.11.2019
22
磁阻式电子罗盘
18.11.2019
23
磁敏电阻IC及其应用
18.11.2019
线性磁阻位置传感器
24
磁敏电阻的应用
根据铁磁 物体对地磁的 扰动,可检测 车辆的存在, 可用于包括自 动开门,路况 监测,停车场 检测,车辆位 置监测,红绿 灯控制等。
核磁共振的基本原理
分子的磁性质
原子核
带正电荷的粒子
当它的质量数和原子序数有一个是奇数时,
它就和电子一样有自旋运动。
11H, 136C,199F 和 3115P 有自旋现象
126C 和 168O 没有自旋现象
18.11.2019
34
自旋的核有循环的电流,会产生磁场,形成 磁矩。这一磁矩的方向与原子核的自旋方向相同, 大小与原子核的自旋角动量成正比。
第九章 磁参数的测量
磁场的产生
磁场强度分布
地
磁
生物
场
磁场
永磁体 电磁铁
亥姆霍 兹线圈
超导 磁体
脉冲磁场
天体 磁场
10-16 10-13 10-10 10-4 10-3 10-2 10-1 100 101 102 103 (Tesla)
8x10-14 8x10-11 8x10-8 8x10-2 8x10-1 8x100 8x101 8x102 8x103 8x104 8x105 (kA/m)
18.11.2019
NIM-2000系列
Permagraph系列12
第九章 磁参数的测量
18.11.2019
电磁测量第九章2008
§9-1 磁测量的基本知识
一、磁感应强度和磁通
⒈磁感应强度( B) 描述磁场性质的物理量(矢量),大小表示该点磁场强弱。 国际单位制: 单位是韦伯/米2,即特斯拉(T) 电磁单位制: B的单位是高斯(GS) 换算关系: 1T=1Wb/m2=104GS ⒉磁通(Φ) 磁通: 磁感应强度矢量沿一个面S的面积分称B穿过S面的 磁通量
Φ = ∫S B· dS 若磁场均匀,S面是平面且与磁场垂直,则 Φ = BS
磁通的连续性:如果S面是一个闭合面,有 Φ = ∮S B· dS=0 这是磁场的重要特性之一。 二、磁场强度及安培环路定律
⒈磁场强度(H)
磁场强度是为了便于分析磁场和电流的关系而引入的一个 物理量,也是矢量,它与磁感应强度的关系为: H =B/μ 式中μ是磁介质的磁导率,决定于磁介质的性质。 H的单位是 安培/米(A/m),真空磁导率为:μ0=4π×10-7亨利/米(H/ m)。 相对磁导率: μr = μ / μ0
磁化曲线和磁滞回线 • 直流磁特性曲线:铁磁材料在直流磁化的情况下,磁 感应强度B与磁场强度H之间的关系曲线,表示各种铁 磁材料的基本特性 。 • 原始磁化曲线:当磁性材料在完全去磁状态下,将其 磁化磁场强度H由零逐渐增加直到饱和状态,这样得 到的B~H曲线。
B
Bs
0
Hs 原始磁化曲线
H
磁化曲线和磁滞回线 • 磁滞现象 :如果从饱和 状态开始减小磁化磁场 强度,则磁感应强度B将 不沿原来的磁化曲线减 小,而是缓慢的减小,B 的变化落后于H的变化 的现象 • 基本磁化曲线 :对于不 同的磁化磁场强度,在 磁锻炼下可以得到无数 条相应的封闭的稳定磁 滞回线。
二、磁性测量的历史回顾
• 1086年沈括:地磁偏角的发现(梦溪笔谈); • 1785年库仑:利用磁针在磁场中的自由振荡周期来测定地磁场; • 1831年法拉第:电磁感应定律; • 20世纪30年代:出现了利用磁性材料自身磁饱和特性的磁强计; 应用:早期用于测量地磁场的微变,勘探铁矿; 后来用于军事探潜和侦查武器; 近年来用于火箭和卫星姿态的控制、空间磁场的探测; • 20世纪50年代:电子技术和半导体器件的发展为测磁仪器的发 展提供条件——霍尔效应、磁阻效应、磁敏效应等效应。 • 核磁共振现象(1946):使磁场测量准确度可达10-6; • 约瑟夫森效应(1962):使磁场测量的下限达到10-15 T;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/2/26
第九章磁参数的测量
30
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
31
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
32
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
33
第九章 磁参数的测量
四、核磁共振法
核磁共振的基本原理
分子的磁性质
原子核
带正电荷的粒子
根据铁磁 物体对地磁的 扰动,可检测 车辆的存在, 可用于包括自 动开门,路况 监测,停车场 检测,车辆位 置监测,红绿 灯控制等。
2021/2/26
第九章磁参数的测量
25
利用磁敏电阻制作小型探矿仪 (磁力仪)
2021/2/26
磁力 探矿仪 的使用
磁敏电阻
(聚四氟乙烯
封装)
第九章磁参数的测量
26
磁敏电阻小型探矿仪
2021/2/26
指南针只能指示 地球磁场的方向。
第九章磁参数的测量
21
地球磁场“导演”的极光(加拿大育空地
区)
2021/2/26
第九章磁参数的测量
22
磁阻式电子罗盘
2021/2/26
第九章磁参数的测量
23
磁敏电阻IC及其应用
2021/2/26
线性磁阻位置传感器
第九章磁参数的测量
24
磁敏电阻的应用
9
应尽量满足的条件-灵敏度
1. 脉冲电流冲击完毕之后,电流计线圈开始转动: 电流计线圈的转动惯量越大,越满足此条件。
2. 检流计处于临界阻尼状态; 检流计比较慢地达到最大读数,很快降为零。
3. 被测磁通应尽量为瞬时变化: 非瞬时变化引入很大的误差。
4. 线圈的自由振荡周期要远大于磁通变化的时间 一般在10倍以上。
5. 需要测定冲击检流计的冲击常数CΦ 使用互感系数M已知的互感线圈。
2021/2/26
第九章磁参数的测量
10
冲击检流计法
优点
1、可以开路、闭路测量; 2、仪器设备简单。
闭路:磁路闭合 开路:磁路不闭合
N
S
缺点
1、积分式数据采集:零漂移;
2、要求使用具有特定形状的样品;
3、灵敏度较低。
2021/2/26
2021/2/26
第九章磁参数的测量
1
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
2
磁性信号的测量仪器
电磁感应 Faraday效应
磁-力效应 磁-光效应
共振效应 磁-磁作用
2021/2/26
冲击法
振动样品磁强计VSM
提拉样品磁强计ESM
超导量子(SQUID)磁强计
磁转矩仪、磁天平
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
13
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
14
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
15
霍尔高斯计
霍尔元件
2021/2/26
第九章磁参数的测量
16
霍尔传感器用于测量磁场强度
测量铁心 气隙的B值
霍尔元件
磁矩 ,具有方向性,是一个矢量
将原子核置于外加磁场中,若原子核磁矩与外 加磁场方向不同,则原子核磁矩会绕外磁场方向 旋转,这一现象类似陀螺在旋转过程中转动轴的 摆动,称为进动。
2021/2/26
第九章磁参数的测量
35
进动具有能量也具有一定的频率。原子核进动 的频率由外加磁场的强度和原子核本身的性质决定, 也就是说,对于某一特定原子,在一定强度的的外 加磁场中,其原子核自旋进动的频率是固定不变的。 原子核发生进动的能量与磁场、原子核磁矩、以及 磁矩与磁场的夹角相关,根据量子力学原理,原子 核磁矩与外加磁场之间的夹角并不是连续分布的, 而是由原子核的磁量子数决定的,原子核磁矩的方 向只能在这些磁量子数之间跳跃,而不能平滑的变 化,这样就形成了一系列的能级。
当它的质量数和原子序数有一个是奇数时,
它就和电子一样有自旋运动。
11H, 136C,199F 和 3115P 有自旋现象
126C 和 168O 没有自旋现象
2021/2/26
第九章磁参数的测量
34
自旋的核有循环的电流,会产生磁场,形成 磁矩。这一磁矩的方向与原子核的自旋方向相同, 大小与原子核的自旋角动量成正比。
交变梯度磁强计AGFM
Kerr效应、Faraday效应
磁圆(线)振二向色谱仪
回旋共振、自旋共振 (铁磁共振仪、亚铁磁共振仪、反铁磁共振仪、 电子自旋共振仪、核磁共振仪、Mössbauer 谱仪)
中第子九散章射磁参装数置的测、量磁力显微镜
3
第九章 磁参数的测量
电磁感应法
电动势
2021/2/26
第九章磁参数的测量
上海直川信息技术有限公司研制
的磁阻探矿仪及数据统计曲线图
2021/2/26
第九章磁参数的测量
27
磁阻IC用于转速测量
磁力线集中 磁力线分散
2021/2/26
第九章磁参数的测量
28
磁阻IC用于笔式验钞器
验钞笔顺着纸币上的 磁性防伪线扫描
2021/2/26
第九章磁参数的测量
29
第九章 磁参数的测量
4
第九章 磁参数的测量
线圈旋转
2021/2/26
第九章磁参数的测量
5
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
6
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
7
第九章 磁参数的测量
2021/2/26Leabharlann 第九章磁参数的测量8
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
第九章磁参数的测等量 截面积(常数)
11
冲击检流计使用
教学演示实验:电磁感应定律
• 工业:发电机 • 工业:磁体的磁性能测量
迴线仪:永磁材料的永磁性能检测
美国KJS公司
HG-500
中国计量科学研究院
德国Magnet-Physik公司
2021/2/26
NIM-2000系第列九章磁参数的测量
Permagraph系列12
第九章 磁参数的测量
磁场的产生
磁场强度分布
地 磁 场 磁场
永磁体 电磁铁
亥姆霍 兹线圈
超导 磁体
脉冲磁场
天体 磁场
10-16 10-13 10-10 10-4 10-3 10-2 10-1 100 101 102 103 (Tesla)
8x10-14 8x10-11 8x10-8 8x10-2 8x10-1 8x100 8x101 8x102 8x103 8x104 8x105 (kA/m)
2021/2/26
第九章磁参数的测量
17
二、磁敏传感器
磁敏电阻:半导体材料的电阻率随磁场强度的 增强而变大,这种现象称为磁阻效应,利用磁阻效 应制成的元件称为磁敏电阻。
2021/2/26
第九章磁参数的测量
18
第九章 磁参数的测量
2021/2/26
第九章磁参数的测量
20
磁敏电阻的应用
磁敏电阻可用于 测量地球磁场的方向 及强度的变化。