波导基础

合集下载

波导相关知识(最全)

波导相关知识(最全)

波导相关知识(最全)一、什么是波导以及它的参数有哪些波导通常指的各种形状的空心金属波导管和表面波波导,由于前者传输的电磁波完全被限制在金属管内,称封闭波导;而后者引导的电磁波则被约束在波导结构的周围,又称开波导。

被应用于微波频率的传输线,在微波炉、雷达、通讯卫星和微波无线电链路设备中用来将微波发送器和接收机与它们的天线连接起来。

因为波导是指它的端点间传递电磁波的任何线性结构。

所以波导中可能存在无限多种电磁场的结构或分布,每个电磁场的波型与对应的传播速度肯定也不一样。

会涉及到色散、传播时的损耗以及波导界面分布和它的特性阻抗。

接下来我们就从这四点去分析它的参数。

色散特性:色散特性表示波导纵向传播常数与频率的关系,常用平面上的曲线表示。

损耗:损耗是限制波导远距离传输电磁波的主要因素。

场分布:满足波导横截面边界条件的一种可能的场分布称为波导的模式,不同的模式有不同的场结构,它们都满足波导横截面的边界条件,可以独立存在。

它的两大类:电场没有纵向分量和磁场没有纵向分量。

特征阻抗:特征阻抗与传播常数有关。

在幅值上反映波导横向电场与横向磁场之比。

当不同波导连接时,特征阻抗越接近,连接处的反射越小,是量度波导连接处对电磁能反射大小的一个很有用的参量。

二、软波导与硬波导区别软波导是微波设备和馈线间起缓冲作用的传输线。

软波导内壁呈波纹结构,具有很好的柔软性,能承受复杂的弯曲、拉伸和压缩,因而被广泛用于微波设备和馈线之间的连接。

软波导的电气特性主要包括频率范围、驻波、衰减、平均功率、脉冲功率;物理机械性能主要包括弯曲半径、反复弯曲半径、波纹周期、伸缩性、充气压力、工作温度等。

下面我们来交接下软波导区别于硬波导哪些地方。

1)法兰:在许多安装和测试实验室应用中,往往很难找到具有完全合适的法兰、朝向,且设计**的硬波导结构,如通过定制,则需要等待数周至数月的交付期。

在设计、维修或更换部件等情形下,如此之长的交期必将引起不便。

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍光波导是一种通过光信号的传导来实现信息交互的技术。

它是利用光在介质中的传播特性来实现光的传输和调控的一种器件。

光波导已经成为现代通信、光电子技术和光器件研究领域中不可或缺的一部分。

光波导的理论基础是基于光在介质中的传播原理。

当光束通过介质分界面时,会产生折射现象。

这种折射现象可以用斯涅尔定律来描述,即入射角与折射角之间的正弦比等于两种介质的折射率之比。

光波导利用不同折射率的介质之间的折射现象,将光束从一种介质中导入到具有更高折射率的介质中,并通过光束的反射、折射和散射等效应,使光能够在介质中传播和传输。

制备光波导的方法有多种,包括经典的物理刻蚀法、化学沉积法、水热法等,以及现代的微电子加工技术和激光加工技术等。

下面将介绍几种常见的制备方法:1.光刻法:光刻法是一种常见的光波导制备方法。

它利用光刻胶的光敏性,通过光学曝光和显影,将需要刻蚀的部分暴露出来,然后使用物理或化学刻蚀方法将暴露的部分去除,从而形成光波导的结构。

2.离子注入法:离子注入法是一种通过离子注入技术来改变材料的折射率分布,从而形成光波导结构的方法。

它通过在材料表面注入高能离子,改变材料的折射率,并形成光波导结构。

3.RF磁控溅射法:RF磁控溅射法是一种通过溅射技术制备光波导的方法。

它利用高频电场对目标材料进行离子化,然后通过磁场聚焦离子束,使其瞄准到底片上,从而形成光波导结构。

4.激光加工法:激光加工法是一种利用激光器对材料进行加工的方法。

它通过调节激光的功率、扫描速度和扫描路径等参数,实现对光波导结构的制备。

激光加工法不仅可以实现直写制备光波导,还可以实现二光子聚焦制备光波导。

除了上述方法外,还有其他一些新型的制备光波导的方法,例如自组装法、溶胶-凝胶法、光聚合法等。

这些方法在光波导的制备中发挥着重要的作用,并为光波导的研究和应用提供了更多的可能性。

总之,光波导是一种基于光的传导原理来实现光信号传输和调控的技术。

波导工作原理

波导工作原理

波导工作原理波导是一种用于传送电磁波的结构,其工作原理基于电磁波在导波结构中的传播特性。

与自由空间传播相比,波导可以提供更低的传输损耗和更高的波导模式容量。

下面将介绍波导的工作原理,包括波导的结构特点和基本传输原理。

1. 波导的结构特点波导是由两个平行金属表面或传输介质构成的结构。

其横截面形状可以是矩形、圆形或其他几何形状。

波导表面可以镀上特殊的材料来提高传输效果,也可以根据需要进行加工和调整。

2. 基本传输原理波导可以支持多种模式的电磁波传输,其中最常用的是TE (横电)、TM(横磁)和TEM(横电磁混合)模式。

这些模式是根据电磁波在波导中的场分布和传输行为而定义的。

- TE模式:在TE模式中,电场垂直于波导横截面的磁场。

该模式对应于导波结构中没有电磁场在纵向传播的电磁波,称为横电场模式。

- TM模式:在TM模式中,磁场垂直于波导横截面的电场。

该模式对应于导波结构中没有电磁场在纵向传播的电磁波,称为横磁场模式。

- TEM模式:在TEM模式中,电场和磁场都存在于波导横截面上,并且在纵向传播。

该模式对应于导波结构中传输的电磁波存在横向和纵向场分量,称为横电磁混合模式。

3. 波导的传输特性波导的传输特性主要由波导的尺寸、形状和频率等因素决定。

与传统的传输线相比,波导在高频段的传输性能更好。

波导可以在多个频段中传输,其传输损耗较小,并且可以实现大功率的传输。

4. 波导的应用波导广泛应用于通信、雷达、微波加热、微波炉等领域。

例如,一些微波器件和天线系统使用波导结构传输电磁波。

波导还可用于信息传输、信号分析和测试等方面。

总之,波导的工作原理基于电磁波在导波结构中的传输特性,通过调整波导的尺寸和形状,可以实现特定模式的电磁波传输。

它在高频段的传输性能更好,并且具有较低的传输损耗和较大的传输容量。

3光波导基础

3光波导基础
v v v S = E×H
相位
φ = ωt − kz + ϕ
dz ω v= = dt k
dt时间内,波移动了dz,该波的相速度为dz/dt
球面波
v k
波动方程
A E = cos(ωt − kr + ϕ ) r
许多光束,例如激光器的输出,假定可用高斯光束来描述
r 该光束的传输特性仍可 用exp[j(ωt-kz)]描述,但 是它的幅度不但以光束 轴线为中心在空间变 2w0 化,而且从源头开始向 外辐射时也在变化。
λ
n1 2 ( ) sin 2 θ i − 1 n2
Et ,⊥ ( y, z, t ) = e
−α 2 y
exp[ j (ωt − kiz z )]
当 y = 1/α2 ≡ δ时,消逝波的幅度变为 e-1,δ称为穿透深度 2、反射率和透射率 反射率
R⊥ = Er 0,⊥ Ei 0,⊥
2 2 2 2
波动方程为:
v v Ei = Ei 0 exp[ j (ωt − ki ⋅ r )] v v Et = Et 0 exp[ j (ωt − kt ⋅ r )]
v v Er = Er 0 exp[ j (ωt − k r ⋅ r )]
v r 为位置矢量, Ei 0等为幅度
利用电磁波的边界条件有
令 n = n 2 / n1 电场的反射系数 折射系数 磁场的反射系数
第三章 光波导基础
§ 3.1 光波基础 § 3.2 光波导基础 § 3.3 光纤衰减 § 3.4 光纤色散 § 3.5 比特率和带宽
§ 3.1光波基础 § 3.1.1均匀介质中的光波 Ex 平面电磁波 z Hy 波动方程 波印廷矢量 (能流密度矢量)
v k

波导

波导
常见的波导结构主要有平行双导线、同轴线、平行平板波导、矩形波导、圆波导、微带线、平板介质光波导 和光纤。从引导电磁波的角度看,它们都可分为内部区域和外部区域,电磁波被限制在内部区域传播(要求在波 导横截面内满足横向谐振原理)。
基本信息
通常,波导专指各种形状的空心金属波导管和表面波波导,前者将被传输的电磁波完全限制在金属管内,又 称封闭波导;后者将引导的电磁波约束在波导结构的周围,又称开波导。
介质波导采用固体介质杆而不是空心管。光导纤维是在光频率工作下的介质波导。微带、共面波导、带状线 或同轴电缆等传输线也可以认为是波导。
当无线电波频率提高到3000兆赫至 300吉赫的厘米波波段和毫米波波段时,同轴线的使用受到限制而采用金 属波导管或其他导波装置。波导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗;结构简单,易 于制造。波导管内的电磁场可由麦克斯韦方程组结合波导的边界条件求解,与普通传输线不同,波导管里不能传 输 TEM模,电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速度与频率有关。表面波波导的特 征是在边界外有电磁场存在。其传播模式为表面波。在毫米波与亚毫米波波段,因金属波导管的尺寸太小而使损 耗加大和制造困难。这时使用表面波波导,除具有良好传输性外,主要优点是结构简单,制作容易,可具有集成 电路需要的平面结构。表面波波导的主要形式有:介质线、介质镜像线、H-波导和镜像凹波导。

圆波导中也可以存在无限多个TMmn和TEmn模,m,n分别表示场沿圆周和径向的变化次数。圆波导中只存在 TM0n,TMmn(m,n=1,2,…),TE0n和TEmn(m,n=1,2,…)模。圆波导中截止波长最长的主波是TE11模,其 截止波长λc=3. 41a(a为波导象为沿Z字形路径在波导中行进,在波导的壁之间来回反射。对于矩形波导的特 殊情况,可以立足于这种观点的精确分析。在介质波导中的传播也可以同样的方式看待,波被电介质表面的全内 反射限制在电介质的内部。一些结构,如无辐射介质波导和高保线,使用金属壁和电介质表面来限制波。

光波导技术基础

光波导技术基础

光波导技术基础光波导技术基础一、光波导的概念与分类光波导是一种利用光的全反射原理进行光信号传输的技术。

根据传输介质的不同,光波导可以分为光纤和光平板两种形式。

光纤波导是采用纤维材料进行传输,而光平板波导则利用具有高折射率的平板材料进行传输。

二、光波导技术的优点1. 大容量传输:光波导技术可以实现大容量的光信号传输,远远超过以往的传输方式。

这是因为光波导中的光信号可以在光纤或光平板中进行不断的全反射,几乎没有信号损失。

2. 抗干扰能力强:光波导传输的光信号在传输过程中不会受到外界电磁干扰的影响,从而保证了传输质量的稳定性。

3. 低衰减率:光波导技术中的光信号衰减率很低,可以减少信号在传输过程中的能量损耗,提高传输距离。

4. 高速传输:由于光波导中的光信号传输速度快,可达到光速的75%以上,因此光波导技术被广泛应用于高速通信领域。

三、光纤波导技术的基本原理光纤波导是利用纤维材料的全反射原理进行光信号传输的技术。

光纤是由内心区域(称为纤芯)和外层(称为包层)组成的。

光信号可以通过纤芯中的光波引导到目的地。

光纤波导的基本原理源于光的全反射现象。

当光从光纤的一端进入时,如果光线入射角度小于临界角,光会被光纤的纤芯全反射,然后沿着纤芯继续传输。

这种全反射的现象可以保证光信号不会损失,从而实现光信号在光纤中的传输。

四、光平板波导技术的基本原理光平板波导技术是利用具有高折射率的平板材料进行光信号传输的技术。

平板材料可以是晶体或者其他具有高折射率的材料,例如硅。

光平板波导的基本原理是将光信号引导在平板材料的表面上,形成一条被限制在平板内传播的光波。

当光信号被平板表面反射时,会发生总反射现象,并且沿着平板表面传播。

平板的结构和特殊设计可以控制光信号的传输路径和传输效果。

五、光波导技术的应用领域光波导技术在通信、光学传感、生物医学和光学计算等领域具有广泛的应用。

在通信领域,光波导技术被广泛应用于光纤通信和光纤传感领域。

《波导理论基础》课件

《波导理论基础》课件
矩形波导的传输损耗主要与波导的尺寸和材料有关,可以 通过优化波导尺寸和材料来降低传输损耗
矩形波导的色散特性主要与波导的尺寸和材料有关,可以 通过优化波导尺寸和材料来降低色散
矩形波导的模式特性主要与波导的尺寸和材料有关,可以 通过优化波导尺寸和材料来降低模式耦合。
矩形波导的应用
通信领域:用于传输信号,提高通信质量 雷达系统:用于探测目标,提高雷达性能 电子对抗:用于干扰敌方通信,保护我方通信安全 医疗领域:用于医疗成像,提高诊断准确性
色散补偿:通过调 整波导参数或结构 ,实现色散补偿, 提高信号传输质量
Part Four
矩形波导
矩形波导的结构
矩形波导是一种常见的波导结构,其截面为矩形。 矩形波导的尺寸包括宽度和高度,这两个参数决定了波导的传输特性。 矩形波导的传输模式包括TE模式和TM模式,其中TE模式是横波,TM模式是纵波。 矩形波导的传输特性可以通过计算其传输常数和色散曲线来获得。
圆波导的传输特性
色散特性:与波长、频率、 材料有关
传输损耗:与波长、频率、 材料有关
传输模式:TE和TM模式
模式转换:TE和TM模式之 间的转换
传输效率:与波长、频率、 材料有关
传输稳定性:与波长、频率、 材料有关
圆波导的应用
通信领域:用于传输信号,提 高通信质量
雷达领域:用于探测目标,提 高雷达性能
损耗与波长的关系:波长 越长,损耗越小
损耗与波导尺寸的关系: 波导尺寸越大,损耗越小
损耗与波导材料的关系: 不同材料的损耗不同,如 金属、陶瓷、塑料等
波导的色散特性
色散现象:波导中 不同频率的电磁波 传播速度不同,导 致信号失真
色散类型:色散可 以分为群速度色散 和相速度色散

光波导技术基础

光波导技术基础

光波导技术基础(实用版)目录1.光波导技术的基本概念2.光波导技术的理论基础3.光波导技术的应用领域4.光波导技术的发展趋势正文光波导技术基础光波导技术是一种利用光在介质中传播的特性,通过特定的光学结构实现光信号的传输和控制的技术。

光波导技术在现代通信、光学传感、光学显示等领域具有广泛的应用。

为了更好地了解光波导技术,我们需要从以下几个方面介绍其基础知识。

一、光波导技术的基本概念光波导是指一种能够约束和引导光波在特定方向传播的光学结构。

根据波导结构和传输模式的不同,光波导可分为多种类型,如单模光纤、多模光纤、平面光波导等。

光波导技术的核心是利用光在介质中的传播特性,实现光信号的高效传输和精确控制。

二、光波导技术的理论基础光波导技术的理论基础主要包括几何光学、波动光学和电磁场理论。

其中,几何光学主要研究光波在光学结构中的传播规律;波动光学则关注光的传播特性,如相位、幅度等;电磁场理论则从电磁场的角度分析光波导中的光信号传输。

通过这些理论,我们可以深入理解光波导的传输特性、模式耦合、双折射现象等基本概念。

三、光波导技术的应用领域光波导技术在多个领域发挥着重要作用,主要包括以下应用领域:1.光通信:光波导技术是光纤通信的核心技术,实现了光信号在光纤中的高效传输,极大地提高了通信速率和传输距离。

2.光传感:光波导技术在光学传感器中有着广泛应用,如光纤传感器、平面光波导传感器等,可实现对温度、压力、位移等物理量的高精度检测。

3.光学显示:光波导技术在光学显示领域也具有重要应用,如光波导显示器、光波导投影仪等,能够实现高清晰度、高亮度的显示效果。

4.其他领域:光波导技术还在光学成像、光能传输、生物医学等领域具有潜在应用。

四、光波导技术的发展趋势随着科技的不断发展,光波导技术在理论研究和应用领域都取得了显著进展。

未来,光波导技术的发展趋势主要体现在以下几个方面:1.更高效的光波导传输技术:通过优化波导结构、提高材料性能等手段,进一步提高光波导的传输效率和带宽。

光波导基础知识

光波导基础知识

光波导(optical waveguide)是引导光波在其中传播的介质装置,又称介质光波导。

光波导有两大类:一类是集成光波导,包括平面(薄膜)介质光波导和条形介质光波导,它们通常都是光电集成器件(或系统)中的一部分,所以叫作集成光波导;另一类是圆柱形光波导,通常称为光纤(见光学纤维)。

传输特性光波导是引导可见光段中的电磁波的物理结构。

常见类型的光波导包括光纤和矩形波导。

光波导可用作集成光路中的组件或用作本地和长途光通信系统中的传输介质。

光波导可根据其几何形状(平面、条带或光纤波导)、模式结构(单模、多模)、折射率分布(阶梯或梯度折射率)和材料(玻璃、聚合物、半导体)进行分类光纤的传输衰减很小,频带很宽。

例如,在1.5微米波段衰减可小到0.2分贝/公里,频带宽达108/公里数量级(多模光纤)或109赫/公里数量级(单模光纤),如此优良的性能是其他传输线难以达到的,因而光纤可用于大容量信号的远距离传输。

薄膜波导和带状波导传输特性及其分析与光纤类似。

由于它们主要用来构成元件,对传输衰减与频带要求并不严格。

严格求解光波导中的电磁场的矢量解较为困难,故通常用标量近似法、射线法等近似解法分析其传输特性,包括各个模式的场分布、色散以及模式之间的耦合等。

实际应用的矩形几何光波导最容易理解为理论介质平板波导,也称为平面波导的变体。

平板波导由具有不同介电常数的三层材料组成,在平行于它们的界面的方向上无限延伸。

光可以通过全内反射限制在中间层中。

仅当中间层的介电指数大于周围层的介电指数时才会发生这种情况。

在实践中,平板波导在平行于界面的方向上不是无限的,但是如果界面的典型尺寸远大于层的深度,则平板波导模型将是非常接近的。

平板波导的引导模式不能被从顶部或底部界面入射的光激发。

光线必须从侧面注入中间层。

或者可以使用耦合元件将光耦合到波导中,例如光栅耦合器或棱镜耦合器。

引导模式中的一种模式是平面波来回反射的中间层的两个接口之间,入射角在光的传播方向和平行的或垂直的方向之间,在材料界面更大过临界角。

光波导基础及其常用器

光波导基础及其常用器
mmay(mm)
在C点上两光线的电场为
E 1(y,z,t)E 0co ts (m zm y m ) E 2(y,z,t)E 0co ts (m zm y)
那么在C点上两光线干涉所形成的电场为
E (y ,z ,t) 2 E 0 co m y s 1 2 ( m )co t sm z ()
对应一个m值的传播模的电场可以写为,
E (y ,z ,t) 2 E m (y )co t sm z ) (
可以看到传播模横向模场分布不随光波的传播而改变,它是在横向形成的驻波
对称的平面波导-传播模
Symmetry Planar Dielectric Slab Waveguide
m=0,1,2传播模的横向分布
对称的平面波导-传播模
k1sinm
k1cosm
考虑两光线,它们相交于C点,而在C点相位差可以表示为,
m ( k 1 A m C ) k 1 A 'C 2 k 1 ( a y ) cm o m s
对称的平面波导-传播模
Symmetry Planar Dielectric Slab Waveguide
将波导条件代入上式得到,
Ey E(x)exip z)(
2 [ x2
k02n2(x)2]Ey
0
k0 200
E y A ei x k 0 2 n p 2 (2 x ) B ex ik 0 p 2 n 2 (2 x )
对于应波导的三个折射率不同的区域,方程的解为
<8-2>
<8-3> <8-4> <8-5>
Ey A 2e A 1e xix pk0 2 p n [1 2 2[ k 0 22 nx2 2]x ] B2 B e 1exx i pp k [0 2n [21 2 k 0 2n 22 2 xx ]] ,x a , xaa

波导基础

波导基础
f ( z , t ) = A cos(ωt − kz )
ωt − kz = constant
dz ω = = vp dt k
f ( z , t ) = A cos(ωt − k ⋅ r )
k=
ω
vp
=

λ
ωt − k ⋅ r = constant
ωt − kr cosθ = constant
vp = dz ω ω = ≥ dt k cos θ k
2 η 2 Pe π b = 2 = 8 a 1 − (λ / 2a ) 2 Ie
b η Ze = a 1 − (λ / 2 a ) 2
1 b Ze = a 1 − (λ / 2 a ) 2
为什么需要阻抗匹配? 传输线的特征阻抗和负载的阻抗不是相同的概念,为什么 为相同的实数同样可以匹配? 377欧姆的同轴线和空气是否匹配? 不同尺寸相同阻抗的同轴线是否匹配?
Z0 = g + jωC = C
非TEM系统要用等效阻抗来描述 系统要用等效阻抗来描述
η Ve π b Z e ( I −V ) = = I e 2 a 1 − (λ / 2 a ) 2 Ve2 b η Z e (V − P ) = =2 2 Pe a 1 − (λ / 2 a ) 2
Ze( P − I )
µ
ε 2 E0 cos 2 (ωt − βz ) µ 1 = ve = εE 2 cos 2 (ωt − βz ) εµ
P= =
ε 2 E0 cos 2 (ωt − βz ) µ ε 2 cos 2(ωt − βz ) − 1 E0 µ 2
在矩形波导中,TE10模
πx πx jωµa ωµa E y = Re − sin e j(ωt − βz ) = sin sin(ωt − βz ) π a π a β a πx πx jβ a H x = Re sin e j(ωt − βz ) = − sin sin(ωt − βz ) a π a π πx πx H z = Re cos e j(ωt − βz ) = cos cos(ωt − β z ) a a

第一讲介质平板波导基础理论(PDF)

第一讲介质平板波导基础理论(PDF)

多模情况下的本征方程为(TE 模 ):
tan(κh)
=
κ ( p + q) κ 2 − pq
• 实线与虚线的交点给出模式
本征方程的解。由这些交点
可以得到一系列(κ m h) 值,再
利用关系式
κ
2 m
+
β
2 m
=
k
2 0
n12
可得到导模的传播常数 βm
• 曲线 F (κh)在下式解出的点
上终止:
κh = (n12 − n22 )1/ 2 k0h
夹角 θ 只能取有限个离散值。薄膜中
的波动场按以下方式变化:
exp[i(±κx + βz)]
κ = k0n1 cosθ , β = k0n1 sinθ
平板波导的模式本征方
程: 2kh − 2φ13 − 2φ12 = 2mπ
• 只有满足本征方程的入射角θ才为波导所接受。在厚度确定的情况
下,平板波导所能维持的导模数量是有限的,因此m只能取有限
k02n12 − β 2
式中 β = k 0 n 1 sin θ1 , k 0 = 2π / λ
图1.3 TE模的相移作为入射角的 函数的曲线图
平板波导的模式
图1.4 在平板波导中的图像
(a)辐射模的折线图像;(b)衬 底辐射模的折射图像;(c)导 模的z字型图像
图1.5 平板波导的俯视图
平板波导的导模可以用锯齿形光线图 像描述,并且锯齿光线与界面法线的

个正整数。
对TE模, κh = mπ
+ tan −1 ( p ) + tan−1 ( q )
式中:
κ
κ
κ
=
(k

波导相关知识(最全)

波导相关知识(最全)

一、什么是波导以及它的参数有哪些波导通常指的各种形状的空心金属波导管和表面波波导,由于前者传输的电磁波完全被限制在金属管内,称封闭波导;而后者引导的电磁波则被约束在波导结构的周围,又称开波导。

被应用于微波频率的传输线,在微波炉、雷达、通讯卫星和微波无线电链路设备中用来将微波发送器和接收机与它们的天线连接起来。

因为波导是指它的端点间传递电磁波的任何线性结构。

所以波导中可能存在无限多种电磁场的结构或分布,每个电磁场的波型与对应的传播速度肯定也不一样。

会涉及到色散、传播时的损耗以及波导界面分布和它的特性阻抗。

接下来我们就从这四点去分析它的参数。

色散特性:色散特性表示波导纵向传播常数与频率的关系,常用平面上的曲线表示。

损耗:损耗是限制波导远距离传输电磁波的主要因素。

场分布:满足波导横截面边界条件的一种可能的场分布称为波导的模式,不同的模式有不同的场结构,它们都满足波导横截面的边界条件,可以独立存在。

它的两大类:电场没有纵向分量和磁场没有纵向分量。

特征阻抗:特征阻抗与传播常数有关。

在幅值上反映波导横向电场与横向磁场之比。

当不同波导连接时,特征阻抗越接近,连接处的反射越小,是量度波导连接处对电磁能反射大小的一个很有用的参量。

二、软波导与硬波导区别软波导是微波设备和馈线间起缓冲作用的传输线。

软波导内壁呈波纹结构,具有很好的柔软性,能承受复杂的弯曲、拉伸和压缩,因而被广泛用于微波设备和馈线之间的连接。

软波导的电气特性主要包括频率范围、驻波、衰减、平均功率、脉冲功率;物理机械性能主要包括弯曲半径、反复弯曲半径、波纹周期、伸缩性、充气压力、工作温度等。

下面我们来交接下软波导区别于硬波导哪些地方。

1)法兰:在许多安装和测试实验室应用中,往往很难找到具有完全合适的法兰、朝向,且设计**的硬波导结构,如通过定制,则需要等待数周至数月的交付期。

在设计、维修或更换部件等情形下,如此之长的交期必将引起不便。

2)弯曲性:某些型号的软波导可在宽面方向上弯曲,另一些型号则可在窄面方向上弯曲,还有一些在宽面和窄面两方向上均可弯曲。

波 导

波  导
z
∂2 ∂2 2 + 2 ∂x ∂y
v v 2 2 E ( x, y ) + k − k z E ( x, y ) = 0
(,设 u ( x , y )为电磁场的任一直角分量,他满足方 程(4).设 u ( x, y ) = X ( x )Y ( y ) (5) (4)式可分解为两个方程:
d2X + k x2 X = 0 2 dx
d 2Y 2 + k yY = 0 2 dy
(6)
k
2 x
+k
2 y
+k
2 z
= k
2
(7)
解(6)式,得 u ( x , y ) 的特解
u ( x, y ) = (C1 cos k x x + D1 sin k x x )(C 2 c cos k y y + D 2 sin k y y ) (8)
v C1 , D1 , C2和 D2 是任意常数.当 u ( x, y )具体表示 E 的某特定分量时,考虑
边界条件(6)式和(10)式还可以得到对这些常数的一些限制条件. 边界条件是 ∂E x = 0 E y = E z = 0, ( x = 0, a ) ∂x (9) ∂E y , Ex = Ez = 0 = 0 (y = 0 , b ) ∂y
由 x = 0 和 y = 0面上的边界条件可得
E x = A1 cos k x x sin k y ye ik z z ik z z E y = A2 sin k x x cos k y ye ik z z E z = A3 sin k x x sin k y ye
在考虑 x 即
2.平面光波导的应用 铌酸锂晶体具有良好的电光特性,在电光调 制器中应用广泛。InP材料既可以制作光有源器件又 可以制作光无源器件,被视为光有源/无源器件集成 的最好平台。SOI材料在MEMS器件中应用广泛,是光 波导与MEMS混合集成的优良平台。聚合物波导的热光 系数是SiO2的32倍,应用在需要热光调制的动态器件 中,可以大大降低器件功耗。玻璃波导具有最低的传 输损耗和与光纤的耦合损耗,而且成本低廉,是目前 商用光分路器的主要材料。二氧化硅光波导具有良好 的光学、电学、机械性能和热稳定性,被认为是无源 光集成最有实用前景的技术途径。

物理实验技术中的波导技术使用方法

物理实验技术中的波导技术使用方法

物理实验技术中的波导技术使用方法波导技术是物理实验中常用的一种技术手段,它能够将电磁波引导到狭窄的通道中传输,使得信号传递更加稳定和高效。

本文将探讨波导技术的使用方法,以及在物理实验中的应用。

一、波导技术的基本原理波导技术基于电磁波的导波现象,通过选择合适的介质和结构,可以将电磁波限制在一个狭窄的通道中传输。

波导的核心部分是一种导波结构,通常是由金属或者导电材料包围的空气或者其它介质。

波导中的电磁场通过反射和折射的方式来传播,避免了电磁波的辐射损耗,使得信号传输更加稳定和高效。

二、波导的制备波导的制备通常需要精确的加工和测量手段。

首先,需要选择适合的波导材料,如金属、光纤等。

然后,根据波导设计的要求,进行准确的尺寸测量和加工,以确保波导的结构和性能满足实验需求。

此外,波导在制备过程中需要保证良好的表面质量和边缘光滑度,以减小反射和散射的损耗。

三、波导技术在实验中的应用1. 光纤通信:光纤通信是最常见的波导技术应用之一。

光纤作为一种波导材料,可以将光信号引导到长距离传输,具有高带宽、低损耗等优点。

它广泛应用于电话、互联网等通信领域。

2. 微波测量:微波波导常用于无线通信和雷达系统中。

通过使用波导,可以将微波信号引导到指定位置进行测量和检测。

例如,微波波导天线可以用于雷达系统中的信号传输和接收。

3. 天文观测:射电天文学中,波导技术也起到重要作用。

射电望远镜采用波导技术来收集和引导远距离的射电信号,以便进行天体观测和研究。

波导技术的使用使得射电望远镜能够捕获更加敏感和精确的信号。

4. 激光器:激光器中也常采用波导技术。

激光波导通常是利用反射和折射的原理,将激光束限制在一个狭窄的通道中传输。

这种波导技术使得激光器的输出更加稳定和集中,用于医疗、材料加工等领域。

四、波导技术的发展趋势随着科技的不断发展,波导技术也在不断创新和改进。

一方面,材料的研究和发展使得波导技术具有更广泛的应用范围。

例如,纳米材料的发展使得微型波导成为可能,可以应用于微纳电子和生物医学等领域。

导波光学的物理基础

导波光学的物理基础

导波光学的物理基础
导波光学,又称为波动光学或光学波导理论,是以光的电磁理论为基础,研究光在光学波导(如光纤、平板波导等)中的传播、散射、偏振、衍射等效应的一门学科。

它是现代光电子学和光通信技术的重要理论基础,也是各种光波导器件和光纤技术的理论基础。

导波光学的研究对象主要是光波在光学波导中的传输特性,包括光的模式、色散、损耗、耦合等现象。

其中,光的模式是光波在波导中传播的基本形式,它可以分为横模和纵模两种。

横模是指光波在波导中传播时,电场或磁场的方向与波导的传播方向垂直的模式,而纵模则是指电场或磁场的方向与传播方向平行的模式。

不同的模式具有不同的传输特性和应用场景。

导波光学的物理基础主要是麦克斯韦方程组和边界条件。

麦克斯韦方程组描述了电磁场的基本性质,包括电场、磁场、电荷、电流等之间的关系。

在光学波导中,光波的传播可以看作是电磁波在介质中的传播,因此麦克斯韦方程组是导波光学研究的基础。

而边界条件则是指光波在波导与周围介质之间的交界面上满足的条件,它对于确定光波在波导中的传输特性具有重要意义。

除了麦克斯韦方程组和边界条件,导波光学还需要借助一些数学工具,如傅里叶分析、微分方程、积分方程等,来进行具体的分析和计算。

通过这些数学工具,可以研究光波在波导中的传输特性,包括光的模式、色散、损耗、耦合等现象,以及光波导器件的性能和设计方法。

总之,导波光学是以光的电磁理论为基础,研究光在光学波导中的传输特性的一门学科。

它是现代光电子学和光通信技术的重要理论基础,对于推动光电子技术的发展和应用具有重要意义。

光电子技术基础 第4章 光波导技术基础

光电子技术基础 第4章  光波导技术基础

第4章光波导技术基础为使激光器发出的光直接或间接地为人类服务,需要将光源发出的光调制后传送到接收器,这当中最重要的是要有一种衰减尽可能小而且尽可能不失真地传输光的光路。

对于光电子技术来讲,用于发光的光源和将光转换成电的探测元件作为光电子系统的“发”端与“收”端,是不可缺少的重要器件,而用于各器件间光传输的介质光波导也是极其重要的,它将光限制在一定路径中向前传播,减小了光的耗散,便于光的调制、耦合等,为光学系统的固体化、小型化、集成化打下了基础,是光电子学向集成光电子学发展的主要基础知识,也是光纤通信的重要基础知识。

传统光学中常用空气作传输介质,用透镜、棱镜、光栅等光学元件构成光路来实现光的焦、传输、转折等。

但在长距离传输中,大气中的水分和气体等的吸收、水滴和粉尘等烟雾的散射等都很大,各种光学元件又存在菲涅耳反射等耗散,因而没有实用价值。

也有人曾试验过气体透镜:将圆管中充满清洁的空气,四周加热,调整气体流速以保持层流,用气体温差构成气体透镜,使通过的光向中心汇聚,不致耗散,但实现起来相当困难。

最终人们发现介质光波导可以用来引导光按需要的路径传播,并且损耗可以做到很小,这正如电流被限制在线路布线、电线等中传输一样。

介质波导常用的有平面(薄膜)介质波导、条形介质波导和圆柱形介质波导。

当工作于光波波段时,这些介质波导常称为平面光波导、条形光波导与光纤。

光纤分为阶跃折射率光纤和渐变折射率光纤。

阶跃折射率光纤的原理由英国的Tyndall 于1854年提出,英国的Baird与美国的Hansell于1927年申请石英光纤应用专利。

向玻璃光纤输入光最早于1930年前后由德国人完成。

l958年,美国的Kapany设计了细束光纤,同年美国光学公司为减少光纤包层杂散光引入第二吸收鞘;1961年美国的Snitzer研制了光纤激光器。

1963年,日本的西迟等人申请了渐变折射率光纤专利,l968年日本玻璃板公司研制出产品。

l970年,美国Corning公司研制出20dB/km的低损耗光纤,从此之后,各公司为实现光通信的商用化,开展了大量光学元器件和传输通路的研制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

µ
ε 2 E0 cos 2 (ωt − βz ) µ 1 = ve = εE 2 cos 2 (ωt − βz ) εµ
P= =
ε 2 E0 cos 2 (ωt − βz ) µ ε 2 cos 2(ωt − βz ) − 1 E0 µ 2
在矩形波导中,TE10模
πx πx jωµa ωµa E y = Re − sin e j(ωt − βz ) = sin sin(ωt − βz ) π a π a β a πx πx jβ a H x = Re sin e j(ωt − βz ) = − sin sin(ωt − βz ) a π a π πx πx H z = Re cos e j(ωt − βz ) = cos cos(ωt − β z ) a a
相同阻抗的同轴线和微带线是否匹配? 什么时候才可以用传输线的概念来分析反射和传输问题呢?
波速 电流的速度 电子的速度
f c1 < f c 2 f c1 < f < f c 2
相速、群速、能速、 相速、群速、能速、信速
相速 • 相速描述的是稳态单频电磁波等相位点传播的速度。 相速描述的是稳态单频电磁波等相位点传播的速度。
ˆ ∇ t × E t = − jωµzH z
∇ t ⋅ E t = jβ E z
∇ t × Et = 0, ∇ t ⋅ Et = 0 ∇ t × Et = 0, ∇ t ⋅ Et ≠ 0 ∇ t × Et ≠ 0, ∇t ⋅ Et = 0 ∇ t × Et ≠ 0, ∇t ⋅ Et ≠ 0
TE边界条件 边界条件
TE 在矩形波导中, 的横向场分量为: 在矩形波导中, mn 的横向场分量为:
jωµ nπ mπx nπy j(ωt − βz ) Ex = 2 cos sin e a b kc b Hx = jβ mπ mπx nπy j(ωt − βz ) sin cos e 2 a b kc a jωµ mπ mπx nπy j(ωt − βz ) Ey = − 2 sin cos e a b kc a
=
η
1 − λ2 / λ2 c
Z TMmn = η 1 − λ2 / λ2 c
特征阻抗 • 传输线的特征阻抗是指传输线上行波的电压与电流之比。 传输线的特征阻抗是指传输线上行波的电压与电流之比。 它是路的概念。 它是路的概念。 传输线是指以TEM导模的方式传输电磁波能量或信号的 传输线是指以 导模的方式传输电磁波能量或信号的 导行系统。 导行系统。 r + jωL L
1
0
-1
0
50
100
150
200
250
300
350
400
450
∆ωt − ∆kz = constant
∆ω vg = ∆k
dω vg = dk
vp =
ω β
vg =
dω dβ
β = k 2 − kc2 =
vp =
f 2πf 1− c f c
2
2
ω = β
c f 1− c f
u = A cos ω (t ± z / v ) = A cos(ωt ±
v= 1 = LC

λ
z ) = A cos(ωt ± β z )
1
µε
Z0 =
r + j ωL L LC 1 = = = g + jωC C C vC
场的特性
∇ × H = jωεE ∇ × E = − jωµH
∇⋅H = 0 ∇⋅E = 0
− j ∂E ∂H z Ex = 2 β z + ωµ ∂x kc ∂y − j ∂E z ∂H z Ey = 2 β ∂y − ωµ ∂x kc − j ∂H z ∂E Hx = 2 β − ωε z kc ∂x ∂y − j ∂H z ∂E Hy = 2 β + ωε z kc ∂y ∂x
jβ nπ mπx nπy j(ωt − βz ) Hy = 2 cos sin e a b kc b
Z TEmn
E y ωµ Ex 1 µ µ 2π µ = =− = = 2πf = v =k = Hy Hx β λ β β εµ β k k 2 − kc2 =
µ k ε β

η
1 − kc2 / k 2
ωµβ a 2
信速 • 信速是指扰动传递的速度。 信速是指扰动传递的速度。
fc ve = vg = c 1 − f
2
波速
f c1 < f c 2 f c1 < f < f c 2
电报员方程
∂u ∂ + r + L i = 0 ∂z ∂t ∂i + g + C ∂ u = 0 ∂z ∂t
∂ 2u ∂ 2u ∂z 2 = LC ∂t 2 2 ∂i ∂ 2i = LC 2 ∂z 2 ∂t
ˆ ˆ ∇ t × zE z − jβz × E t = − jωµH t
−1 1 ˆ ˆ ( jβ∇ t E z + jωµ∇ t × zH z ) = − 2 ( jβ∇ t E z + jωµ∇ t × zH z ) 2 2 k −β kc 1 ˆ ˆ (− jβ∇ t H z − z × jωε∇ t E z ) = 12 (− jβ∇ t H z − z × jωε∇ t E z ) Ηt = 2 2 k −β kc Et =
2 η 2 Pe π b = 2 = 8 a 1 − (λ / 2a ) 2 Ie
b η Ze = a 1 − (λ / 2 a ) 2
1 b Ze = a 1 − (λ / 2 a ) 2
为什么需要阻抗匹配? 传输线的特征阻抗和负载的阻抗不是相同的概念,为什么 为相同的实数同样可以匹配? 377欧姆的同轴线和空气是否匹配? 不同尺寸相同阻抗的同轴线是否匹配?
• TEM
Ez = 0 Hz = 0
E = E t = −∇ t Φ
∇ t ⋅ E t = −∇ t ⋅ ∇ t Φ = −∇ t2Φ = 0
1 ε ˆ ˆ z × Et = z × Et µ η
ω εµ 1 1 ∂ - jβ ˆ ˆ ˆ Ht = ∇ z × Et = z × Et = z × Et = z × Et = − jωµ − jωµ ∂z − jωµ ωµ
Z0 = g + jωC = C
非TEM系统要用等效阻抗来描述 系统要用等效阻抗来描述
η Ve π b Z e ( I −V ) = = I e 2 a 1 − (λ / 2 a ) 2 Ve2 b η Z e (V − P ) = =2 2 Pe a 1 − (λ / 2 a ) 2
Ze( P − I )
f ( z , t ) = A cos(ωt − kz )
ωt − kz = constant
dz ω = = vp dt k
f ( z , t ) = A cos(ωt − k ⋅ r )
k=
ω
vp
=

λ
ωt − k ⋅ r = constant
ωt − kr cosθ = constant
vp = dz ω ω = ≥ dt k cos
微带线
共面波导
矩形波导
脊波导
圆波导
椭圆波导
介质波导
模式 1)在导行系统的横截面上的电磁场呈驻波分布,而且是完全 )在导行系统的横截面上的电磁场呈驻波分布, 确定的,和频率无关,和纵向位置无关; 确定的,和频率无关,和纵向位置无关; 2)模式是离散的、有序的; )模式是离散的、有序的; 3)模式是正交的,完备的 ; )模式是正交的, 4)不同模式特征各异,包括阻抗、波速、波长、截止特性。 )不同模式特征各异,包括阻抗、波速、波长、截止特性。 横电磁模, • 横电磁模,TEM 横电模,磁模, • 横电模,磁模,TE,H 横磁模,电模, • 横磁模,电模,TM,E 混合模, • 混合模,HE 混合模, • 混合模,EH 纵向电模, • 纵向电模,LSE 纵向磁模, • 纵向磁模,LSM
群速 • 群速描述的是窄带信号的包络等相位点传播的速度。 群速描述的是窄带信号的包络等相位点传播的速度。
f1 ( z , t ) = A cos(ω1t − k1 z ) f 2 ( z, t ) = A cos(ω2t − k2 z ) z f ( z , t ) = f1 ( z , t ) + f 2 ( z, t ) = A cos(ω1t − k1 z ) + A cos(ω2t − k 2 z ) k − k ω + ω1 k +k ω − ω1 = 2 A cos 2 t − 2 1 z cos 2 t− 2 1 2 2 2 2 = 2 A cos(∆ωt − ∆kz ) cos(ω0t − k0 z )
边界条件 标量位函数的边界条件是,一个边界为零,另一个边界为常数。
• 非TEM
∇ × H = jωεE ∇ × E = − jωµH
∇⋅H = 0 ∇⋅ E = 0
ˆ ∇ t × H t = jωεzE z ˆ ˆ ∇ t × zH z − jβz × H t = jωεE t
ˆ ∇ t × E t = − jωµzH z
e j(ωt − βz )
∂H z ∂H z = =0 ∂x ∂y
TM边界条件 边界条件
Ez = 0
截止频率
金属波导
β 2 = k02 − kc2
介质波导
vp =
ω β
有耗同轴线中不可能有纯TEM模 模 有耗同轴线中不可能有纯
相关文档
最新文档