各类微分方程的解法大全

合集下载

微分方程式的经典解法

微分方程式的经典解法

信号与系统信号与系统n阶常系数微分方程的求解法 the solution method forconstant-coefficient difference equation of Nth-order全响应=齐次方程通解 + 非齐次方程特解(自由响应) (受迫响应)全响应=零输入响应 + 零状态响应(解齐次方程) (卷积法)时域分析法(经典法)变换域法(第四章拉普拉斯变换法)微分方程求解信号与系统n 阶线性时不变系统的描述一个线性系统,其激励信号与响应信号之间的关系,可以用下列形式的微分方程式来描述()x t()r t阶次:方程的阶次由独立的动态元件的个数决定。

-1101-1101d d()()()d dd d()()()d dn nn nn nm mm mm ma y t a y t a y tt tb x t b x t b x tt t----+++=+++若系统为时不变的,则,均为常数,此方程为常系数的n 阶线性常微分方程。

kakb信号与系统一般将激励信号加入的时刻定义为t =0 ,响应为 时的方程的解, 初始条件:0t +≥齐次解:由特征方程→求出特征根→写出齐次解形式1ek ntkk Cλ=∑注意:重根情况处理方法(修改齐次解的形式)特 解:根据微分方程右端函数式(自由项)形式,设含待定系 数的特解函数式,代入原方程,比较系数 定出特解。

+2+n-1++2n-1dy(0)d y(0)d y(0)y(0)dt dtdt,,,,经典法kC 完全 解:齐次解+特解,由初始条件定出齐次解系数线性时不变系统经典求解齐次微分方程1ek ntkk Cλ=∑特征方程特征根)()()(011-n 1n =+++--t y a t y dtda t y dt d a n n n n a a a a n n n n λλλ++++=--11100齐次解形式:(和特征根有关)λλλ12,,,n齐次解特征根齐次解的形式rλ=rtk k rtrtetC te C e C 121-+++λ12,=±a bj bte C bt e C atatsin cos 21+bte tD bt te D bt e D bt e tC bt te C bt e C atk k atatatk k atatsin sin sin cos cos cos 121121--+++++++k rλ=对于每一个单根k 重实根a jbλ=±1,2k 重复根rtCe给出一项信号与系统3232d d d()7()16()12()()d d dr t r t r t r t e tt t t+++=解:系统的特征方程为32716120λλλ+++=()()2230λλ++=()122 , 3λλ=-=-重根()tthAAt At r33221ee)(--++=特征根因而对应的齐次解为求微分方程齐次解解:系统的齐次方程为3232d d d()7()16()12()0d d dr t r t r t r tt t t+++=例信号与系统e sin()a tt ωe cos()a tt ω12[cos()B sin()]ate B ωt ωt +自由项响应函数 r (t ) 的特解E B p t 1121p p p p B t B t B t B -+++++ea tek a tBt cos()t ωsin()t ω12cos()sin()B t B t ωω+e sin()p a t t t ωe cos()p a tt t ω11211121()e cos()()e sin()p p tp p pp tp p B t B tB t B t D t D tD t D t ααωω-+-++++++++++或12[cos()sin()]atte B t B t ωω+当 a 是 k 重特征根时当a +jb 不是特征根当a +jb 是特征根线性时不变系统经典求解如果已知: 分别求两种情况下此方程的特解。

微分方程的解法

微分方程的解法

微分方程的解法微分方程是数学中的重要概念,被广泛应用于各个领域。

解微分方程是找到满足给定条件的函数表达式或数值解的过程。

在本文中,我将介绍微分方程的几种解法,并说明其具体应用。

一、一阶微分方程的解法一阶微分方程是最基础的微分方程类型,通常形式为dy/dx=f(x,y),其中f(x,y)是已知函数。

下面介绍两种常见的一阶微分方程的解法:1. 分离变量法:分离变量法适用于可以将微分方程中的变量分开的情况。

具体步骤如下:(1) 将方程变形,将含有dy和dx的项分别放在等式两边;(2) 将等式两边分别关于y和x进行积分;(3) 解得y的表达式,得到方程的通解。

2. 齐次微分方程的解法:齐次微分方程是形如dy/dx=f(y/x)的微分方程。

具体步骤如下:(1) 令v=y/x,将原微分方程化为关于v的方程;(2) 求得关于v的方程的通解;(3) 代入v=y/x,得到原微分方程的通解。

二、二阶微分方程的解法二阶微分方程是更加复杂的微分方程类型,形如d²y/dx²=f(x,y,dy/dx)。

下面介绍两种常见的二阶微分方程的解法:1. 特征方程法:特征方程法适用于二阶常系数线性齐次微分方程。

具体步骤如下:(1) 假设原方程的解为y=e^(rx),代入原方程,求得r的值;(2) 根据r的不同情况分别求得通解。

2. 变量替换法:变量替换法适用于二阶非齐次微分方程,通过适当的变量替换将原方程化简为一阶方程。

具体步骤如下:(1) 假设y=v/u,将原方程变形;(2) 求出v和u的关系式,将原方程转化为v和u的一阶方程组;(3) 解一阶方程组,得到u的表达式;(4) 代入y=v/u,得到原方程的通解。

三、应用案例微分方程作为数学工具,在物理学、生物学、工程学等领域有广泛的应用。

以下是一些实际应用案例:1. 弹簧振动方程:假设弹簧的振动满足y''+k/m*y=0,其中k是弹簧的劲度系数,m是弹簧的质量。

微分方程解的形式

微分方程解的形式

微分方程解的形式一、一阶微分方程1. 可分离变量的微分方程- 形式:(dy)/(dx)=f(x)g(y)。

- 解法:将方程变形为(dy)/(g(y)) = f(x)dx,然后两边分别积分∫(dy)/(g(y))=∫f(x)dx + C,其中C为常数。

- 解的形式:一般得到G(y)=F(x)+C,其中G(y)和F(x)分别是(1)/(g(y))和f(x)的原函数。

例如对于方程(dy)/(dx)=ysin x,变形为(dy)/(y)=sin xdx,积分得到ln|y|=-cos x + C,进一步可写成y = e^-cos x + C=Ce^-cos x(C = e^C为任意常数)。

2. 一阶线性微分方程- 形式:(dy)/(dx)+P(x)y = Q(x)。

- 解法:先求对应的齐次方程(dy)/(dx)+P(x)y = 0的通解,其通解为y = Ce^-∫ P(x)dx(通过分离变量法得到)。

然后利用常数变易法,设原非齐次方程的解为y = C(x)e^-∫ P(x)dx,代入原方程求出C(x),C(x)=∫ Q(x)e^∫ P(x)dxdx + C。

- 解的形式:y = e^-∫ P(x)dx(∫ Q(x)e^∫ P(x)dxdx + C)。

例如对于方程(dy)/(dx)+ycos x=cos x,这里P(x)=cos x,Q(x)=cos x。

先求齐次方程(dy)/(dx)+ycos x = 0的通解,(dy)/(y)=-cos xdx,y = Ce^-sin x。

设原方程的解为y = C(x)e^-sin x,代入原方程可得C(x)=x + C,所以原方程的通解为y=(x + C)e^-sin x。

二、二阶线性微分方程1. 二阶常系数齐次线性微分方程- 形式:y''+py'+qy = 0(其中p,q为常数)。

- 解法:设y = e^rx,代入方程得到特征方程r^2+pr + q=0。

微分方程几种求解方法

微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。

求解微分方程是数学和工程中的常见问题。

根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。

1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。

它的基本思想是将微分方程中的变量分离,然后进行积分。

具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。

这种方法适用于一阶常微分方程,如y'=f(x)。

2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。

对于齐次方程可以使用变量代换法进行求解。

具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。

然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。

这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。

3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。

线性方程可以使用常数变易法或者待定系数法来进行求解。

常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。

待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。

这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。

4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。

它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。

具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。

微分方程常用解法

微分方程常用解法
y C1 y1x C2 y2 x ... Cn yn x
对于非齐次的线性微分方程,可以用常数变易法来求
常系数二阶齐次线性微分方程: y py qy 0
令 y erx
y re rx , y r 2erx
r 2 pr q erx 0
可分离变量的微分方程:
gydy f xdx
gydy f xdx
Gy Fx C
齐次方程: 引进新函数
dy y dx x
u y x
y ux, dy u x du
dx
dx
u x du u
dx
du
u
u Qxe Pxdx
u
Qx
e

P
x
dx
dx

C
y


e

P x dx

Q x e Pxdxdx C
y


Ce

P
x
dx


e

P

x
dx
Q x e Pxdxdx
伯努利方程: 引进新函数
dy Pxy Qxyn
ah bk c 0
a1h

b1k

c1

0
如果 a1 b1 ,那么可给出 h, k 满足上述方程组,那么 ab
dY aX bY dX a1 X b1Y
当 a1 b1 ,令 a1 b1
ab
ab
dy dx

ax by c
ax by c1
一. f x ex Pm x 型

各类微分方程的解法

各类微分方程的解法

各类微分方程的解法一、常微分方程的解法。

1. 分离变量法。

分离变量法是解常微分方程的一种常见方法,适用于一阶微分方程。

其基本思想是将微分方程中的变量分离开来,然后对两边分别积分得到解。

例如,对于形如dy/dx = f(x)g(y)的微分方程,可以将其化为dy/g(y) = f(x)dx,然后对两边积分得到解。

2. 积分因子法。

积分因子法适用于一阶线性微分方程,通过求解积分因子来将微分方程化为恰当微分方程,进而求解。

其基本思想是通过乘以一个适当的函数来使得微分方程的系数函数具有某种特殊的性质,使得微分方程变为恰当微分方程。

3. 特征方程法。

特征方程法适用于二阶线性常系数齐次微分方程,通过求解特征方程来得到微分方程的通解。

其基本思想是将二阶微分方程化为特征方程,然后求解特征方程得到微分方程的通解。

4. 变量替换法。

变量替换法是一种常见的解微分方程的方法,通过引入新的变量替换原微分方程中的变量,从而将原微分方程化为更简单的形式,然后求解。

例如,对于形如dy/dx = f(ax+by+c)的微分方程,可以通过引入新的变量u=ax+by+c来简化微分方程的形式,然后求解得到解。

二、偏微分方程的解法。

1. 分离变量法。

分离变量法同样适用于偏微分方程,其基本思想是将偏微分方程中的变量分离开来,然后对各个变量分别积分得到解。

例如,对于形如∂u/∂t = k∂^2u/∂x^2的一维热传导方程,可以将其化为∂u/∂t = k∂^2u/∂x^2,然后对各个变量分别积分得到解。

2. 特征线法。

特征线法适用于一些特殊的偏微分方程,通过引入特征线变量来化简偏微分方程的形式,然后求解。

例如,对于一维波动方程∂^2u/∂t^2 = c^2∂^2u/∂x^2,可以通过引入特征线变量ξ=x-ct和η=x+ct来化简方程的形式,然后求解得到解。

3. 分析法。

分析法是一种常见的解偏微分方程的方法,通过分析偏微分方程的性质和特征来求解。

微分方程常见题型解法

微分方程常见题型解法

微分方程常见题型攻略一、一阶微分方程1.可分离变量的微分方程及或化为可分离变量的微分方程(齐次)(略)2.一阶线性微分方程(1)一阶线性齐次微分方程:0)( y x P y 法一:分离变量,积分;法二:套公式dxx P Ce y )(.(2)一阶线性非齐次微分方程:)()(x Q y x P y 法一:常数变易法①先求出对应齐次微分方程的通解 dxx P Ce y )(;②常数变易(设原方程的通解为) dx x P e x u y )()(;③代入原方程求出)(x u 即得原方程的通解。

法二:公式法])([)()(C dx e x Q e y dx x P dx x P 。

例1【2011年考研】微分方程x ey y xcos 满足条件0)0( y 的解为_________。

解:此为一阶线性微分方程,其中1)( x P ,x ex Q xcos )( ,通解为])([)()(C dx e x Q e y dx x P dx x P ]cos [11C dx xe e e dxx dx ]cos [C dx xe e e x x x ]cos [C xdx e x )(sin C x e x 。

由初始条件0)0( y ,得0 C ,故所求特解为x ey xsin 。

注:对于微分方程,经常以积分方程的形式出现,即给出的方程中含有积分上限函数。

(1)对于积分方程,方法是两边同时求导,化为微分方程。

但是在求导过程中要注意,如果两边同时求一阶导后还是含有积分上限函数,那么需要再一次求导,直到方程中不再求有积分上限函数,并且也要注意有时候需要对方程进行恒等变换后再求导。

(2)注意积分方程中隐含的初始条件。

例2已知函数)(x f 满足1)(21)(1x f du ux f ,1)(10 dx x f ,求)(x f 。

解:设ux t ,则dt x du 1,于是 10)(du ux f xdt t f x 0)(1。

微分方程解法

微分方程解法

微分方程解法微分方程是数学中非常重要的一种方程,它描述了变量之间的变化率关系。

解微分方程是找到满足给定条件的函数,使得该函数满足微分方程。

本文将探讨微分方程的解法,并介绍一些常用的解法方法。

一、常微分方程的解法常微分方程是只含有一个未知函数的微分方程。

常微分方程的解法方法主要有以下几种:1. 可分离变量法对于形如dy/dx=f(x)g(y)的方程,如果能将其分离成f(x)dx=g(y)dy 的形式,那么可以通过分别对方程两边进行积分来求得解。

这种方法适用于大部分可分离变量的微分方程。

2. 齐次方程法对于形如dy/dx=F(y/x)的方程,如果能将其转化为F(z)=z的形式,其中z=y/x,那么可以通过引入新变量z来简化微分方程的求解。

这种方法适用于一类具有齐次性质的微分方程。

3. 线性微分方程法对于形如dy/dx+p(x)y=q(x)的方程,如果p(x)和q(x)都是已知函数,那么可以通过求解一阶线性常系数齐次微分方程的解,再利用特解和齐次解的线性组合求得原方程的解。

线性微分方程是常微分方程中最常见的一类方程。

对于形如dy/dx=F(ax+by+c)的方程,如果通过适当的变量替换,将方程化为直线的斜率不变的形式,那么可以通过直线积分求解。

这种方法适用于一类具有特殊形式的微分方程,在求解过程中可通过合适的变换将其转化为更简单的方程。

5. 特殊类型方程法除了上述常见的解法方法外,还有一些特殊类型的微分方程有自己独特的解法。

例如,一阶线性微分方程、二阶常系数线性齐次微分方程、二阶线性方程等都有一些特殊性质和求解方法。

二、偏微分方程的解法偏微分方程是含有多个未知函数及其偏导数的方程。

相对于常微分方程,偏微分方程的求解更加复杂,常用的解法方法有以下几种:1. 分离变量法对于形如u_t=F(x)G(t)的方程,如果能将其分离为F(x)/G(t)=h(u)=h(x)+k(t)的形式,那么可以通过分别对方程两边进行积分来求得解。

解微分方程的方法

解微分方程的方法

解微分方程的方法一、分离变量法。

分离变量法是解微分方程中最基本的方法之一。

对于形如dy/dx=f(x)g(y)的微分方程,如果可以将方程化为g(y)dy=f(x)dx的形式,那么就可以通过积分的方法来求解微分方程。

具体的步骤是先将方程两边分离变量,然后分别对两边进行积分,最后得到方程的通解。

二、齐次方程法。

对于形如dy/dx=F(y/x)的微分方程,如果可以通过变量替换将其化为dy/dx=f(y/x)的形式,那么就可以采用齐次方程法来求解。

具体的步骤是先进行变量替换,然后将方程化为分离变量的形式,最后进行积分得到通解。

三、常数变易法。

常数变易法适用于形如dy/dx+p(x)y=q(x)的一阶线性微分方程。

通过适当选择一个常数C,使得方程变为dy/dx+p(x)y=Cq(x)的形式,然后再通过积分来求解。

这种方法在解一阶线性微分方程时非常有用。

四、特解叠加法。

特解叠加法适用于形如dy/dx+p(x)y=q(x)的一阶线性微分方程,其中p(x)和q(x)是已知函数。

该方法的基本思想是先求出对应齐次线性微分方程的通解,然后再找到一个特解,将通解和特解相加得到原方程的通解。

五、变量分离法。

变量分离法适用于形如dy/dx=f(x)g(y)的微分方程,如果可以通过变量替换将其化为g(y)dy=f(x)dx的形式,那么就可以采用变量分离法来求解。

具体的步骤是先进行变量替换,然后将方程化为分离变量的形式,最后进行积分得到通解。

六、其他方法。

除了上述介绍的常见方法外,还有一些其他的方法可以用来解微分方程,如欧拉法、常数变易法、特解叠加法等。

在实际应用中,根据具体的微分方程形式和求解的难度,可以选择合适的方法来求解微分方程。

总结。

解微分方程是数学中重要的课题,掌握好解微分方程的方法对于深入理解微分方程的理论和应用具有重要意义。

本文介绍了几种常见的解微分方程的方法,希望能够帮助读者更好地理解和掌握这一重要的数学工具。

微分方程常用解法总结

微分方程常用解法总结

微分方程常用解法总结微分方程常用解法总结2010年02月14日星期日14:47最近有点懒,有点颓废。

所以今天想写点什么了。

断断续续算是学完了微分方程,就来简单总结一下吧。

1、一阶微分方程可分离变量和齐次微分方程是最简单的微分方程了,而dy/dx=f[(a1x+b1y+c1)/(a2x+b2y+c2)]形式的方程则可以通过坐标平移x=x+h,y=y+k化为齐次方程,dy/dx=f(ax+by+c)形式的方程可以通过u=ax+by+c变为可分离变量的方程。

一阶线性方程dy/dx+P(x)y=Q(x)通常通过"常数变易法"或者直接代入公式求其通解。

但一般来说,通过简单的"凑微分"就可以求解。

考虑D[∫P(x)dx]=P(x),且e∫P(x)dxP(x)=de∫P(x)dx方程两边同时乘上e∫P(x)dx得e∫P(x)dxdy/dx+de∫P(x)dxy=e∫P(x)dxQ(x)即d(e∫P(x)dxy)=e∫P(x)dxQ(x)两边同时对x求积分得e∫P(x)dxy=∫e∫P(x)dxQ(x)dx+c(不妨取每一个积分的常数项都为0即得y=e﹣∫P(x)dx∫e∫P(x)dxQ(x)dx+c]虽然上面说得很复杂,但上面的推导省去了硬背公式的麻烦,而且能运用于实际的运算。

如果每次运算都使用"常数变易法",不仅步骤比凑微分长,而且回代后的求导过程也可能会出错。

贝努利方程一般是先化为一阶线性微分方程再求解。

2、二阶微分方程形如y``=f(x),y``=f(x,y`),y``=f(y,y`)的微分方程,都可以由教材上给出的方法求得通解。

由于方程都是可化为一阶方程求解,所以称以上三个方程为"可降阶二阶微分方程"。

二阶常系数线性微分方程(或者是更高阶的常系数线性微分方程)是最好求解的。

不仅仅是因为它们都公式可寻,而且因为它们的解法有很多,每一种解法都有其独到的美,包括以前所说过的"D算子法"。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法1. 可分离变量形式:dy/dx=f(x)g(y),可以通过分离变量的方法将变量分开,然后积分求解。

具体步骤如下:1)将方程改写为g(y)dy=f(x)dx;2)同时对两边积分,即∫g(y)dy=∫f(x)dx;3)求积分,得到方程的通解;4)如果已知初始条件,将初始条件代入通解中,求解常数,得到特解。

2. 齐次方程形式:dy/dx=f(y/x),可以通过变量代换的方法将方程转化为可分离变量的形式,然后采用可分离变量的方法求解。

具体步骤如下:1)将方程中的变量代换为u=y/x,即令y=ux;2)将方程转化为关于u和x的方程,即dy/dx=u+xdu/dx;3)将转化后的方程改写为u+xdu/dx=f(u),得到可分离变量的形式;4)采用可分离变量的方法求解,得到方程的通解;5)根据已知初始条件求解常数,得到特解。

3. 线性一阶方程形式:dy/dx+p(x)y=q(x),可以采用积分因子法求解,具体步骤如下:1)将方程改写为dy/dx+p(x)y=q(x);2)确定积分因子μ(x),计算公式为μ(x)=exp(∫p(x)dx);3)将方程乘以积分因子μ(x)得到μ(x)dy/dx+μ(x)p(x)y=μ(x)q(x),左边可化为d(μ(x)y)/dx;4)对方程进行积分,得到(μ(x)y=∫μ(x)q(x)dx;5)根据已知初始条件求解常数,得到特解。

1. 齐次线性方程形式:d²y/dx²+p(x)dy/dx+q(x)y=0,可以通过特征方程的解法求解,具体步骤如下:1)将方程改写为特征方程m²+pm+q=0;2)根据特征方程的不同情况(实根、复根、重根),求解特征方程得到特征根;3)根据特征根的不同情况,构造方程的通解。

2. 非齐次线性方程形式:d²y/dx²+p(x)dy/dx+q(x)y=f(x),可以采用常数变易法求解,具体步骤如下:1)先求齐次线性方程的通解;2)根据题目给出的非齐次项f(x),选取常数变易法的形式y=c(x)y1(x),其中y1(x)为齐次方程的一个解;3)将常数变易法的形式代入原方程,消去常数项,得到关于c(x)的方程;4)求解c(x)的方程,得到特解;5)齐次方程的通解加上特解,得到非齐次方程的通解。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常见形式及解法在数学的广袤领域中,常微分方程是一个极其重要的分支,它在物理学、工程学、经济学等众多领域都有着广泛的应用。

简单来说,常微分方程就是含有一个自变量和未知函数及其导数的方程。

接下来,让我们一起深入探讨常微分方程的常见形式以及相应的解法。

一、常微分方程的常见形式1、一阶常微分方程可分离变量方程:形如$dy/dx = f(x)g(y)$的方程,通过将变量分离,将其化为$\frac{dy}{g(y)}=f(x)dx$,然后两边分别积分求解。

齐次方程:形如$dy/dx = F(y/x)$的方程,通过令$u = y/x$,将其转化为可分离变量的方程进行求解。

一阶线性方程:形如$dy/dx + P(x)y = Q(x)$的方程,使用积分因子法求解。

2、二阶常微分方程二阶线性常微分方程:形如$y''+ p(x)y' + q(x)y = f(x)$的方程。

当$f(x) = 0$时,称为二阶线性齐次方程;当$f(x) ≠ 0$时,称为二阶线性非齐次方程。

常系数线性方程:当$p(x)$和$q(x)$都是常数时,即$y''+ py'+ qy = f(x)$,这种方程的解法相对较为固定。

二、常微分方程的解法1、变量分离法这是求解一阶常微分方程的一种基本方法。

对于可分离变量的方程,我们将变量分别放在等式的两边,然后对两边进行积分。

例如,对于方程$dy/dx = x/y$,可以变形为$ydy = xdx$,然后积分得到$\frac{1}{2}y^2 =\frac{1}{2}x^2 + C$,从而解得$y =\pm \sqrt{x^2 +2C}$。

2、齐次方程的解法对于齐次方程$dy/dx = F(y/x)$,令$u = y/x$,则$y = ux$,$dy/dx = u + x(du/dx)$。

原方程可化为$u + x(du/dx) = F(u)$,这就变成了一个可分离变量的方程,从而可以求解。

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法专业班级:交土01班 姓名:高云 学号:1201110102微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

一、一阶微分方程的解法 1.可分离变量的方程dx x f dy y g )()(=,或)()(y g x f dxdy=其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。

例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y2.齐次方程(1))(x y f dx dy =(2) )(c by ax f dxdy++=(a ,b 均不等于0)例2求解微分方程.2222xyy dyy xy x dx -=+-解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭⎫⎝⎛+--⎪⎭⎫⎝⎛x y x y x y x y 令,x y u =则,dx dux u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得⎥⎦⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dxdu = 两边积分得,ln ln ln 21)2ln(23)1ln(C x u u u +=----整理得.)2(12/3Cx u u u =--所求微分方程的解为 .)2()(32x y Cy x y -=-3.一阶线性微分方程⎰+⎰⎰==+-])([),()()()(C dx e x Q e y x Q y x p dxdydx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, ππ1)(=y ;解 将方程改写为 xxy x dx dy sin 2=+, 这里x x p 2)(=,xxx q sin )(=,故由求解公式得)sin (1sin 222⎰⎰+=⎥⎦⎤⎢⎣⎡⎰+⎰=-xdx x C xdx e x x C e y dx x dx x 22sin cos xxx x x C +-=. 由初值条件ππ1)(=y ,得0=C .所以初值问题的解为 2cos sin x xx x y -=例 4.设非负函数()f x 具有一阶导数,且满足120()()()x f x f t dt t f t dt =+⎰⎰,求函数()f x .解:设12()A t f t dt =⎰,则0()()xf x f t dt A =+⎰,两边对x 求导,得()()()x f x f x f x Ce '=⇒=,由已知(0)()xf A C A f x Ae =⇒=⇒=又 112224()()1t A t f t dt t Ae dt A e ==⇒=+⎰⎰,则 24()1xf x e e =+ 例5.设)()()(x g x f x F ⋅=,其中(),()f x g x 满足下列条件:)()(x g x f =',()()g x f x '=,且()00f =,x e x g x f 2)()(=+.① 求)(x F 满足的一阶方程; ② 求)(x F 的表达式. 解:(1) 由 )()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+)(242x F e x-=,可见,)(x F 所满足的一阶微分方程为2()2()4(0)0xF x F x e F '⎧+=⎨=⎩. (2) 由通解公式有]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-22x x e Ce -=+.将0)0()0()0(==g f F 代入上式,得1-=C .于是22()x x F x e e -=-4.伯努利方程。

常见的常微分方程的一般解法

常见的常微分方程的一般解法

常见的常微分方程的一般解法总结了常见常微分方程的通解。

如无意外,本文将不包括解的推导过程。

常微分方程,我们一般可以将其归纳为如下n类:1.可分离变量的微分方程(一阶)2.一阶齐次(非齐次)线性微分方程(一阶),包含伯努利3.二阶常系数微分方程(二阶)4.高阶常系数微分方程(n阶),包含欧拉1.可分离变量的微分方程(一阶)这类微分方程可以变形成如下形式:f ( x ) d x =g ( y ) d y f(x)dx=g(y)dy f(x)dx=g(y)dy函数可以通过同时整合两边来解决。

难点主要在于不定积分,不定积分是最简单的微分方程。

p.s. 某些方程看似不可分离变量,但是经过换元之后,其实还是可分离变量的,不要被这种方程迷惑。

2.一阶齐次(非齐次)线性微分方程(一阶)形如d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程叫做一阶线性微分方程,若 Q ( x ) Q(x) Q(x)为0,则方程齐次,否则称为非齐次。

解法:直接套公式:y ( x ) = e − ∫ P ( x ) d x ( ∫ e ∫ P ( x ) d x Q ( x ) d x + C ) y(x)=e^{-\int{P(x)}dx}(\int{e^{\int{P(x)dx}}Q(x)}dx+C)y(x)=e−∫P(x)dx(∫e∫P(x)dxQ(x)dx+C)多套几遍熟练就好。

伯努利方程形如d y d x + P ( x ) y = Q ( x ) y n , n ∈R , n ≠ 1\frac{dy}{dx}+P(x)y=Q(x)y^{n},n\in\mathbb{R},n\ne1dxdy+P(x)y=Q(x)yn,n∈R,n=1的方程称为伯努利方程,这种方程可以通过以下步骤化为一阶线性微分方程:y − n d y d x + P ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x) y−ndxdy+P(x)y1−n=Q(x)1 1 − n ⋅ d y 1 − n d x + P ( x ) y 1 − n = Q ( x ) \frac{1}{1-n}·\frac{dy^{1-n}}{dx}+P(x)y^{1-n}=Q(x)1−n1⋅dxdy1−n+P(x)y1−n=Q(x)令 y 1 − n = u y^{1-n}=u y1−n=u,方程两边同时乘以 1 − n 1-n 1−n,得到d u d x + ( 1 − n ) P ( x ) u = ( 1 − n ) Q ( x )\frac{du}{dx}+(1-n)P(x)u=(1-n)Q(x) dxdu+(1−n)P(x)u=(1−n)Q(x)即 d u d x + P ′ ( x ) u = Q ′ ( x )\frac{du}{dx}+P'(x)u=Q'(x) dxdu+P′(x)u=Q′(x)这是一个可以公式化的一阶线性微分方程。

微分方程的特解形式大全

微分方程的特解形式大全

微分方程的特解形式大全微分方程的特解形式是指可以通过已知条件或特定的解法,得到微分方程的一类特殊解。

下面列举了常见微分方程及其特解形式的例子,希望对您有所帮助。

一、一阶线性常微分方程一阶线性常微分方程的一般形式为:dy/dx + P(x)y = Q(x),其中P(x)和Q(x)是已知函数。

1. 齐次线性微分方程形式:dy/dx + Py = 0,其特解形式为 y = Ce^(-∫Pdx),其中C为任意常数。

2. Bernoulli方程形式:dy/dx + P(x)y = Q(x)y^n,n≠0,1。

通过变量代换,可将其转化为线性微分方程。

3. 可降次的线性微分方程形式:dy/dx + P(x)y = Q(x)y^m,其中m为常数。

通过y = u^(-1/m)的变量代换,可将方程转化为一阶线性微分方程。

二、二阶线性常微分方程二阶线性常微分方程的一般形式为:d^2y/dx^2 + P(x)dy/dx +Q(x)y = R(x),其中P(x),Q(x)和R(x)是已知函数。

1. 齐次线性微分方程形式:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0,其特解形式为y = e^(∫Pdx) * (C1 cos(∫Qdx) + C2 sin(∫Qdx)),其中C1和C2为任意常数。

2. 欧拉方程形式:x^2y'' + pxy' + qy = 0,其中p和q为常数。

通过y = x^r的变量代换,可将其转化为齐次线性微分方程。

3. 加权欧拉方程形式:x^2y'' + px^αy' + qx^βy = 0,其中p,q,α和β为常数。

通过y = x^r的变量代换,可将其转化为加权欧拉方程。

4. 二阶常系数齐次线性微分方程形式:d^2y/dx^2 + py' + qy = 0,其中p和q为常数。

通过特征方程的解法,可以得到方程的特解形式。

三、常见特殊函数的微分方程形式1. 指数函数的微分方程形式:dy/dx = ky,其中k为常数。

微分方程几种求解方法

微分方程几种求解方法

微分方程几种求解方法微分方程是数学中的重要工具,用于描述自然界中关于变化的数学模型。

微分方程的求解方法有多种,可以根据不同的特征和条件选择不同的方法。

下面将介绍微分方程的几种常见求解方法。

1.可分离变量法可分离变量法适用于形如 dy/dx = f(x)g(y) 的一阶微分方程。

该方法的基本思路是将变量分离,即将方程写成 dx / f(x) = dy / g(y),然后两边同时积分,从而得到方程的解。

2.齐次方程法齐次方程指的是形如 dy/dx = f(x / y) 的一阶微分方程。

齐次方程法的基本思路是变量替换,令 y = vx,然后将方程转化为关于 v 和 x 的一阶微分方程,再用可分离变量法求解。

3.线性方程法线性方程是指形如 dy/dx + p(x)y = q(x) 的一阶微分方程。

线性方程法的基本思路是找到一个积分因子,使得原方程变为恰当方程,然后进行积分求解。

常见的积分因子有e^(∫p(x)dx) 和 1 / (y^2),选择合适的积分因子可以简化计算。

4.变量替换法变量替换法适用于一些特殊形式的微分方程。

通过合适的变量替换,可以将原方程转化为标准的微分方程形式,从而便于求解。

常见的变量替换包括令 y = u(x) / v(x),令 v = dy/dx等。

5.常数变易法当已知一个特解时,可以利用常数变易法求解更一般的微分方程。

该方法的基本思路是令y=u(x)y_0,其中y_0是已知的特解,然后将y代入原方程得到一阶线性非齐次方程,再用线性方程法进行求解。

6.欧拉法欧拉法是一种数值求解微分方程的方法。

它通过在函数的变化区间内分割小区间,并在每个小区间上用直线逼近函数的变化情况,从而得到微分方程的近似解。

欧拉法的计算公式为y_(n+1)=y_n+h*f(x_n,y_n),其中h为步长,f(x,y)为微分方程的右端。

7.泰勒级数法泰勒级数法是一种近似求解微分方程的方法,利用函数的泰勒级数展开式进行计算。

微分方程解法的十种求法(非常经典)

微分方程解法的十种求法(非常经典)

微分方程解法的十种求法(非常经典)本文将介绍微分方程的十种经典求解方法。

微分方程是数学中重要的概念,广泛应用于物理学、工程学等领域。

通过研究这十种求解方法,读者将更好地理解和应用微分方程。

1. 变量可分离法变量可分离法是最常见和简单的微分方程求解方法之一。

该方法适用于形如dy/dx=f(x)g(y)的微分方程,其中f(x)和g(y)是关于x和y的函数。

通过将方程两边分离变量,即把f(x)和g(y)分别移到不同的方程一边,然后进行积分,最后得到y的表达式。

2. 齐次方程法齐次方程法适用于形如dy/dx=F(y/x)的微分方程。

通过令v=y/x,将微分方程转化为dv/dx=g(v),其中g(v)=F(v)/v。

然后再使用变量可分离法求解。

3. 线性微分方程法线性微分方程法适用于形如dy/dx+a(x)y=b(x)的微分方程。

通过乘以一个积分因子,将该方程转化为可以进行积分的形式。

4. 恰当微分方程法恰当微分方程法适用于形如M(x,y)dx+N(x,y)dy=0的微分方程。

通过判断M(x,y)和N(x,y)的偏导数关系,如果满足一定条件,则可以找到一个函数u(x,y),使得u满足偏导数形式的方程,并且通过积分得到原方程的解。

5. 一阶线性常微分方程法一阶线性常微分方程法适用于形如dy/dx+p(x)y=q(x)的微分方程。

通过先求齐次线性方程的通解,然后再利用待定系数法找到特解,最后求得原方程的通解。

6. 二阶常系数齐次线性微分方程法二阶常系数齐次线性微分方程法适用于形如d²y/dx²+a1dy/dx+a0y=0的微分方程。

通过设y=e^(mx),将微分方程转化为特征方程,然后求解特征方程得到特征根,利用特征根找到原方程的通解。

7. 二阶非齐次线性微分方程法二阶非齐次线性微分方程法适用于形如d²y/dx²+a1dy/dx+a0y=F(x)的微分方程。

通过先求齐次线性方程的通解,再利用待定系数法找到非齐次线性方程的特解,最后求得原方程的通解。

各类微分方程的解法大全

各类微分方程的解法大全

各类微分方程的解法1.可分离变量的微分方程解法一般形式:g(y)dy=f(x)dx直接解得∫g(y)dy=∫f(x)dx设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解2.齐次方程解法一般形式:dy/dx=φ(y/x)令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x最后用y/x代替u,便得所给齐次方程的通解3.一阶线性微分方程解法一般形式:dy/dx+P(x)y=Q(x)先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce-∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x)e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C]即y=Ce-∫P(x)dx+e-∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解4.可降阶的高阶微分方程解法①y(n)=f(x)型的微分方程y(n)=f(x)y(n-1)=∫f(x)dx+C1y(n-2)=∫[∫f(x)dx+C1]dx+C2依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’)型的微分方程令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1)即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2③y”=f(y,y’)型的微分方程令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1)即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C25.二阶常系数齐次线性微分方程解法一般形式:y”+py’+qy=0,特征方程r2+pr+q=06.二阶常系数非齐次线性微分方程解法一般形式:y”+py’+qy=f(x)(x),再求y”+py’+qy=f(x)的一个特解y*(x) 先求y”+py’+qy=0的通解y(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解则y(x)=y求y”+py’+qy=f(x)特解的方法:①f(x)=P m(x)eλx型令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数。

微分方程的解法

微分方程的解法

微分方程的解法微分方程是描述自然现象的重要数学工具。

它在物理学、工程学、经济学等各个领域都有广泛的应用。

解微分方程是寻找满足方程条件的函数的过程,可以有多种不同的方法。

本文将介绍常见的微分方程解法,包括分离变量法、线性微分方程的齐次与非齐次解法、常系数线性微分方程的特征方程法和常隐微分方程的参数化法。

分离变量法是解常微分方程中最基本的方法之一。

当微分方程可写成 $dy/dx=f(x)g(y)$ 的形式时,可以通过分离变量将其化为$g(y)dy=f(x)dx$,两边同时积分得到 $\int g(y)dy=\int f(x)dx$。

通过求出这两个不定积分再加以合并,可以得到方程的解。

例如,考虑方程$dy/dx=2x$,运用分离变量法得到 $dy=2xdx$,两边同时积分得到$y=x^2+C$,其中 $C$ 为常数。

对于线性微分方程 $y'+P(x)y=Q(x)$,可以采用齐次与非齐次解法来求解。

首先考虑齐次线性微分方程 $y'+P(x)y=0$,其特征方程为$r+P(x)=0$。

解特征方程得到特解 $y_h=Ce^{-\int P(x)dx}$,其中$C$ 为常数。

然后考虑非齐次方程 $y'+P(x)y=Q(x)$,可以猜测一个特解形式为 $y_p=U(x)V(x)$,其中 $U(x)$ 和 $V(x)$ 是待定函数。

将$y_p$ 代入原方程得到一个关于 $U(x)$ 和 $V(x)$ 的代数方程,通过求解该方程得到特解。

将特解与齐次解相加,即可得到原方程的通解。

常系数线性微分方程是指系数为常数的线性微分方程$y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$。

对于这类微分方程,可以通过特征方程法求解。

首先求解特征方程 $r^n+a_{n-1}r^{n-1}+\cdots+a_1r+a_0=0$,其中 $r$ 是未知数。

特征方程的根的个数与特解的形式相关。

微分方程解法总结

微分方程解法总结

微分方程解法总结微分方程是数学中重要的一个分支,它描述了自然界中很多变化的规律和现象。

微分方程的解法有很多种,包括分离变量法、齐次方程法、一阶线性微分方程法等等。

本文将对这些常见的微分方程解法进行总结,以帮助读者更好地理解和应用微分方程。

一、分离变量法分离变量法是求解一阶微分方程中最常见的一种方法。

当方程可以化为dy/dx=f(x)g(y)的形式时,我们可以通过将其变形为g(y)dy=f(x)dx的形式,再对方程两边同时进行积分,从而求出y的表达式。

例如,对于dy/dx=2x,我们可以将其变形为dy=2xdx,并对两边同时进行积分得到y=x^2+C,其中C为常数。

二、齐次方程法齐次方程是指形如dy/dx=f(y/x)的微分方程。

当方程满足一定的条件时,可以通过变量代换和分离变量的相结合的方法,将齐次方程转化为分离变量的形式,进而求出解。

例如,对于xy'-(x^2+y^2)=0,我们可以将y=ux进行变量代换,得到x(ux)'-(x^2+u^2x^2)=0。

进一步化简得到xu'+u=0,然后可以使用分离变量法求解得到u=(c-x^2)/x,再将y=ux代入,得到y=(c-x^2)/x^2。

三、一阶线性微分方程法一阶线性微分方程是指形如dy/dx+p(x)y=q(x)的微分方程。

通过使用积分因子的方法,我们可以将一阶线性微分方程化为更容易求解的形式。

例如,对于dy/dx+2xy=4x,我们可以将其乘以e^(∫2xdx)作为积分因子,得到e^(x^2)y'+(2xe^(x^2))y=4xe^(x^2)。

然后我们可以写成(d(e^(x^2)y))/dx=4xe^(x^2),再对其两边同时积分,得到e^(x^2)y=x^2+2C,进一步化简得到y=(x^2+2C)e^(-x^2)。

四、二阶线性齐次微分方程法二阶线性齐次微分方程是指形如d^2y/dx^2+p(x)dy/dx+q(x)y=0的微分方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类微分方程的解法
1.可分离变量的微分方程解法
一般形式:g(y)dy=f(x)dx
直接解得∫g(y)dy=∫f(x)dx
设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解
2.齐次方程解法
一般形式:dy/dx=φ(y/x)
令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x
两端积分,得∫du/[φ(u)-u]=∫dx/x
最后用y/x代替u,便得所给齐次方程的通解
3.一阶线性微分方程解法
一般形式:dy/dx+P(x)y=Q(x)
先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce-
∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C]
即y=Ce-∫P(x)dx
+e-
∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解
4.可降阶的高阶微分方程解法
①y(n)=f(x)型的微分方程
y(n)=f(x)
y(n-1)= ∫f(x)dx+C1
y(n-2)= ∫[∫f(x)dx+C1]dx+C2
依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程
令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1)
即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2
③y”=f(y,y’) 型的微分方程
令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1)
即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2
5.二阶常系数齐次线性微分方程解法
一般形式:y”+py’+qy=0,特征方程r2+pr+q=0
6.二阶常系数非齐次线性微分方程解法
一般形式: y”+py’+qy=f(x)
先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x)
则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解
求y”+py’+qy=f(x)特解的方法:
①f(x)=P m(x)eλx型
令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数
②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型
令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数。

相关文档
最新文档