双筋矩形截面正截面受弯承载力计算公式.
双筋矩形梁正截面承载力计算讲解

双筋矩形梁正截面承载力计算一、双筋矩形梁正截面承载力计算图式二、基本计算公式和适用条件1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式:由∑=0X 得:s y sy c A f A f bx f =''+1α 由∑=0M 得:)(2001a h A f x h bx f M M sy c u '-''+⎪⎭⎫ ⎝⎛-=≤α 式中'y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积;'a —— 受压钢筋合力点到截面受压边缘的距离。
其它符号意义同前。
2.适用条件 应用式以上公式时必须满足下列适用条件:(1)0h x b ξ≤ (2)'2a x ≥如果不能满足(2)的要求,即'2a x <时,可近似取'2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为:)(0a h A f M M s y u '-=≤当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。
只有在这两种措施都受到限制时,才可考虑用增大受压钢筋用量的办法来减小ξ。
三、计算步骤(一)截面选择(设计题)设计双筋矩形梁截面时,s A 总是未知量,而's A 则可能有未知或已知这两种不同情况。
1.已知M 、b 、h 和材料强度等级,计算所需s A 和's A (1)基本数据:c f ,y f 及'y f ,1α, 1β,b ξ(2)验算是否需用双筋截面由于梁承担的弯矩相对较大,截面相对较小,估计受拉钢筋较多,需布置两排,故取mm a 60=,a h h -=0。
单筋矩形截面所能承担的最大弯矩为:M bh f M b b c u <-=)5.01(201max 1ξξα,说明需用双筋截面。
第三章(5)双筋矩形截面梁

' s
M —— 外荷载所产生的弯矩设计值
M u —— 截面自身的抗弯承载力
T
—— 钢筋所受拉力
f y —— 钢筋抗拉强度设计值(屈服强度)
As —— 受拉钢筋截面面积
fc —— 砼的轴心抗压强度设计值。
b —— 梁截面宽
x
' s
—— 砼受压区高度
f y' —— 钢筋抗压强度设计值(屈服强度)
A —— 受压钢筋截面面积
3 22
2
25 250
例5、同上例,但事先给定压筋2 25 (As´ =982mm2), 求As。
x h0 h0
2
M f y´As (h´ a´ ) 0 s 2 f cm b
解:一、求x
219 106 310 982 (440 35) 440 4402 2 11 200 b h0 0.544 440 239(mm) 440 326 114(m m) 2as´ 2 35 70(mm)
2
11 200 440 0.544 (1 0.5 0.544) 168.7(kN m) M 219(kN m)
2
故应用双筋截面
二、求As´和As
M ´ s max bh0 f cm ´ As f y (h0 a s )
´
2
219 10 6 0.396 200 440 2 11 310 (440 35) 401(mm 2 )
' y ' s
1 fc b
2、求 若
' s
Mu
x ' ' ' f y As h0 as 2
双筋矩形截面正截面承载力计算公式及适用条件

表3.2.5 T形、I形及倒L形截面受弯构件翼缘计算宽度bf'
项次
考虑情况
1
按计算跨度l0考虑
2
按梁(纵肋)净距sn考虑
按翼缘 3 高度hf'
考虑
hf'/h0 ≥0.1 0.1 > hf'/h0 ≥0.05
hf'/h0 <0.05
T形截面、I形截面
肋形梁 肋形板
独立梁
l0/3
l0/3
b + sn
—
倒L形截面 肋形梁 肋形板
l0/6
b + sn/2
—
b + 12hf'
—
b + 12hf' b + 6hf' b + 5hf'
b + 12hf'
b
b + 5hf'
注:表中b为梁的腹板宽度。
2. T形截面的分类
第一类T形截面:中性轴通过翼缘,即x hf 第二类T形截面:中性轴通过肋部,即 x>hf
【解】查表得 fc=11.9N/mm2,ft=1.27N/mm2, fy=360N/mm2,α1=1.0,ξb=0.518
假定纵向钢筋排一层,则h0 = h-35 =400 -35 = 365mm, 1. 确定翼缘计算宽度
根据表3.2.5有: 按梁的计算跨度考虑: bf′ =l / 3=4800/3=1600mm 按梁净距sn 考虑:bf′=b+sn =3000mm 按翼缘厚度hf′考虑:hf′/h0 =80/365=0.219>0.1, 故不受此项限制。
【例3.2.6】某独立T形梁,截面尺寸如图3.2.13◆所示, 计算跨度7m,承受弯矩设计值695kN·m,采用C25级混凝 土和HRB400级钢筋,试确定纵向钢筋截面面积。
第五章受弯承载力计算双筋矩形截面

M 0
hf M u 1 f cbf hf (h0 ) 2
判别条件:
h xh f M a1 f cbf hf (h0 ) 第一类 T形截面 2
f
f
• 截面设计时:
h xh f M a1 f cbf hf ( h0 ) 第二类 T形截面 2 • 截面复核时:
解两个联立方程,求两个未知数x和As:
M u M u1 + M u 2 M u1 As f y (h0 as ) M u 2 M u M u1 x 1 f cbx(h0 ) 2
Mu2 x f y (h0 ) 2
由求出x ,然后由式出As2:
As 2
_ φ 受压钢筋选用3 20mm钢筋,As’=941mm2 。
求:所需受拉钢筋截面面积As
【解】
由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,
环境类别为二级b,假定受拉钢筋放两排,设保护层
最小厚度35mm为故设α s=35+25/2=47.5mm,则
h0=400-47.5=352.5mm
由混凝土和钢筋等级,查附表(混凝土强
1)求计算系数:
M 330 106 s 2 1.0 19.1 200 4002 1 f cbh0
0.446
1 1 2 s 1 1 2 0.4 46
0.672>b 0.55
∴应设计成双筋矩形截面。
取ξ = ξ b,
M u 1 f cbh (1
1 f cbx
fy
1
而
As1
As f y fy
As f y + 1 f cbx fy
双筋矩形截面受弯构件正截面承载力计算

Mu ’
fyAs2
b
b
3.5 双筋矩形截面受弯承载力
3.3.5 叠加算法 对第一部分:
对第二部分:
两部分叠加得:
第一部分可利用表格求出As1,第二部分的As2可直接求出。
3.5 双筋矩形截面受弯 双筋矩形截面受弯承载力
3.5.6 算例
[例1] 已知梁的截面尺寸为b×h=250mm×500mm,混 凝土强度等级为C40,钢筋采用HRB400,即新IⅡ级钢 筋,截面弯矩设计值M=400kN· m。环境类别为一类。 求:所需受压和受拉钢筋截面面积As、As/。
(3) 双筋截面一般不必验算ρmin,因为受拉钢筋面积较大。
3.5 双筋矩形截面受弯承载力
3.5.4 基本公式的应用 情况1:已知:M, b×h, fc, fy, fy/ 求:As, As/ 在这种情况下,基本公式中有x、As、As/三个未知数,只有两个方程,不 能求解,这时需补充一个条件方能求解,为了节约钢材,充分发挥混凝 土的抗压强度,令 ,以求得最小的As/,然后再求As。
③ 由于某种原因(如地震区的结构为提高构件的延性等), 在截面受压区配置受力钢筋。受压钢筋还可减少混凝土的 徐变。
3.5 双筋矩形截面受弯承载力
配置受压钢筋后,为防止纵向受压钢筋可能发生纵向弯曲 (压屈)而向外凸出,引起保护层剥落甚至使受压混凝土过早发 生脆性破坏,应按规范规定,箍筋应做成封闭式,箍筋直径不 小于受压钢筋最大直径的1/4,且应满足一定的要求(混凝土规 范10.2.10条)。规范部分要求见图3-31。
3.5.6 算例
[例3] 一早期房屋的钢筋混凝土矩形梁截面 b*h=200*500mm,采用C15混凝土,钢筋为HPB235级,在 梁的受压区已设置有3根直径20mm的受压钢筋 (As’=942mm2)。受拉区为5根直径为18mm的纵向受拉钢 筋(两排放置,As=1272mm2),一类环境,试验算该截面所 能承担的极限弯矩。
双筋矩形截面正截面承载力计算公式及适用条件课件

目录
• 双筋矩形截面简介 • 双筋矩形截面正截面承载力计算公式 • 双筋矩形截面正截面承载力计算公式的适
用条件 • 双筋矩形截面正截面承载力计算公式在工
程实践中的应用 • 结论
01
双筋矩形截面简介
双筋矩形截面的定义
01
双筋矩形截面是指在矩形截面的 混凝土结构中,配置有两层钢筋 的截面形式。
工程实践中的应用案例
大跨度桥梁设计
轨道交通轨道结构
双筋矩形截面正截面承载力计算公式 在大型桥梁设计中广泛应用,如斜拉 桥、悬索桥等,用于计算主梁和桥面 板的承载能力。
在城市轨道交通中,双筋矩形截面正 截面承载力计算公式用于评估轨道钢 轨和轨枕的承载能力,确保列车运行 的安全。
高层建筑结构分析
在高层建筑的结构设计中,双筋矩形 截面正截面承载力计算公式用于分析 梁、柱等关键构件的承载能力,确保 建筑的安全性和稳定性。
相关规范要求。
03
双筋矩形截面正截面 承载力计算公式的适 用条件
适用条件概述
双筋矩形截面正截面承载力计算公式适用于计算双筋矩形截面的承载能力,适用 于梁、柱等结构形式。
该公式基于材料力学、结构力学等理论,通过简化计算过程,适用于工程实践中 的快速估算。
具体适用条件解析
适用条件一
双筋矩形截面的材料应符合相关 规定,如混凝土强度等级、钢材
结构的可靠性和安全性。
THANK YOU
推导过程中采用了数学建模的方法,通过建立数学模型来描述双筋矩形截面的受力 状态。
计算公式中的参数解释
01
02
03
04
钢筋的面积和强度
指用于承受拉力的钢筋的面积 和抗拉强度,是影响承载力的
4受弯构件正截面承载力计算(2)

εmax=0.0033 ε′s=0.002
a′ s M x
α 1 fc
A′s f′y h0 As fy
b x
A′s
εs
as
As
(a)
(b) 图3-12
(c)
(d)
第 三
混凝土
章
由计算图式平衡条件可建立基本计算公式:
∑X =0
′ ′ As f y = As f y + α1 f cbx
有效翼缘宽度 实际应力图块
b′f
等效应力图块
实际中和轴
第 三
图3-15
混凝土
章
b′f的取值与梁的跨度l0, 梁的净距sn, 翼缘高度hf′及 受力情况有关, 《规范》规定按表4-5中的最小值取用。
T型及倒 形截面受弯构件翼缘计算宽度b′f 型及倒L形截面受弯构件翼缘计算宽度 ′ 型及倒 形截面受弯构件翼缘计算宽度
§4.4 双筋矩形截面承载力计算 1. 应用条件: 1.荷载效应较大, 而提高材料强度和截面尺寸受 到限制; 2. 存在反号弯矩的作用(地震作用); 3. 由于某种原因, 已配置了一定数量的受压钢筋。
第 三
混凝土
章
2. 基本公式及适用条件: 基本假定及破坏形态与单筋相类似, 以IIIa作为 承载力计算模式。 (如图)
第 三 章
混凝土
(2)截面复核: 已知:b×h, fc, fy, fy′, As, As′ 求: Mu 解:求 x =
f y As − f
/ y
A/s
α 1 f cb
当2as ′ ≤x≤ξbh0 截面处于适筋状态,
x ′ ′ ′ M u = α1 f cbx (h0 − ) + As f y (h0 − as ) 2
混凝土结构设计概念题(含答案)

绪论1.什么是混凝土结构?根据混凝土中添加材料的不同通常分哪些类型?答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。
混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。
2.钢筋与混凝土共同工作的基础条件是什么?答:混凝土和钢筋协同工作的条件是:(1)钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;(2)钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;(3)设置一定厚度混凝土保护层;(4)钢筋在混凝土中有可靠的锚固。
3.混凝土结构有哪些优缺点?答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)整体浇筑的钢筋混凝土结构整体性好,适应灾害环境能力强,;(6)可以就地取材。
缺点:如自重大,不利于建造大跨结构;抗裂性差;浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。
4.简述混凝土结构设计方法的主要阶段。
答:四个阶段:材料力学的容许应力方法;按极限状态设计方法;概率论为基础的极限状态设计方法;性能化设计方法和理论。
第2章钢筋和混凝土的力学性能1.软钢和硬钢的区别是什么?设计时分别采用什么值作为依据?答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。
软钢有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度fyf,一般用作钢筋的实际破坏强度。
作为钢筋的强度极限。
另一个强度指标是钢筋极限强度u设计中硬钢极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。
3.2双筋、T形受弯构件的正截面承载力

解:(1) 已知混凝土强度等级C30, α1=1.0,fc=14.3N/mm2 ;HRB400钢筋, fy=360N/mm2,ξb=0.518,αs=60mm, h0=700mm60mm=640mm
(2) 判别截面类
fyAs=360N/mm2×3041mm2=1094760N>α1fcb'fh'f =14.3N/mm2×600mm×100mm=858000N
属第二类T形截面。
(3) 计算x
(4)计算极限弯矩Mu 安全
3.5 双筋矩形截面正截面承载力计算
3.5.1 概述
受压钢筋
定义:同时配置受
拉和受压钢筋的情
A s'
况
一般来说采用双筋
截面不经济
As
受拉钢筋
A's——受压区纵向受力钢筋的截面面积; a’s——从受压区边缘到受压区纵向受力钢筋合 力作用之间的距离。
对于梁,当受压钢筋按一排布置时,可取
a’s=35mm ; 当 受 压 钢 筋 按 两 排 布 置 时 , 可 取 a’s=60mm。 对于板,可取a's=20mm。
用HPB235钢筋配筋,截面承受的弯矩设计值 M=4.0×108N·mm,当上述基本条件不能改变时, 求截面所需受力钢筋截面面积。
解:(1) 判别是否需要设计成双筋截面 查表得α1=1.0,fc=9.6N/mm2,fy=210N/mm2 b=250mm,h0=600-70=530mm为
选用3 28(As=1847mm2)。
3.6 T形截面正截面承载力计算
3.6.1 概述
将腹板两侧混凝土挖去后 可减轻自重,但不降低承 载力。
建筑工程T形及倒L形截面受弯构件翼缘 计算宽度b’f 见表。
3 双筋矩形截面受弯构件正截面承载力计算

,
若B不满足,说明As' 太小,应按情形 1 重新设计计算; 若C不满足,说明受压钢筋未屈服,可按公式(3) M 直接计算As f y h0 as'
双筋矩形截面受弯构件承载力计算
计算As,一般满足适用条件A,可不验算 由公式(1)得 As
1 f cbx f y' As'
解:
(1)设计参数
f y As 1 1 fcbx f yAs
查表得, fc =14.3N mm2 , f y f y' 300 N mm2 , 1 =1.0, b 0.550
x M 1 f cbx(h0 ) f y As (h0 as ) 2 2
否则设计为双筋截面。
已知:b h、fc、f y、M,求As' 及As。
7双筋矩形截面

f y As1 f y As
(h0 as/ ) Mu1 f y As
②受压区混凝土和与其相应的一 部分受拉钢筋承受的弯矩 M u 2
1 fcbx f y As 2
M u 2 1 f c bx (h0 1 x) 2
6
叠加得
M u M u1 M u 2
抗 弯 计 算
②若
说明给定的
太少,应按情况1的步骤重新求 As As
As
③若
x 2a s
不能达到屈服,此时有两种偏安全的近似处理方法: As
说明受压钢筋
16
抗 弯 计 算
a.令 b.令
x 2a s
0 As
。
As
M ) f y ( h0 a s
按单筋矩形截面求
As
∵按a、b计算的 As 均偏安全(大于实际所需的 As ),∴所需的
抗 弯 计 算
应该说明,双筋 矩形截面的用钢 量比单筋截面的
由于某些原因又不能改变; b 承受某种交变荷载的作用(如风载、振动和地 震),使截面上的弯矩改变符号。
多,为节约钢材, 应尽可能地不要
F
A
B
A
B
F
将截面设计成双 筋截面。
在地震作用下门式刚架横梁的内力
3
2破坏特征
(1)双筋截面的适筋梁破坏特点:
' s
As
f y' As' 1 f c b b h0 fy
3068 .4m m2
13
3 选配钢筋 受拉钢筋选8根直径22,As=3041mm2, 受压钢筋选2根直径22, As’=760mm2。 4 验算
抗 弯 计 算
受弯构件正截面承载能力计算

其特点有: (1)只能沿 弯矩作用方 向,绕中和 轴单向转动 (2)只能在 从受拉钢筋 开始屈服到 受压区混凝 土压坏的有 限范围内转 动φy-φu。
(3)转动的同时,能传递一定的弯矩,即截面的极限弯矩 Mu 塑性铰出现后,简支梁即形成三铰在一直线上的破坏机构。
3.《规范》采用的正截面极限受弯承载力计算方法
2.适筋梁正截面的受力性能 (1)适筋梁的受力阶段
第Ⅰ阶段(弹性工作阶段) 加载→开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段) 屈服→压碎 极限弯矩Mu
不同阶段截面应力分布图的应用
Ⅰa阶段的应力状态是抗裂验算的依据。 Ⅱ 阶段的应力状态是裂缝宽度和变形验算的依据。 Ⅲa阶段的应力状态作为构件承载力计算的依据
有柱帽 无柱帽
1/32~1/40 1/30~1/35
注:表中l0为梁的计算跨度。当l0≥9m时,表中数值宜乘以1.2。
(2)板的最小厚度
按构造要求,现浇板的厚度不应小于下表的数值。现 浇板的厚度一般取为10mm的倍数。
(3)板的配筋
①受力钢筋 用来承受弯矩产生的拉力 ②分布钢筋
作用,一是固定受力钢筋的位置,形成钢筋网;二是 将板上荷载有效地传到受力钢筋上去;三是防止温度或混 凝土收缩等原因沿跨度方向的裂缝。
ecu
a’
A
’ s
e s
x
M
h0
Cs=ss’As’ Cc=fcbx
As
a
>ey
T=fyAs
双筋截面在满足构造要求的条件下,截面达到Mu 的标志仍然是受压边缘混凝土应变达到εcu。 受压区 混凝土的应力仍可按等效矩形应力考虑。当相对受压
受弯正截面承载力计算

第四章 受弯构件正截面承载力
ecu
as’ h0 As as >ey A s’ ¢ es
Cs=s’As’
M
x
Cc= a1f cbx
T=fyAs
为使受压钢筋的强度能充分发挥,其应变不应小于0.002。 由平截面假定可得,
' as ecu=0.0033 ¢ e s e cu(1 ) 0.002 x
第四章 受弯构件正截面承载力
4.4.2 计算方法 ★截面设计
已知:弯矩设计值M 求:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc 未知数:受压区高度x、 b,h(h0)、As、fy、fc
基本公式:两个
没有唯一解
设计人员应根据受力性能、材料供应、施工条件、使用
要求等因素综合分析,确定较为经济合理的设计。
● 简支梁可取h=(1/10 ● 简支板可取h ●
= (1/30 ~ 1/35)L
但截面尺寸的选择范围仍较大,为此需从经济角度
进一步分析。
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
经济配筋率
•板:(0.4~0.8)%; •矩形截面梁:(0.6~1.5)%; •T形截面梁:(0.9~1. 8)%。
1 l0 3
1 l0 3
—
1 l0 6 b 1 Sn 2
b Sn
—
按翼缘高度
b 12 h ¢f b 6h ¢f
b
—
h ¢f 考虑
b 12 h ¢f b 12 h ¢f
b 5h ¢f b 5h ¢f
4.6 T形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
4.6.2 基本公式 两类T形截面的判别 第一类T形截面 界限情况 第二类T形截面
第四章-受弯构件正截面承载力-双筋截面(第四课)精选全文

4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
s
Mu2
1 fcbh02
215.7 106
1.0 19.1 200 4402
0.292
1 1 2s 1 1 2 0.292
0.355
b 0.55, 满足使用条件(1) x b0 0.355 440 156mm
第四章 受弯构件
【解】 由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,环境 类别为一级,假定受拉钢筋放两排,设保护层最小厚度为 故设αs=60mm,则 h0=500-60=440mm 由混凝土和钢筋等级,查附表(混凝土强度设计值表、 普通钢筋强度设计值表),得: fc=19.1N/mm2,fy=300N/mm2,fy’=300N/mm2, 由表4-5知: α1=1.0,β1=0.8
As As1 As2 941 1986 2927 .0mm 2
受拉钢筋选用6 2φ5_mm,As=2945.9mm2。
4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
[例4-7]
截面复核
已知:矩形截面梁b× h=200 ×500mm;弯矩设计值
M=330kNm,混凝土强度等级为C40,钢筋采用HRB335级 钢筋,即Ⅱ级钢筋;环境类别为一级 。
4.5 双筋截面的正截面受弯承载力计算
第四章 受弯构件
情况2: 双筋矩形截面分解求解的计算图示:
As
As
As
As1
As2
纯钢筋部分
fy'As'
fy'As'
单筋部分
M
fcbx
M1
M2
fcbx
fyAs
fyAs1
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理

1 /171第四章 钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T 形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M 和剪力V 共同作用,而轴力N 可以忽略的构件(图4—1). 梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
2 /172图4—3 受弯构件的破坏特性§4—2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s 与截面有效面积的百分比.sA bh 式中 s A —-纵向受力钢筋截面面积。
b -—截面宽度,0h —-截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式: 1、 少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4—4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用.破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
双筋矩形截面正截面承载力计算公式及适用条件

2)第二类T形截面
第二类T形截面的等效矩形应力图如图3.2.10。
1 f c hf (bf b) 1 f c bx f y As
(3.2.16)
hf x M 1 f c hf (bf b)(h0 ) 1 f c bx h0 2 2
第三章 钢筋混凝土受弯构件
第四讲 教学目标:
1.了解双筋截面受弯构件的基本概念和应用范围;
2.掌握单筋T形梁正截面承载力计算方法及适用条件。
重 点
单筋T形截面受弯构件正截面承载力计算的应 力简图、计算方法及适用条件。
难 点
单筋T形截面受弯构件正截面承载力计算的 应力简图、计算方法及适用条件。
§3.2
【例3.2.6】某独立T形梁,截面尺寸如图3.2.13◆所示,
计算跨度7m,承受弯矩设计值695kN· m,采用C25级混凝
土和HRB400级钢筋,试确定纵向钢筋截面面积。 【解】fc=11.9N/mm2,ft=1.27N/mm2, fy =360N/mm2 ,α1=1.0,ξb=0.518 假设纵向钢筋排两排,则h0 =800-60=740mm
小 结:
1. 单筋T形截面类别的判别及其计算方法。
2. 双筋矩形截面梁的概念。
作业布置:
预 习:§3.3 ;
思考题:3.9 ;
习 题:3.4、3.5 。
结束! 谢谢大家!
正截面承载力计算
3.2.2 单筋T形截面
1. 翼缘计算宽度
(1)翼缘计算宽度的概念
在计算中,为简便起见,假定只在翼缘一定宽
度范围内受有压应力,且均匀分布,该范围以外的部
分不起作用,这个宽度称为翼缘计算宽度。 (2)翼缘计算宽度的值
表3.2.5
混凝土结构设计原理-试题-答案

混凝土结构设计原理试题库及其参考答案一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。
每小题1分。
)第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
( )2.混凝土在三向压力作用下的强度可以提高。
( )3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
( )4.钢筋经冷拉后,强度和塑性均可提高。
( )5.冷拉钢筋不宜用作受压钢筋。
( )6.C20表示f cu =20N/mm 。
( )7.混凝土受压破坏是由于内部微裂缝扩展的结果。
( )8.混凝土抗拉强度随着混凝土强度等级提高而增大。
( )9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
( )10.混凝土受拉时的弹性模量与受压时相同。
( )11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。
( )12.混凝土强度等级愈高,胶结力也愈大( )13.混凝土收缩、徐变与时间有关,且互相影响。
( )第3章 轴心受力构件承载力1. 轴心受压构件纵向受压钢筋配置越多越好。
( )2. 轴心受压构件中的箍筋应作成封闭式的。
( )3. 实际工程中没有真正的轴心受压构件。
( )4. 轴心受压构件的长细比越大,稳定系数值越高。
( )5. 轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
( )6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
( )第4章 受弯构件正截面承载力1. 混凝土保护层厚度越大越好。
( )2. 对于'f h x ≤的T 形截面梁,因为其正截面受弯承载力相当于宽度为'f b 的矩形截面梁,所以其配筋率应按0'h b A f s=ρ来计算。
( )3. 板中的分布钢筋布置在受力钢筋的下面。
( )4. 在截面的受压区配置一定数量的钢筋对于改善梁截面的延性是有作用的。
混凝土结构设计原理 第四章 受弯构件正截面承载力的计算

3.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
分布钢筋的作用:
抵抗混凝土收缩和温度变化所引起的内力; 浇捣混凝土时,固定受力钢筋的位置; 将板上作用的局部荷载分散在较大的宽度上,以便 使更多的受力钢筋参与工作; 对四边支撑的单向板,可承受在计算中没有考虑的 长跨方向上实际存在的弯矩。
板中单位长度上的分布钢筋,其截面面积不应小于 单位长度上受力钢筋截面面积的15%,且配筋率不宜小于 0.15%。间距不应大于250mm,直径不宜小于6mm。
4.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
弯起钢筋 架立钢筋
腰筋
箍筋
纵向钢筋
梁的钢筋构造
梁中钢筋由纵向受力钢筋、弯起钢筋、箍筋和架立钢筋组 成,纵向受力钢筋的作用是承受由弯矩在梁内产生的拉力。 常用直径:10~32mm。 当h ≥ 300mm,直径不小于10mm;当h<300mm,直径 不小于8mm。
第4章 受弯构件正截面承载力
梁的配筋率ρ 很小,梁拉区开裂后,钢筋 应力趋近于屈服强度,即开裂弯矩Mcr趋近于拉 区钢筋屈服时的弯矩 My,这意味着第Ⅱ阶段的 缩短,当ρ 减少到当 Mcr=My 时,裂缝一旦出现,
钢筋应力立即达到屈服强度,这时的配筋百分
率ρ 称为最小配筋率ρ
min。
min b max
h0
h
第4章 受弯构件正截面承载力
正截面受弯的三种破坏形态
(1) 适筋破坏形态——破坏始自受拉区 钢筋的屈服
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“塑性破坏”。
(2) 超筋破坏形态——破坏始自受压混 凝土的压碎
受压区混凝土先压碎,钢筋不屈服, 破坏前没有明显预兆,为“脆性破坏”。 钢筋的抗拉强度没有被充分利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.适用条件
x<2as',取受压纵筋合力点Ds与受压混凝土合力点Dc重合。 以受压钢筋合力点为力矩中心,可得:
KM≤fyAs(h0–as′)
水工混凝土结构
主持单位: 福建水利电力职业技术学院 黄河水利职业技术学院
主 持 人 : 张生瑞 王建伟
参建单位: 安徽水利水电职业技术学院 长江工程职业技术学院 酒泉职业技术学院 重庆水利电力职业技术学院
水工混凝土结构
3.适用条件
(1)x≤0.85ξbh0或ξ≤0.85ξb;避免发生超筋破坏,保证受 拉钢筋应力达到抗拉强度设计值fy。
(2)x≥2as';保证受压钢筋应力达到抗压强度设计值fy′。 若x<2as',截面破坏由纵向受拉钢筋应力达到fy引起,此 时,纵向受压钢筋应力尚未达到fy'。
水工混凝土结构
参与人员:艾思平 邹林 段凯敏 郭志勇 程昌明 郭旭东 胡 涛 张迪 郑昌坝 仇 军 黄小华
水工混凝土结构
双筋矩形截面正截面 受弯承载力计算公式
主 讲 人:张迪 黄河水利职业技术学院
水工混凝土结构
2017.04
目录
1受压钢筋设计强度2基本公式3适用条件
水工混凝土结构
1.受压钢筋设计强度
双筋截面只要满足ξ≤0.85ξb,就具有单筋截面适筋梁的破 坏特征。
受压钢筋与周边混凝土具有相同的压应变,即εs'=εc。 当受压边缘混凝土纤维达到极限压应变时, 受压钢筋应力бs'=εs'Es=εc Es。 正常情况下(x≥2as'),取εs'=εc=0.002。 бs'=0.002×(1.95×105~2.0×105) =(390~400)N/mm2。
水工混凝土结构
1.受压钢筋设计强度
若采用中、低强度钢筋作受压钢筋(fy′≤400 N/mm2), 且混凝土受压区计算高度x≥2as',构件破坏时受压钢筋应力能 达到屈服强度;
若采用高强度钢筋作为受压钢筋,则其抗压强度设计值不 应大于360 N/mm2。
水工混凝土结构
双筋矩 形截面 梁正截 面承载 力计算 简图
2.基本公式
由截面内力平衡条件得
∑x =0 fc b x + fy'As'= fyAs
∑M=0 KM≤fcbx(h0-0.5x)+ fy‘As’ (h0-as ‘) x=ξh0、αs=ξ(1-0.5ξ)
f cbh0 f y As f y As KM ≤s fcbh02 fyAs(h0 as)