第三章测量平差原理

合集下载

现代测量平差原理及其模型误差分析

现代测量平差原理及其模型误差分析

现代测量平差原理及其模型误差分析一、现代测量平差原理(一)最小二乘法最小二乘法是一种通过最小化测量残差的平方和来求取最优结果的方法。

其基本原理是,对于一个测量系统的观测数据,通过建立数学模型来描述测量关系,并在该模型中引入未知参数,然后通过最小化预测值与观测值之差的平方和来求取最优的未知参数估计值。

最小二乘法是一种常用的参数估计方法,其具有合理性、稳定性和统计优良性的特点。

在实际测量中,最小二乘法可以用于网络平差、方位角平差、高程平差等各种测量平差。

(二)加权最小二乘法加权最小二乘法是在最小二乘法的基础上引入权重因子,用于修正观测数据的精度不均匀性。

在实际测量中,不同的观测数据具有不同的可信度和精度水平,因此需要对其进行加权处理。

通过引入权重因子,可以对精度较高的数据赋予较大的权重,从而有效地提高整体平差结果的精度。

在测量平差中,模型误差是指由于建立的数学模型无法完全精确地描述实际测量系统而产生的误差。

为了提高平差的准确性,需要对模型误差进行分析和控制。

(一)理论误差与观测误差在测量平差中,模型误差可以分为理论误差和观测误差两部分。

理论误差是指由于数学模型的简化、近似或假设所引入的误差,通常在建立模型时可以通过数学推导和模型检验来评估。

观测误差是指由于测量仪器、观测操作和环境等因素所引起的误差,具有随机性和系统性两种特征,通常通过实际观测和数据处理来估计。

(二)误差分析与控制误差控制是指通过优化观测设计、改进仪器设备、改进观测方法和提高数据处理等手段,减小观测误差和理论误差,并降低其对最终平差结果的影响。

常用的误差控制方法包括增加观测次数、提高观测仪器的精度和敏感度、加强仪器校准和检查、改进观测方法和数据处理算法等。

测量平差的基础理论与实用运算技巧介绍

测量平差的基础理论与实用运算技巧介绍

测量平差的基础理论与实用运算技巧介绍引言:测量平差是测绘学中一项重要的技术,它通过一系列的测量观测与计算,使得测量结果更加准确和可靠。

本文将介绍测量平差的基础理论和实用运算技巧,帮助读者了解和掌握这一领域的知识。

一、测量平差的基础理论1.1 测量误差与精度测量平差的基础理论包括测量误差与精度。

测量误差是测量结果与真实值之间的差异,而精度则是描述测量结果的可靠程度。

了解并控制测量误差是进行测量平差的基础。

1.2 测量观测与定位测量观测是对待测对象进行测量的过程,它是测量平差的基础数据。

而定位则是将观测结果转化为坐标或位置信息的过程,常用的方法包括全站仪测量和GPS 定位等。

1.3 测量平差方法测量平差的方法有很多种,如最小二乘法、参数平差法等。

最小二乘法是一种常用的平差方法,它通过将观测误差最小化,来确定最优的平差结果。

二、实用运算技巧2.1 观测数据处理观测数据处理是进行测量平差的关键步骤,它包括读数转换、数据检查和数据平差等。

在进行数据处理时,需要注意数据的完整性和准确性。

2.2 参数平差法运算参数平差法是一种广泛应用的平差方法,它通过建立参数模型和观测方程,来求解未知量的值。

在进行参数平差法运算时,需要掌握矩阵运算和方程组求解的技巧。

2.3 网平差运算网平差是一种多个点同时进行平差的方法,它适用于有大量观测数据和未知量的情况。

在进行网平差运算时,需要注意观测数据的合理性和平差结果的可靠性。

三、实例分析本节将通过一个实例来展示测量平差的应用。

假设有一个工程项目,需要对地面标志点进行定位测量和平差。

首先进行全站仪观测,并记录观测数据。

然后,将观测数据进行处理和平差计算,得到标志点的实际位置坐标。

最后,根据平差结果进行误差分析和可靠性评估。

四、应用展望随着测绘技术的不断发展,测量平差在各个领域的应用越来越广泛。

未来,随着传感器和数据处理技术的进步,测量平差的精度和效率将进一步提高。

同时,测量平差也将深入到更多新兴领域,如智能交通和环境监测等。

测量平差测量误差及其传播定律课件

测量平差测量误差及其传播定律课件
各种工程进行精确测量。
地理信息获取
通过平差测量原理,获取高精度 地理信息数据,为地理信息系统
提供基础数据。
科学研究
在物理、化学、生物等领域,利 用平差测量原理对各种实验数据
进行处理和分析。
CHAPTER 03
误差传播定律
误差传播定律的定义
误差传播定律是测量平差中用来描述测量误差之间相互关系 的定律。它表明,当对一个或多个观测值进行数学运算时, 误差会按照一定的规律传播。
测量误差的来源
01
02
03
04
测量设备误差
设备精度、磨损、老化等因素 导致误差。
环境误差
温度、湿度、气压、风速等环 境因素影响测量结果。
操作误差
操作人员技能水平、操作习惯 等因素导致误差。
观测误差
观测过程中产生的随机误差和 系统误差。
测量误差的分类
系统误差
可预测且相对稳定的误差,如设 备误差。
随机误差
实例三:距离测量误差分析
总结词
距离测量误差主要来源于仪器误差、 人为误差和外界环境因素。
详细描述
仪器误差包括固定误差和比例误差; 人为误差包括读数误差和记录误差; 外界环境因素包括温度、气压和湿度 等气象因素的影响。
THANKS FOR WATCHING
感谢您的观看
总结词
水准测量误差主要来源于仪器误差、 人为误差和外界环境因素。
详细描述
仪器误差包括望远镜调焦误差、十字 丝分划板误差等;人为误差包括读数 误差和仪器对中误差;外界环境因素 包括大气折射和地球曲率的影响。
实例二:角度测量误差分析
总结词
角度测量误差主要来源于仪器误差、人为误差和目标偏心。
详细描述

测绘技术中的平差原理及应用

测绘技术中的平差原理及应用

测绘技术中的平差原理及应用导语:测绘技术在现代社会中扮演着极为重要的角色,它为我们提供了地理信息和地形数据,为城市规划、基础设施建设等提供了参考依据。

而平差作为测量中不可或缺的环节,更是保证了测绘数据的精确性和可靠性。

本文将介绍测绘技术中的平差原理及其应用,并探讨其在现代社会中的重要性。

一、平差原理的概述平差是测绘技术中一种重要的数据处理方法,它通过将测量结果进行修正和调整,消除误差,从而提高数据的准确性。

平差的基本原理是根据误差的传递规律,通过权衡各个观测值的权重来修正测量结果。

二、平差的分类根据观测数据量和形式的不同,平差可以分为间接平差和直接平差。

间接平差是指通过多个观测量之间的关系,将各个观测值进行联立求解的平差方法。

而直接平差是指通过最小二乘法求解各个观测值的平差方法。

三、平差的应用领域在测绘技术中,平差被广泛应用于各个领域。

首先,它在制图中起着关键作用。

通过对测量数据进行平差,可以获得更为准确的地形图和地图,为城市规划、土地利用等提供精确的基础数据。

其次,在工程测量中,平差也扮演着重要的角色。

在道路建设、大型桥梁和隧道的设计和施工过程中,平差可以提供精确的地形信息和测量结果,确保工程的顺利进行。

此外,平差还应用于船舶导航、航空导航等领域,为船只和飞机的航行提供准确的数据。

四、平差的实施步骤平差的具体实施步骤可以分为观测准备、观测操作、数据处理和结果分析等几个步骤。

首先,进行观测准备,包括确定目标区域、选择观测仪器,并进行校准和调整。

然后进行观测操作,按照预定的方法和步骤进行测量。

接下来,进行数据处理,包括数据的录入、数据的校验和数据的平差计算等。

最后,进行结果分析,对平差后的数据进行检查和分析,评估其准确性和可靠性。

五、平差技术的挑战与发展随着科技的不断进步,测绘技术也在不断发展,平差技术也面临着新的挑战和机遇。

首先,高精度测量技术的发展提出了对平差技术更高的要求。

其次,大数据和人工智能的兴起为平差技术的应用带来了新的机遇。

现代测量平差原理及其模型误差分析

现代测量平差原理及其模型误差分析

权的误差△P造成了函数模型参数的过渡化。
• 当 ∆F < Fα − F < 0 时
F < Fα < F
• 用统计 F 检验,参数Y不显著,实际上 F > Fα 参数Y显著,使函数模型少选了参数Y。 • 因此,在实际平差系统中,虽然存在随机模型 误差 △P,但往往并不知道,上述的检验统计 量采用了 F 致使所选函数模型产生了模型误 差,影响了平差函数的最优无偏估计性质。
T T
E (∆T PQVV P∆) = tr ( PQVV PD∆ ) = σ 0 tr ( PQVV ) = σ 0 (n − t )
2 2
Y G PQVV PGY = V PV − σ 0 ( n − t )
T T T 2
7、模型误差的识别
ky =
Y G PQVV PGY
T
T
tσ 0
2
检验Y=0 KY 可取4-6
P ′= 1 P
P2 + ∆P
V1 A1 l1 = X − l 2 + ∆L V2 A2
P1 P=
P2
V2′ = V2 + ∆L
V1′ = V1
定权如果不正确,相当于该观测值存在模型误差是综合函 数模型和随机模型误差的。平差系统模型误差的识别和补偿应 综合考虑。
ˆ ˆ ˆ vt = xt −1ϕ1 + xt − 2ϕ 2 + ⋯ xt − pϕ p − xt
其中时间序列数据为: {x1 } = (x1 , x 2, ⋯ , x n ), t = p + 1, ⋯ , n -1 1 -1 1 T = , R = T TT N −1, N N N ⋯ − 1 1

(整理)测量平差

(整理)测量平差

测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。

人们把这一数据处理的整个过程叫测量平差。

测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。

2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。

①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。

权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。

()n i iiP ,...,2,1220==σσi P 为观测值i L 的权,20σ是可以任意选定的比例常数。

②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。

确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。

凡是方差等于20σ的观测值,其权必等于1。

权为1的观测值,称为单位权观测值。

无论20σ取何值,权之间的比例关系不变。

③ ⅰ.水准测量的权NC P h =式中,N 为测站数。

SC P h =式中,S 为水准路线的长度。

ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。

ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。

(测量平差)第三章 测量平差原理

(测量平差)第三章 测量平差原理

3.1 测量平差概述 3.2 最小二乘平差原理 3.3 测量平差的数学模型

什么叫测量平差? 在多余观测的基础上,依据一定的数学模型 和某种平差原则,对观测结果进行合理的调整 (加改正数消除闭合差),从而得到一组最可靠 的结果并评定精度。 平差任务: (1)消除不符值,求出最或然值; (2)评定精度 L A0 0
r 1
r 1
1 2 3 180 0
13
r n n 1
A V W 0
2 0
r 1
A 1 1 1

V v1 v2 v3 31
T
T
nn
D Q
平差中: V
T
P V m in
P:权阵
最小二乘原理
“最佳”地拟合于各观测点的估计曲线,使各 观测点到该曲线的偏差的平方和达到最小,这种 方法叫最小二乘法。 针对偶然误差的测量平差中,利用最小二乘 法求得的估计量是最优估计量,具有以下性质: (1)一致性;(2)无偏性;(3)有效性

数学模型 :用数学关系描述几何模型的几何关系和内在 联系 。 函数模型 :几何关系,描述观测量之间或观测量与待定 量之间的数学函数关系式 。 随机模型 :内在联系,是描述观测量及其相互间的统计 相关性质。实际上,测量平差中所谓的随机模型,就是 观测值向量的权阵。 函数模型
观测方程 L B X d ,平差时,
n1 nt t 1 n1


一般对参数 X 都要取近似值X
t 1


令 X = X x 代入上式,并令
t 1 t 1 t 1 n1


l L L = L(B X + d )

测量平差的基本原理和计算方法

测量平差的基本原理和计算方法

测量平差的基本原理和计算方法测量平差是测量学中一个重要的概念,它用于消除测量误差,提高测量精度。

本文将介绍测量平差的基本原理和计算方法。

一、测量平差的基本原理测量平差的基本原理是通过对测量数据进行处理,消除不可避免的误差,得到更为准确的结果。

在实际的测量过程中,由于各种因素的影响,测量结果往往不是完全准确的。

而通过平差可以将这些误差分布在测量要素上,使得整个测量结果更为合理。

平差的基本原理包括以下几个方面:1. 观测误差的性质:观测误差是服从一定的概率分布的,一般满足正态分布或其近似分布。

2. 绘图、观测和计算误差的连接性:测量平差将绘图误差、观测误差和计算误差联系在一起,通过适当的方法进行计算处理。

3. 误差的耦合性:测量过程中的各个要素之间存在着一定的关系,其误差也会相互影响。

通过平差可以将这些误差合理地分配和补偿。

二、测量平差的计算方法测量平差的计算方法有很多种,下面将介绍几种常见的方法。

1. 最小二乘法:最小二乘法是一种常用的测量平差方法,其基本思想是将误差的平方和最小化。

通过对误差进行建模和优化,可以得到一组最优解。

2. 最大似然估计法:最大似然估计法是一种基于统计原理的测量平差方法。

它根据观测数据的概率分布,选择出最具可能性的结果。

通过最大化似然函数,可以得到一组最优解。

3. 权值平差法:权值平差法是一种根据观测精度的大小,给予不同权值的平差方法。

通过给观测数据引入权值,可以使得精度高的数据在计算过程中起到更大的作用,从而提高整体的测量精度。

4. 卡尔曼滤波法:卡尔曼滤波法是一种基于状态估计的测量平差方法。

它通过建立状态模型和测量模型,利用观测数据进行误差修正,从而得到更加准确的结果。

三、测量平差的应用测量平差在实际应用中有着广泛的应用。

以下通过几个领域的案例来说明。

1. 地理测量:在地理测量中,测量平差常用于大地测量和地图制图。

通过平差可以消除地球曲率、大地水准面等因素的影响,得到更加准确的测量结果,提高地图的精度和真实度。

平差计算的基本原理和方法

平差计算的基本原理和方法

平差计算的基本原理和方法平差计算是一种广泛应用于测量和工程领域的数学方法,用于解决数据观测值中的误差和偏差问题。

平差计算的基本原理是通过最小二乘法,以最小化观测值与计算值之间的残差平方和来确定最优解。

本文将介绍平差计算的基本原理和常用方法。

一、平差的概念和意义平差是指将不准确或不完整的观测数据进行修正和处理,使其达到最优解或近似最优解的过程。

在测量和工程领域中,由于各种误差和偏差的存在,观测数据往往具有一定的不确定性,因此需要进行平差计算来提高数据的精度和可靠性。

平差计算的结果可以用来进行工程设计、地图测绘、导航定位等各种应用。

二、平差计算的基本原理平差计算的基本原理是基于最小二乘法。

最小二乘法的核心思想是将观测值与计算值之间的残差平方和最小化,通过调整未知量的值来逼近最优解。

残差是指观测值与计算值之间的差异,而平差计算的目标就是使这些差异最小化。

平差计算的基本模型可以表示为以下方程组:A * x = L其中,A为系数矩阵,x为未知量向量,L为观测值向量。

通过解这个方程组,可以求得最优的未知量估计值x。

最小二乘法的优点是可以利用观测数据中的权重信息,将准确性较高的观测数据给予更大的权重,进一步提高计算结果的准确性。

此外,最小二乘法还具有数学上的良好性质,可以通过数学推导和求解得到闭式解,而不需要采用迭代方法。

三、平差计算的常用方法1. 三角形平差法三角形平差法是一种常用的平差计算方法,适用于测量角度和距离的观测数据。

该方法基于三角形的相似性原理,通过解析几何和三角函数等方法,将观测数据转化为方程组,并利用最小二乘法求解未知量。

2. 存储器平差法存储器平差法是一种适用于大规模观测数据的平差计算方法。

该方法通过将观测值按照一定规律存储在存储器中,然后通过循环迭代的方式逐步修正观测值和未知量的估计值,直到最终收敛。

3. 参数平差法参数平差法是一种广泛应用于工程测量领域的平差计算方法。

该方法将未知量表示为参数的形式,并利用最小二乘法求解最优的参数估计值。

测量平差技术入门指南

测量平差技术入门指南

测量平差技术入门指南一、引言测量平差技术是现代测量学中的一门重要技术,它通过利用数学模型和数据处理方法,对测量结果进行精确的分析和修正,以达到更为准确的测量成果。

本文将为初学者提供一份测量平差技术的入门指南,介绍测量平差的基本原理、方法和应用。

二、测量平差的基本原理1.1 精确性和可靠性测量平差的基本原理是通过对测量数据进行处理,从而提高测量结果的精确性和可靠性。

精确性是指测量结果与真实值之间的接近程度,而可靠性则是指测量结果的稳定性和可信度。

通过测量平差技术,我们可以减小测量误差、消除随机误差和系统误差,提高测量精度和可靠性。

1.2 测量数据的模型化测量平差技术的另一个重要原理是将测量数据进行模型化。

对于不同类型的测量数据,我们可以通过建立相应的数学模型来描述它们的特征和关系。

基于这些模型,我们可以使用统计方法对测量数据进行分析和处理。

三、测量平差的基本方法2.1 最小二乘法最小二乘法是测量平差中最常用的方法之一。

其基本思想是最小化残差平方和,即寻找使得测量数据与模型之间的残差最小的解。

通过最小二乘法,我们可以消除一部分误差,并提高测量结果的精确性。

2.2 条件方程法条件方程法是另一种常用的测量平差方法。

它通过建立由观测数据和未知参数构成的条件方程组,使用数值方法求解该方程组,获得未知参数的估计值。

条件方程法适用于各种类型的测量问题,具有较好的通用性。

四、测量平差的应用领域3.1 地形测量测量平差技术在地形测量中具有广泛的应用。

通过对地形测量数据进行处理,我们可以绘制出精确的地形图和等高线图,为地质勘探、土地规划和交通规划等工作提供准确的基础数据。

3.2 工程测量在工程测量中,测量平差技术被广泛应用于土建工程、水利工程和交通工程等领域。

通过对测量数据进行精确处理,我们可以制定合理的工程设计方案,提高工程质量和效率。

3.3 大地测量大地测量是测量平差技术的重要应用领域之一。

通过对大地测量数据进行平差处理,可以获得准确的大地坐标和大地线网的形状、尺度和形变等信息,为地球物理研究、地震监测和测绘工作提供重要支持。

测量平差概念

测量平差概念

测量平差概念由于测量仪器的精度不完善和人为因素及外界条件的影响,测量误差总是不可避免的。

为了提高成果的质量,处理好这些测量中存在的误差问题,观测值的个数往往要多于确定未知量所必须观测的个数,也就是要进行多余观测。

有了多余观测,势必在观测结果之间产生矛盾,测量平差的目的就在于消除这些矛盾而求得观测量的最可靠结果并评定测量成果的精度。

测量平差采用的原理就是“最小二乘法”。

测量平差是德国数学家高斯于1821~1823年在汉诺威弧度测量的三角网平差中首次应用,以后经过许多科学家的不断完善,得到发展,测量平差已成为测绘学中很重要的、内容丰富的基础理论与数据处理技术之一测量误差基本知识测量工作的实践表明,观测值中存在测量误差,或者说,测量误差是不可避免的。

产生测量误差的原因,概括起来有以下三个方面:(1)人的原因。

由于观测者的感觉器官的鉴别能力存在局限性,所以,对于仪器的对中、整平、瞄准、读数等操作都会产生误差。

另外,观测者技术熟练程度也会给观测成果带来不同程度的影响。

(2)仪器的原因。

每一种测量仪器只具有一定的精确度,因此,使测量结果受到一定的影响。

(3)外界环境的影响。

测量工作进行时所处的外界环境中的空气温度、风力、日光照射、大气折光、烟雾等客观情况时刻在变化,使测量结果产生误差。

人、仪器和环境是测量工作得以进行的必要条件,但是,这些观测条件都有其本身的局限性和对测量的不利因素。

因此,测量成果中的误差是不可避免的。

(二)测量误差的分类与处理原则测量误差按其产生的原因和对观测结果影响性质的不同,可以分为粗差、系统误差和偶然误差三类。

1.粗差由于观测者的粗心或各种干扰造成的特别大的误差称为粗差。

如瞄错目标、读错大数等,粗差有时也称错误。

2.系统误差在相同的观测条件下,对某一量进行一系列的观测,如果出现的误差在符号和数值上都相同,或按一定的规律变化,这种误差称为“系统误差”,系统误差具有积累性。

系统误差对观测值的影响具有一定的数学或物理上的规律性。

测绘技术中的测量平差原理解析

测绘技术中的测量平差原理解析

测绘技术中的測量平差原理解析测绘技术中的测量平差原理解析引言:测绘技术在现代社会发挥着重要的作用,它涉及到土地界定、地籍管理、基础设施规划等众多领域。

在测绘过程中,测量平差是一个关键的环节。

本文将探讨测绘技术中的测量平差原理及其应用。

1. 测量平差的概念和目的测量平差是指通过一定的数学方法,根据观测数据的误差特征和认定标准,对测量结果进行矫正和调整,以提高测量精度和可靠性的过程。

其主要目的是消除观测误差,减小测量结果的不确定性,使其更符合实际情况。

2. 测量平差的基本原理2.1 观测数据的模型化测量平差首先要对观测数据进行模型化,即将观测量表示为数学方程。

这些方程通常由测量的基本原理和几何关系得出。

例如,在高程测量中,可以利用水准差测量方程将观测数据进行模型化。

2.2 误差的传递与权系数的确定测量中的各种误差会通过观测数据的模型传递到测量结果上。

为了实现测量精度的提高,需要对各个误差源进行分析,并确定权系数。

权系数决定了各观测量对最终结果的影响程度,可以通过误差传递公式进行计算。

2.3 平差方程的建立和求解通过观测数据的模型化和误差分析,可以建立平差方程。

平差方程的求解是整个测量平差的核心环节,它通常是一个较为复杂的数学问题,需要运用矩阵运算、最小二乘法等数学方法进行求解。

2.4 结果的检验和精度评定平差结果的检验是测量平差的最后一步。

通过与实际情况对比,验证平差结果的准确性。

同时,还要评定平差结果的测量精度和可靠性,通常包括单位权中误差、最大误差等参数。

3. 测量平差的应用领域测量平差在实际测绘工作中有广泛的应用。

以下是几个典型的应用领域:3.1 地理信息系统(GIS)建设测量平差为GIS建设提供了精确的地理数据。

在将各种原始数据整合到GIS中时,需要进行数据匹配和转换,这就需要借助测量平差的方法来处理不同数据源的不一致性。

3.2 基础设施建设在基础设施建设中,测量平差可以用于道路设计、建筑物定位、矿山开采等过程中。

《测量平差基础》课件

《测量平差基础》课件
平差模型
平差模型是描述测量数据与未知参数之间关系的数学模型,通过建立 合适的平差模型,可以对测量数据进行处理和分析。
参数估计
平差中的参数估计是通过对测量数据的处理和分析,求解出未知参数 的最估计值的方法。
误差传播
平差中的误差传播是研究误差对测量结果的影响,以及如何减小误差 的方法。
02
测量误差理论
误差的来源与分类
来源
仪器误差、观测者误差、外界条件误差
分类
系统误差、偶然误差、粗差
误差的传播与处理
误差传播定律
描述观测值之间误差关系的规律
误差处理方法
消除法、替代法、组合法
《测量平差基础》ppt课件
目 录
• 测量平差基础概述 • 测量误差理论 • 平差计算方法 • 平差应用实例 • 平差软件介绍
01
测量平差基础概述
平差的概念与意义
平差的概念
平差是通过对测量数据的处理,消除 或减小误差,提高测量精度的方法。
平差的意义
通过对测量数据的平差处理,可以提 高测量成果的可靠性和精度,为各种 工程和科学研究提供准确的数据支持 。
平差的分类与目的
平差的分类
根据处理方法和目的的不同,平差可 以分为多种类型,如参数平差、条件 平差、最小二乘法平差等。
平差的目的
平差的主要目的是减小或消除测量误 差,提高测量精度,确保测量成果的 可靠性和准确性。
平差的基本原理
数学基础
平差的基本原理基于数学中的最小二乘法、线性代数和概率统计等知 识。

测量网平差技术的原理与实例

测量网平差技术的原理与实例

测量网平差技术的原理与实例引言在现代社会中,测量技术在各个行业中扮演着至关重要的角色。

而测量网平差技术作为其中一项重要的技术手段,具有广泛的应用领域。

本文将讨论测量网平差技术的原理与实例,以帮助读者更好地了解和应用该技术。

一、测量网平差技术的原理1.1 测量网平差的概念测量网平差是指通过对一系列观测数据进行分析和处理,以减小或消除不确定因素对测量结果的影响,从而获得更加准确和可靠的数据。

它通过数学模型和算法对观测数据进行优化,以实现网平差过程。

1.2 网平差的目标网平差的主要目标是使观测数据满足各种约束条件,并尽可能减小误差。

其中,约束条件可以是测量值之间的几何关系、观测方程的平差条件、已知数值或已知精度等。

1.3 网平差的基本原理网平差技术基于最小二乘理论和高斯-马尔可夫模型,通过最小化残差平方和来求解未知数的估值。

平差模型可以表示为:A△X = △L其中,A为系数矩阵,△X为未知数的改正数向量,△L为观测值的改正数向量。

二、测量网平差技术的实例2.1 地形测量网平差地形测量网平差是将不同位置上的地形数据进行测量和分析,以构建地形模型和地形图。

这可以广泛应用于土地开发、城市规划和水资源管理等领域。

以山区道路设计为例,通过测量各个断面的高程数据,并建立观测方程,可以得到道路纵断面的高程图。

然后,通过网平差技术对观测数据进行处理,消除误差和改正高程值,以获得准确的结果。

2.2 工程测量网平差工程测量网平差是将各种工程测量数据进行处理和分析,以实现工程设计和施工的精确性和可靠性。

例如,在建筑工程中,测量网平差技术可以用于建筑物的垂直度检测和水平度检测。

通过在建筑物内各个位置进行高程测量和水平测量,并建立观测方程,可以得到建筑物的误差数据。

然后,通过网平差技术对这些数据进行处理,以消除误差和改正相关参数,从而保证建筑物的精确性和可靠性。

2.3 地理信息系统中的网平差地理信息系统(GIS)是一种将各种地理数据整合和分析的技术系统。

测量平差教学课件

测量平差教学课件

收集相关测量数据,包括测量角度、距
误差分析
2
离和高程等。
通过分析观测数据中的误差,确定各个
观测量之间的关系。
3
平差计算
根据误差分析结果,使用数学模评估测量平差的结果,检查其准确性和 可靠性。
测量平差的实例
假设我们需要测量一座大桥的长度和高度。通过精确的测量和平差计算,我们可以得到准确的结果,确保大桥 建设的安全和稳定。
测量平差的基本原理
观测数据收集
收集准确的观测数据,包括测量点的坐标和其 他相关信息。
平差计算
根据误差分析的结果,进行测量平差计算,消 除误差并得到准确的测量结果。
误差分析
分析观测数据中的误差,并确定各个观测量之 间的关系。
结果评估
评估测量平差的结果,检查其准确性和可靠性。
测量平差的步骤
1
观测数据收集
测量平差教学课件PPT
欢迎来到测量平差教学课件PPT!在本课程中,我们将深入探讨测量平差的概 念、原理和步骤,并通过实例加深理解。让我们开始这个令人兴奋的学习之 旅吧!
什么是测量平差?
测量平差是一种精确测量技术,用于消除误差并提高测量数据的准确性和可 靠性。
为什么需要测量平差?
测量平差的目的是确保测量数据尽可能接近真实值,提高工程、建筑和地理 测量的精度和可靠性。
结语
感谢大家参与测量平差教学课件PPT!希望你们通过本课程,对测量平差有了更深入的理解,并能应用于实际 工作中。祝大家取得明显的进步和成功!

测量平差资料

测量平差资料

测量平差资料第⼀章绪论⼀、观测误差1、为什么要进⾏观测必要观测、多余观测2、误差存在的现象3、误差产⽣的原因观测条件:观测仪器、观测者、外界条件4、误差的分类粗差、系统误差、偶然误差5、误差的处理办法⼆、测量平差的简史和发展三、测量平差的两⼤任务及本课程的主要内容第⼆章误差分布与精度指标⼀、偶然误差的规律性1、随机变量2、偶然误差的分布正态分布3、偶然误差的统计特性由统计分析可以看出,偶然误差具有下列特性:1、在⼀定的观测条件下,偶然误差的绝对值有⼀定的限值,即超过⼀定限值的偶然误差出现的概率为零;2、绝对值较⼩的偶然误差⽐绝对值较⼤的偶然误差出现的概率⼤;3、绝对值相等的正负偶然误差出现的概率相同;4、偶然误差的理论平均值为零⼆、随机变量的数字特征(1)反映随机变量集中位置的数字特征---数学期望(2)反映随机变量偏离集中位置的离散程度----⽅差(3)映两两随机变量x、y相关程度的数字特征---协⽅差3、协⽅差(a) 定义相关系数三、衡量精度的指标1、⽅差和中误差2、平均误差3、或然误差4、极限误差5、相对(中、真、极限)误差四、随机向量的数字特征1、随机向量2、随机向量的数学期望3、随机向量的⽅差-协⽅差阵协⽅差阵的定义协⽅差阵的特点4、互协⽅差阵协⽅差阵的定义协⽅差阵的特点五、精度准确度精确度观测值的质量取决于观测误差(偶然误差、系统误差、粗差)的⼤⼩。

1、精度:描述偶然误差,可从分布曲线的陡峭程度看出精度的⾼低。

2、准确度:描述系统误差和粗差,可⽤观测值的真值与观测值的数学期望之差来描述,即:3、精确度:描述偶然误差、系统误差和粗差的集成,精确度可⽤观测值的均⽅误差来描述,即:即观测值中只存在偶然误差时,均⽅误差就等于⽅差,此时精确度就是精度。

七、⼩结第三章协⽅差传播律⼏个概念1、直接观测量2、⾮直接观测量---观测值的函数⽔准测量导线测量三⾓形内⾓平差值3、独⽴观测值4、⾮独⽴观测值----相关观测值独⽴观测值各个函数之间不⼀定独⽴5、误差传播律6、协⽅差传播律⼀、观测值线性函数的⽅差设观测向量L及其期望和⽅差为:若观测向量的多个线性函数为三、两个函数的互协⽅差阵四、⾮线性函数的情况五、多个观测向量⾮线性函数的⽅差—协⽅差矩阵设观测向量的t个⾮线性函数为:对上式求全微分,得六、协⽅差传播律的应⽤1、⽔准测量的精度2、距离丈量的精度3、同精度独⽴观测值算术平均值的精度七、应⽤协⽅差传播律时应注意的问题(1)根据测量实际,正确地列出函数式;(2)全微分所列函数式,并⽤观测值计算偏导数值;(3)计算时注意各项的单位要统⼀;(4)将微分关系写成矩阵形式;(5)直接应⽤协⽅差传播律,得出所求问题的⽅差-协⽅差矩阵。

测量平差理论及在检测中的应用

测量平差理论及在检测中的应用

测量平差理论及在检测中的应用
测量平差理论是测量学中的重要理论体系,它在各个领域中都有广泛的应用。

本文将介绍测量平差理论的基本原理以及其在检测中的应用。

测量平差是一种通过多次测量数据的处理和分析,消除误差和提高测量精度的方法。

它的基本原理是通过对测量数据进行加权处理,使之满足最小二乘原则,从而得到最优的测量结果。

在测量平差中,常用的方法有最小二乘法、最小二乘平差法、最小二乘递推平差法等。

测量平差理论在检测中有着广泛的应用。

首先,在工程测量中,测量平差可以用于调整测量仪器的误差,提高测量结果的准确性。

例如,在建筑工程中,通过对多次测量数据进行平差处理,可以得到更加精确的地面高程、坐标等信息,为工程施工提供准确的数据基础。

其次,在科学研究中,测量平差也是不可或缺的工具。

科学实验中,测量数据往往受到多种误差的影响,通过测量平差可以有效地减小误差,并提高实验结果的可靠性。

例如,地质学家在进行地质勘探时,通过对多次测量数据进行平差处理,可以得到更加准确的地层厚度、地下水位等信息,为地质研究提供有力的支持。

此外,在制造业中,测量平差也被广泛应用于质量控制和品质检测。

通过对产品尺寸、形状等特征进行测量,并对测量数据进行平差处理,可以及时发现产品的偏差和缺陷,从而保证产品质量和制造精度。

总之,测量平差理论在检测中具有重要的应用价值。

它不仅可以提高测量结果的准确性和可靠性,还可以为工程建设、科学研究和制造业提供有效的技术支持。

因此,学习和掌握测量平差理论,对于提高测量技术水平和推动相关领域的发展具有重要意义。

测量平差程序设计

测量平差程序设计

测量平差程序设计测量平差程序设计是测绘工程中非常重要的一个环节,可以有效地提高测量结果的精度和可靠性。

本文将从测量平差的基本原理、常用的测量平差方法以及测量平差程序的设计流程等方面展开讨论。

一、测量平差的基本原理测量平差是指通过对测量观测数据进行处理,消除和减小误差,使其符合测量精度要求的一种数学方法。

其基本原理是根据观测数据中存在的误差特性,利用最小二乘法进行误差分析和数据处理,得到更加可靠、准确的测量结果。

二、常用的测量平差方法1. 闭合式平差方法:闭合式平差方法适用于具有测量闭合环路的情况,通过测量闭合环路的各个边长和角度,利用最小二乘法求解未知点的坐标。

2. 自由网平差方法:自由网平差方法适用于具有三角网或多边形网的情况,通过测量各个定点的坐标和边长,利用三角形相似性原理以及最小二乘法进行数据处理,求解未知点的坐标。

3. 条件方程平差方法:条件方程平差方法适用于具有各种观测条件约束的情况,通过设置条件方程,将约束条件引入计算中,通过最小二乘法求解未知点的坐标。

三、测量平差程序设计流程测量平差程序设计的核心是根据具体的测量任务和要求,设计合适的程序以实现数据处理和结果计算。

以下是测量平差程序设计的基本流程:1. 数据输入:将测量观测数据输入到程序中,包括测点坐标、角度观测值、边长观测值等。

2. 参数设置:根据具体的测量方法和要求,设置相关的参数,如平差方法、最小二乘法的迭代次数、收敛标准等。

3. 数据预处理:对输入数据进行预处理,包括数据格式的转换、异常值的检测和剔除、数据的排序等。

4. 平差计算:根据所选的平差方法,利用最小二乘法进行测量平差计算,求解未知点的坐标。

5. 结果输出:将计算得到的平差结果输出,包括各个点的坐标、闭合差、误差限等。

6. 结果分析:对平差结果进行分析和评价,检查是否满足测量任务的精度要求,如果不满足,可修改参数和重新运行程序。

7. 结果展示:根据需要,将平差结果以表格或图形的形式展示出来,便于查看和分析。

测量平差方法及误差分析技巧

测量平差方法及误差分析技巧

测量平差方法及误差分析技巧引言:测量平差在各个领域中都起到了至关重要的作用,无论是土地测量、工程测量还是地理测量都离不开精确的测量平差。

本文将介绍测量平差的基本原理、方法以及误差分析技巧,以帮助读者更好地理解和应用这些知识。

一、测量平差的基本原理1.1 测量平差的定义测量平差是指在测量中,通过对测量数据进行处理和分析,用数学方法将观测值修正为比较可靠的数值,并确定其精度和可靠度的过程。

1.2 测量平差的基本原理测量平差的基本原理是以观测数据为基础,通过适当的计算和修正方法,使测量结果达到满足一定精度要求的条件。

二、测量平差的方法2.1 误差的分类误差是指由于种种原因导致观测值与真值之间的差异。

根据产生误差的原因,可将误差分为系统误差和随机误差两类。

2.2 测量平差的方法2.2.1 最小二乘法最小二乘法是一种常用的测量平差方法,其基本原理是通过构建误差方程,使误差的平方和最小化,从而得到最优的修正数值。

2.2.2 加权最小二乘法加权最小二乘法是在最小二乘法的基础上,引入权重因子,对观测值进行加权处理,以更好地反映各个观测值的可靠性。

2.2.3 置信椭圆法置信椭圆法是一种通过误差椭圆的几何性质,结合观测弥散矩阵,进行测量平差的方法。

通过确定椭圆的长轴、短轴和倾斜角度,可对误差进行合理的修正和分析。

三、误差分析技巧3.1 误差的传递规律误差在测量过程中具有传递性,即观测结果的误差会随着计算过程的推进而逐渐增大。

因此,在进行误差分析时,需要考虑不同环节中误差的传递规律,以准确评估测量结果的可靠性。

3.2 概略误差与精确误差概略误差是指由于设备精度、人为操作等因素导致的测量误差,通过一些常见的公式和方法可以进行较为粗略的估计。

精确误差是在概略误差的基础上,通过更加精细的计算和分析得到的误差值,更贴近实际测量结果的误差。

3.3 误差理论和误差估计误差理论是关于误差发生的规律的理论体系,包括误差分类、误差分布等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何模型中的已知值之间必然产生相应的函数关系,这样 的约束函数关系式在测量平差中称为条件方程。
^^ ^
L1 L2 L3 180 0
闭合差: 以观测值代入条件方程,由于存在观测误差,条件式
将不能满足。测量平差中将代入后所得值称为闭合差。测 量平差任务之一,所谓消除不符值,就是合理的调整观测 值,对观测值加改正数,达到消除闭合差的目的。可见消 除不符值就是消除闭合差。
本章阐述平差的基本概念,指出:平差数学模型不同,平 差方法就不同,但其解是相同的。平差问题是由多余观测 产生的,各类数学模型共同特点是方程数少于未知数个数, 所以没有唯一解,只能求特定条件下的特解。这实际上是 参数估计问题。平差采用的特定条件是最小二乘准则,其 解符合最优估值的条件。
3.1 测量平差概述
函数模型 :几何关系,描述观测量之间或观测量与待定 量之间的数学函数关系式 。
随机模型 :内在联系,是描述观测量及其相互间的统计 相关性质。实际上,测量平差中所谓的随机模型,就是 观测值向量的权阵。
函数模型
数学模型
随机模型: D
02Q
2 0
P
1
条件平差的数学模型
条件平差: 观测值个数是n,必要观测 次数是t,多余观测数是r=n-t,产生r个条 件方程,以r个条件方程为函数模型的平差 方法,就是条件平差。
n1 nt t1 n1
D
nn
2 0
Q
nn
P 2
1
0 nn
间接平差的数学模型
观测三角形内角,选择t=2个独立
参数A和B为平差参数,设为X1 、X2 则n=3个观测方程为:
L1 X1
L2 X2
L3 X1 X2 180o
间接平差的数学模型
观测方程 L B X d 对应的
n1 nt t1 n1
多余观测 多余必要观测的观测
例如: 多次观测一段距离(只须观测一次); 测三角形内角,观测三个角(只须两个)
必要观测 唯一地确定某个模型(几何或物理模型)
所必须的最少观测
几个数 必要观测数:t ,多余观测数:r, 观测数:n
则 n=t+r
r又称自由度
条件方程: 一个几何模型若有多余观测值,则观测值的正确值与
最小二乘原理
“最佳”地拟合于各观测点的估计曲线,使各 观测点到该曲线的偏差的平方和达到最小,这种 方法叫最小二乘法。
针对偶然误差的测量平差中,利用最小二乘 法求得的估计量是最优估计量,具有以下性质:
(1)一致性;(2)无偏性;(3)有效性
数学模型 :用数学关系描述几何模型的几何关系和内在 联系 。
个角度、三个边。 C32C31 C31C32 C33
必要观测可以唯一确定模型,其相互独立。可见若有多余观 测必然可用这t个元素表示,即形成r个条件。
n3 t 2 rnt 1
~ ~~
180
实际上: 180
180
h1
B n6 t3 rnt3
A
h6
h2
误差方程为V=B x l
间接平差就是在V T PV min 准则下,
求误差方程的待定参数 x
观测方程(或误差方程)选取参数的原则:
(1)所选取的t个待估参数必须相互独立; (2)参数与观测值的函数关系容易表示
列方程依据:角度、边长、高差等几何关系
观测方程 L B X d ,平差时,
n1 nt t1 n1
(2)
1 2 3 180o 0
S1
S AB
0
sin 2 sin 3
S2
S AB
0
sin 1 sin 3
间接平差的数学模型
间接平差: 选定t个独立的参数,将每个 观测值分别表示成这t个独立参数的函数, 组成观测方程,这种以观测方程为函数模 型的平差方法就是间接平差。
其数学模型为:
L B X d
~
~
~
h1 h2 h6 0 h1 h2 h6 0
D h5 h4
h3
~
~
~
h2 h3 h4 0 h2 h3 h4 0
~
~
~
h6 h4 h5 0 h6 h4 h5 0
C
匀速直线运动的质点在时刻的位置y表示为:
~
方程形式为:
~~
~
y
y
~
~
实际上: y
~
~
为了求

, 在1,
2,
n1 n1 n1
n1 nt t1 n1
间接平差的函数模型举例
(1)
X
A
L1
L2
L3
观测值:L1、L2、L3
参数:
X
B
间接平差的函数模型举例 (2)
间接平差的函数模型举例
答案:
(2)Leabharlann (1)L1 XL2 X
L3 X
h1 X1 H A
h2 X1 H B
h3 X 2 H A
h4 X 2 H B
L1 L2 L3 180 W 0
必要观测、多余观测
确定平面三角形的形状
观测三个内角的任意两个即可,称其必要
元素个数为2,必要元素有 C32种选择
确定平面三角形的形状与大小
6个元素中必须有选择地观测三个内角与 s1
s2
三条边的三个元素,因此,其必要元素
个数为3。任意2个角度+1个边、2个边+1 s3
h5 X1 X 2
02Q
2 0
P 1
nn
1 2 3 180o 0
A 1 1 1
13
V
31
v1
v2
v3
T
L
31
1
2
3
T
条件平差的数学模型
条件平差就是求在满足r个条件方程下, 的VV值T P,V并 评min定精度
系数阵
改正数
闭合差(不符值)
A V W 0
rn n1 r1
D
nn
02Q
2 0
P 1
nn
3.2 最小二乘平差原理
3.3 测量平差的数学模型
什么叫测量平差? 在多余观测的基础上,依据一定的数学模型
和某种平差原则,对观测结果进行合理的调整 (加改正数消除闭合差),从而得到一组最可靠 的结果并评定精度。
平差任务: (1)消除不符值,求出最或然值; (2)评定精度
Survey adjustment
一般对参数 X 都要取近似值X o t1
令 X = X o x 代入上式,并令
t1 t1 t1
l L Lo= L(B Xo+ d)
n1 n1 n1 n1 nt t1 n1
L o = B X o + d 为观测值的近似值,
n1 nt t1 n1
所以 l 是观测值与近似值的差 n1
而 V = L L 由此得误差方程:V = B x l
观测值
L LV
n1 n1 n1
平差值
条件平差的数学模型 列条件方程的原则: (1)足数:条件方程的个数等于多余观测数 (2)线性无关:方程式之间线性无关(一个
方程式不能由其他方程式线性组合得到) (3)形式简单
列方程依据:角度、边长、高差等几何关系
条件平差的函数模型举例 (1)
r=2
条件平差的函数模型举例 (2)
S1
1
A
C
已知点:A、B
观测值如图
3
S2
2 B
r=3
条件平差的函数模型举例 (3)
C
D
L3 L4
L6
已知点:A、B
L1
A
L2
L5
B
观测值: L1- L6
r=2
条件平差的函数模型举例
答案:
(1)
h2 h2 0
h1 h2 h4 H A H B 0
(3)
L1 L2 L3 180o 0
L4 L5 L6 180o 0
测定其位置,
n
得y1, y2 yn ,则:
~
~
i yi , (i 1,2 n)
y
y
vi i
yi
“最佳拟合”
o
i
v1
vi2 ( i yi )2 min
令:V
v2
则:V TV (B X Y )T (B X Y ) min
vn
V:改正数向量
平差中: V T PV min P:权阵
其数学模型为:
A V W 0
rn n1 r1 r1
D
nn
02Q
2 0
P 1
nn
条件平差的数学模型
A L
rn n1
A0
r 1
0
r 1
1 2 3 180o 0
A( L
rn n1
V )
n1
A0
r1
0
r1
AV A L
rn n1 rn n1
A0
r1
0
r1
A V W 0
rn n1 r1 r1
D
nn
相关文档
最新文档