直线与方程练习题及答案

合集下载

直线方程习题带参考答案

直线方程习题带参考答案

1 / 4一选择题1. 1. 已知直线经过点已知直线经过点A(0,4)A(0,4)和点和点B (1,2),则直线AB 的斜率为(的斜率为(B B B ))A.3 B.-2 C. 2 D. A.3 B.-2 C. 2 D. 不存在不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为(的直线方程为(A A A ))A .072=+-y x B B..012=-+y x C .250x y --=D .052=-+y x 3. 3. 在同一直角坐标系中,表示直线在同一直角坐标系中,表示直线y ax =与y x a =+正确的是(C )x yO x yO x yO xyO A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( A A ))A .32-B B..32C C..23- D D..235.5.过过(x 1,y 1)和(x 2,y 2)两点的直线的方程是两点的直线的方程是( C ) ( C ) 112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则(则( A A A ))A A、、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K3C C、、K 3﹤K 2﹤K 1D D、、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为(对称的直线方程为( A A A ))A 、3x+2y-5=0 B 3x+2y-5=0 B、、2x-3y-5=0两直线交点(两直线交点(11,1)L 1L 2x oL 3C 、3x+2y+5=0D 3x+2y+5=0 D、、3x-2y-5=0 对称点(对称点(-1-1-1,,4)8、与直线2x+3y-6=0关于点关于点(1,-1)(1,-1)(1,-1)对称的直线是(对称的直线是(对称的直线是( D D D )) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09、直线5x-2y-10=0在x 轴上的截距为a,a,在在y 轴上的截距为b,b,则(则(则( B B B )) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-.1010、直线、直线2x-y=7与直线3x+2y-7=0的交点是(的交点是( A A A )) A (3,-1) B (-1,3) C (-3,-1) D (3,1)1111、过点、过点P(4,-1)P(4,-1)且与直线且与直线3x-4y+6=0垂直的直线方程是(垂直的直线方程是( A A A )) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0二填空题(共20分,每题5分)分) 12. 12. 过点(过点(过点(11,2)且在两坐标轴上的截距相等的直线的方程)且在两坐标轴上的截距相等的直线的方程 y=2x 或x+y-3=013两直线2x+3y 2x+3y--k=0和x -ky+12=0的交点在y 轴上,则k 的值是的值是 ±61414、两平行直线、两平行直线0962043=-+=-+y x y x 与的距离是2010。

直线方程测试题(含答案)

直线方程测试题(含答案)

第三章直线方程测试题考试时间:100分钟 总分:150分一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O xyO A B C D4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )A .32- B .32 C .23- D .235.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为KA 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 2 L 1 xo7、直线2x+3y-5=0关于直线y=x 对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=09、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ __________;13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。

直线与方程(含答案)

直线与方程(含答案)

第三章直线与方程一、选择题1.下列直线中与直线x-2y+1=0平行的一条是().A.2x-y+1=0 B.2x-4y+2=0C.2x+4y+1=0 D.2x-4y+1=02.已知两点A(2,m)与点B(m,1)之间的距离等于错误!未找到引用源。

,则实数m=().A.-1 B.4 C.-1或4 D.-4或13.过点M(-2,a)和N(a,4)的直线的斜率为1,则实数a的值为().A.1 B.2 C.1或4 D.1或24.如果AB>0,BC>0,那么直线Ax―By―C=0不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限5.已知等边△ABC的两个顶点A(0,0),B(4,0),且第三个顶点在第四象限,则BC 边所在的直线方程是().A.y=-错误!未找到引用源。

x B.y=-错误!未找到引用源。

(x-4)C.y=错误!未找到引用源。

(x-4)D.y=错误!未找到引用源。

(x+4)6.直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线方程是().A.x―y―1=0 B.2x―y―3=0C.x+y-3=0 D.x+2y-4=07.点P(1,2)关于x轴和y轴的对称的点依次是().A.(2,1),(-1,-2)B.(-1,2),(1,-2)C.(1,-2),(-1,2)D.(-1,-2),(2,1)8.已知两条平行直线l1 : 3x+4y+5=0,l2 : 6x+by+c=0间的距离为3,则b+c=().A.-12 B.48 C.36 D.-12或48 9.过点P(1,2),且与原点距离最大的直线方程是().A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.3x+y-5=010.a,b满足a+2b=1,则直线ax+3y+b=0必过定点().A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

直线与方程练习题及参考答案详解

直线与方程练习题及参考答案详解

直线与方程练习题一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1 B .0135,1- C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线与方程复习题答案

直线与方程复习题答案

直线与方程复习题答案一、选择题1. 直线方程 \( y = mx + b \) 中,\( m \) 表示直线的斜率,\( b \) 表示直线与y轴的交点。

A. 正确B. 错误答案:A2. 下列哪个方程表示的是过点 (1,2) 且斜率为3的直线?A. \( y = 3x + 1 \)B. \( y = 3x - 1 \)C. \( y = 3x + 2 \)D. \( y = 3x - 2 \)答案:C3. 直线 \( x + 2y - 6 = 0 \) 与 \( x - y + 5 = 0 \) 的交点坐标为:A. (1,3)B. (3,1)C. (-1,-3)D. (-3,-1)答案:A二、填空题1. 直线 \( ax + by + c = 0 \) 的斜截式方程是 \( y = \frac{-a}{b}x + \frac{c}{b} \)。

答案:\( \frac{-a}{b} \),\( \frac{c}{b} \)2. 若直线 \( l \) 与直线 \( 3x - 4y + 5 = 0 \) 平行,则直线\( l \) 的斜率为 \( \frac{3}{4} \)。

答案:\( \frac{3}{4} \)三、解答题1. 求过点 (2,3) 且垂直于直线 \( 2x - 3y + 6 = 0 \) 的直线方程。

解:已知直线 \( 2x - 3y + 6 = 0 \) 的斜率为 \( \frac{2}{3} \),垂直于它的直线斜率为 \( -\frac{3}{2} \)。

代入点斜式方程\( y - y_1 = m(x - x_1) \) 得:\( y - 3 = -\frac{3}{2}(x - 2) \)化简得:\( 3x + 2y - 12 = 0 \)2. 已知直线 \( l \) 经过点 (1,0) 和 (0,1),求直线 \( l \) 的方程。

解:直线 \( l \) 经过点 (1,0) 和 (0,1),其斜率为\( \frac{1 - 0}{0 - 1} = -1 \)。

直线方程综合训练题集及答案

直线方程综合训练题集及答案

直线方程综合训练1一、选择题1、三角形中,已知三边a,b,c依次所对应的三内角α,β,γ满足lgsinα+lgsin γ=2lgsinβ, 则直线xsin2α+ysinα=α与xsin2β+ysinγ=c的位置关系是( ) (A) 平行(B) 斜交(C) 垂直(D) 重合2、点(a,b)关于直线x+y=0对称的点是( )(A) (-a,-b) (B) (a,-b) (C) (b,a) (D) (-b,-a)3、已知l 平行于直线3x+4y-5=0, 且l和两坐标轴在第一象限内所围成三角形面积是24,则直线l的方程是( ) (A) 3x+4y-122=0 (B) 3x+4y+122=0(C) 3x+4y-24=0 (D) 3x+4y+24=04、点(4,0)关于直线5x+4y+21=0对称的点是()(A) (-6,8) (B) (-8,-6) (C) (6,8) (D) (-6,-8)5、若直线l经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l的条数为( ) (A)1 (B)2 (C)3 (D)46、平面上两点A(4cosα,4sinα)与B(3cosβ,3sinβ)之间的距离的最大值与最小值顺序为()(A)7与1 (B)6与1 (C)7与2 (D)6与27、直线x+2y-1=0的倾斜角为( )(A)43)D (22arctan )C (22arctan )B (4π-ππ8、经过点A (-3,2)和B (6,1)的直线与直线x +3y -6=0相交于M ,M 分AB 所成的比是 ( )(A )-1 (B )21 (C )1 (D )29、如图所示,直线l 1:ax -y +b=0与l 2:bx -y +a=0(ab ≠0,a ≠b)的图象只可能是( )10、由方程11-+-y x =1确定的曲线所围成的图形面积是 ( )(A )1 (B )2 (C )π (D )411、一平行于y 轴的直线把顶点为(0,0)、(1,1)、(9,1)的三角形分成面积相等的两部分,那么这条直线是 ( )(A )x=2.5 (B )x=3 (C )x=3.5 (D )x=412、经过原点,且倾斜角是直线y=22x +1倾斜角2倍的直线是 ( )(A )x=0 (B )y=0 (C )y=2x (D )y=22x13、已知菱形的三个顶点为(a,b )、(-b,a )、(0,0),那么这个菱形的第四个顶点为 ( )(A )(a -b,a +b) (B )(a +b, a -b) (C )(2a,0) (D )(0,2a)14、直线kx -y=k -1与ky -x=2k 的交点位于第二象限,那么k 的取值范围是( )(A )k >1 (B )0<k <21 (C )k <21(D )21<k <115、直线ax +by=ab(a >0,b <0)的倾斜角等于 ( )(A )π-arctg(-b a ) (B )π-arctg b a (C )arctg(-b a ) (D )arctg ba二、填空题1、过点A (-1,2)且倾斜角正弦值为53的直线方程是______。

高一数学直线与方程相关习题及答案

高一数学直线与方程相关习题及答案

直线与方程一、选择题1.若A -2,3,B 3,-2,C ),21(m 三点共线,则m 的值为A.B .-C .-2D .22.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是3.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是A.B.C. D. 4.直线l 1:3-ax +2a -1y +7=0与直线l 2:2a +1x +a +5y -6=0互相垂直,则a 的值是A .-B.C. D.5.直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点A .0,0B .0,1C .3,1D .2,16.已知A 2,4与B 3,3直线l 对称,则直线l 的方程为A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=07.已知直线l 过点1,2,且在x 轴上的截距是在y 轴上的截距的2倍,则直线l 的方程为A .x +2y -5=0B .x +2y +5=0C .2x -y =0或x +2y -5=0D .2x -y =0或x -2y +3=08.直线y =x +3k -2与直线y =-x +1的交点在第一象限,则k 的取值范围是 A.)1,32(- B.)0,32(-C .)1,0( D.⎥⎦⎤⎢⎣⎡-1,32 9.经过点2,1的直线l 到A 1,1、B 3,5两点的距离相等,则直线l 的方程A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对10.直线l 过点P 1,3,且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0二、填空题11.直线l 方程为y -a =a -1x +2,且l 在y 轴上的截距为6,则a =________.12.已知点m,3到直线x +y -4=0的距离等于,则m 的值为________.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.14.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为)10,0(aP ,则线段AB 的长为________. 三、解答题15.已知两条直线l 1:x +m 2y +6=0,l 2:m -2x +3my +2m =0,当m 为何值时,l 1与l 2 1相交;2平行;3重合.16.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线为l ,求l 的方程.17.在平面直角坐标系xOy 中,已知直线l 的方程为2x +k -3y -2k +6=0,k ∈R . 1若直线l 在x 轴、y 轴上的截距之和为1,求坐标原点O 到直线l 的距离; 2若直线l 与直线l 1:2x -y -2=0和l 2:x +y +3=0分别相交于A ,B 两点,点P 0,2到A 、B 两点的距离相等,求k 的值.18.已知△ABC 的顶点B -1,-3,AB 边上高线CE 所在直线的方程为x -3y -1=0,BC 边上中线AD 所在的直线方程为8x +9y -3=0.1求点A 的坐标;2求直线AC 的方程.直线与方程答案1—5:ACCBC6-10:DCACA11:12:-1或313:2x+3y-2=014:1015:解当m=0时,l1:x+6=0,l2:x=0,∴l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,∴l1与l2相交.当m≠0且m≠2时,由=,得m=-1或m=3,由=,得m=3.故1当m≠-1且m≠3且m≠0时,l1与l2相交.2当m=-1或m=0时,l1∥l2.3当m=3时,l1与l2重合.16:解直线x-2y+5=0与x轴交点为P-5,0,反射光线经过点P.又入射角等于反射角,可知两直线倾斜角互补.∵k1=,∴所求直线斜率k2=-,故所求方程为y-0=-x+5,即x+2y+5=0.17:解1令x=0时,纵截距y0=2;令y=0时,横截距x0=k-3;则有k-3+2=1k=2,所以直线方程为2x-y+2=0,所以原点O到直线l的距离d==.2由于点P0,2在直线l上,点P到A、B的距离相等,所以点P为线段AB的中点.设直线l与2x-y-2=0的交点为Ax,y,则直线l与x+y+3=0的交点B-x,4-y,由方程组解得即A3,4,又点A在直线l上,所以有2×3+k-3×4-2×k+6=0,即k=0.18:解1设点Ax,y,则解得故点A的坐标为-3,3.2设点Cm,n,则解得m=4,n=1,故C4,1,又因为A-3,3,所以直线AC的方程为=,即2x+7y-15=0.。

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。

等于0B。

等于π/2C。

等于πD。

不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。

k1<k2<k3B。

k3<k1<k2C。

k3<k2<k1D。

k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。

2B。

-2C。

4D。

14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。

π/3B。

2π/3C。

π/4D。

3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。

第一象限B。

第二象限C。

第三象限D。

第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。

x+y-5=0B。

2x-y-1=0C。

2y-x-4=0D。

2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。

19x-9y=0,19y=0B。

9x+19y=0C。

19x-3y=0D。

3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。

3B。

-3C。

1D。

-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。

a/(a+1)B。

-a/(a+1)C。

(a+1)/aD。

-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。

(-6,8)B。

(6,-8)C。

(-6,-8)D。

(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。

直线与方程试题及答案

直线与方程试题及答案

直线与方程试题及答案1. 已知直线方程为 \(y = 2x + 3\),求该直线与 \(x\) 轴的交点坐标。

答案:将 \(y\) 设为 0,解方程 \(0 = 2x + 3\) 得到 \(x = -\frac{3}{2}\)。

因此,直线与 \(x\) 轴的交点坐标为 \((-\frac{3}{2}, 0)\)。

2. 已知直线 \(y = mx + b\) 经过点 \(A(1, 2)\) 和点 \(B(3,4)\),求直线的方程。

答案:将点 \(A(1, 2)\) 和点 \(B(3, 4)\) 代入方程 \(y = mx + b\),得到两个方程:\[2 = m \cdot 1 + b\]\[4 = m \cdot 3 + b\]解这个方程组,得到 \(m = 1\),\(b = 1\)。

因此,直线的方程为\(y = x + 1\)。

3. 已知直线方程为 \(3x - 4y + 5 = 0\),求该直线的斜率。

答案:将方程 \(3x - 4y + 5 = 0\) 转换为斜截式 \(y = mx + b\),得到\(y = \frac{3}{4}x - \frac{5}{4}\)。

因此,直线的斜率为\(\frac{3}{4}\)。

4. 求过点 \(C(2, 3)\) 且与直线 \(y = 2x - 1\) 平行的直线方程。

答案:与直线 \(y = 2x - 1\) 平行的直线具有相同的斜率,即斜率为 2。

因此,所求直线方程为 \(y = 2x + b\)。

将点 \(C(2, 3)\) 代入方程,得到 \(3 = 2 \cdot 2 + b\),解得 \(b = -1\)。

因此,所求直线方程为 \(y = 2x - 1\)。

5. 已知直线 \(y = 3x + 7\) 与 \(x\) 轴相交于点 \(D\),与 \(y\) 轴相交于点 \(E\),求点 \(D\) 和点 \(E\) 的坐标。

答案:点 \(D\) 位于 \(x\) 轴上,因此 \(y = 0\)。

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。

高考数学专题《直线与方程》训练试题含答案

高考数学专题《直线与方程》训练试题含答案

高考数学专题《直线与方程》一、单选题1.已知点(3,4)A ,(1,1)B -,则线段AB 的长度是( )A .5B .25CD .292.已知直线l 经过点()1,0P ,且与直线21y x =-平行,那么直线l 的方程是( ) A .1y x =- B .22y x =- C .1y x =-+ D .21y x =-+ 3.已知直线l 倾斜角是arctan 2π-,在y 轴上截距是2,则直线l 的参数方程可以是( )A .22x t y t =+⎧⎨=-⎩B .2x t y t =+⎧⎨=-⎩C .22x t y t =⎧⎨=-⎩D .22x t y t=⎧⎨=-⎩ 4.倾斜角为45,在y 轴上的截距为1-的直线的方程是( )A .1y x =+B .1y x =-C .1y x =-+D .1y x =--5.直线3210x y +-=的一个方向向量是( )A .()2,3-B .()2,3C .()3,2-D .()3,26.下列命题错误的是( )①y =2y x =表示的是同一条抛物线②所有过原点的直线都可设为y kx =;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->④椭圆2248x y +=A .①② B .②④ C .③④ D .①②④ 7.已知两直线20x y -=和30x y +-=的交点为M ,则以点M 为圆心,半径长为1的圆的方程是( )A .22(1)(2)1x y +++=B .22(1)(2)1x y -+-=C .22(2)(1)1x y +++=D .22(2)(1)1x y -+-=8.已知直线1:3420l x y ++=,2:6810l x y +-=,则1l 与2l 之间的距离是A .12 B .35 C .1 D .3109.若直线220mx y +-=与直线(1)20x m y +-+=平行,则m 的值为( )A .1-B .1C .2或1-D .210.如图所示,直线123,,l l l 的斜率分别为123,,k k k ,则A .123k k k <<B .231k k k <<C .321k k k <<D .132k k k << 11.“2a =”是“直线20ax y +=平行于直线1x y +=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.直线1y ax a =+-()a R ∈所过定点的坐标为( )A .()1,1--B .()1,1-C .()1,1-D .()1,113.已知(1,4)A ,(3,2)B -,直线:20l ax y ++=,若直线l 过线段AB 的中点,则=a A .-5 B .5 C .-4 D .414.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y ++=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -= 15.已知直线1l 经过()3,4A -,()8,1B --两点,直线2l 的倾斜角为135,那么1l 与2l A .垂直 B .平行 C .重合 D .相交但不垂直 16.已知ABC ∆的顶点坐标为()7,8A ,()10,4B ,()2,4C -,则BC 边上的中线AM 的长为A .8B .13C .D 17.已知直线l 经过点()0,1,且与直线210x y -+=的倾斜角互补,则直线l 的方程为( ) A .220x y +-= B .210x y +-= C .210x y +-= D .210x y ++=18.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线l 与直线g :20++=ax by b 平行,则直线l ,g 间的距离为( )A B C D19.已知直线l 过点2)-和(0,1),则直线l 的倾斜角大小为A .150︒B .120︒C .60︒D .3020.直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,则其斜率的取值范围为( )A .B .C .⎝D . 21.已知两条直线1:60l x my ++=,()2:2320l m x y m -++=,若1l 与2l 平行,则m 为( )A .1-B .3C .1-或3D .022.已知椭圆:22143x y +=,直线l :y x =+P ,则点P 到直线l 的距离的最大值( )A .B .C .D .23.若点(,0)P m 到点(3,2)A -及(2,8)B 的距离之和最小,则m 的值为A .2B .2-C .1D .1-24.已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( ) A .(0,2) B .(1,0) C .(1,1)a + D .(,1)e25.已知直线1:32l y x =-,直线221:60l x y -+=,则1 l 与2 l 之间的距离为( )A B C D 26.已知直线2120l x a y a -+=:与直线()2110l a x ay --+=:互相平行,则实数a 的值为( )A .-1B .0C .1D .227.经过点()0,1且与直线210x y +-=垂直的直线的方程为( )A .220x y +-=B .220x yC .210x y -+=D .210x y +-=28.已知直线()():20l y k x k =+>与抛物线28C y x =:相交于A 、B 两点,且2AF BF =,则k 为( )A B C D 29.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 30.已知抛物线2x y =上的点P 到直线240x y --=的距离最小,则点P 的坐标是( ) A .()1,1- B .()1,1 C .()2,2 D .()0,031.在Rt ABO 中,90BOA ∠=︒,8OA =,6OB =,点P 为Rt ABO 内切圆C 上任一点,则点Р到顶点A ,B ,O 的距离的平方和的最小值为( )A .68B .70C .72D .7432.“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分也非必要 33.已知圆C :x 2+(y ﹣2)2=r 2与直线x ﹣y =0交于A ,B 两点,若以弦AB 为直径的圆刚好经过已知圆的圆心C ,则圆C 的半径r 的值为( )A .1BC .2D .434.已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且||2AB =,则||PA PB +的最小值是( )A .B .C .1D .235.以下四个命题表述正确的是( ) ①若点(1,2)A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆上②圆22:28130C x y x y +--+=的圆心到直线4330x y -+=的距离为2③圆22120C :x y x ++=与圆222:4840C x y x y +--+=外切④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的直线方程为260x y ++=A .①②B .①③C .②③D .②④36.已知两条直线l 1:x +m 2y +6=0,l 2:(m ﹣2)x +3my +2m =0,若l 1与l 2平行,则m =( ) A .﹣1或0B .﹣1C .0D .﹣1或0 或3二、填空题37.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 . 38.直线20x y +-=和10ax y -+=的夹角为3π,则a 的值为______.39.设点p 为y 轴上一点,并且点P 到直线3460x y -+=的距离为6,则点P 的坐标为_________.40.直线3y x =-+与坐标轴围成的三角形的面积是_________.41.若在平面直角坐标系内过点P ,且与原点的距离为d 的直线有两条,则d 的取值范围为________.42.已知直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行,则a =___________.43.若点(),a b 在直线10x -=上,则22a b +的最小值为_____________________. 44.设△ABC 的三个顶点的坐标为A (2,0),B (﹣1,3),C (3,﹣2),则AB 边上的高线CD 所在直线的方程为_____.45.已知函数()243f x x x =-+的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,则ABC 的外接圆E 的方程是________.46.设直线212:260,(1)10l ax y l x a y a ++==+-+-=,若12l l ⊥,则a =__________.47.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________.48.已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是___________.49.已知两直线与平行,则___ 50.已知函数2()1f x og x =,a b >且1223b ≤≤,()()f a f b k ==,设k 值改变时点(,)a b 的轨迹为C ,若点M ,N 为曲线C 上的两点,O 为坐标原点,则MON ∆面积的最大值为__.51.点(3,2)P 关于直线1y x =+的对称点P '的坐标为__________.52.若直线1:20l ax y +=和()2:3110l x a y +++=平行,则实数的值为__________. 53.已知直线80(,)ax by a b R +-=∈经过点(1,2)-,则124a b+的最小值是__. 54.若对于任意一组实数(),x y 都有唯一一个实数z 与之对应,我们把z 称为变量,x y 的函数,即(),z f x y =,其中,x y 均为自变量,为了与所学过的函数加以区别,称该类函数为二元函数,现给出二元函数(),f m n ()229m n n ⎫=-+⎪⎭,则此函数的最小值为__________.三、解答题55.设直线4310x y +=与210x y -=相交于一点A .(1)求点A 的坐标;(2)求经过点A ,且垂直于直线3240x y -+=的直线的方程.56.已知:ABC 的三个顶点的坐标分别为(1,2),(4,1),(6,5)A B C -.求AB 边上的高所在直线的点法向式方程.57.(本小题满分12分)已知直线l 经过两条直线280x y +-=和210x y -+=的交点.(1)若直线l 平行于直线3240x y -+=,求直线l 的方程;(2)若直线l 垂直于直线4370x y --=,求直线l 的方程.58.已知点P 在圆22:4240C x y x y +--+=上运动,A 点坐标为()2,0-.(1)求线段AP 中点的轨迹方程;(2)若直线:250l x y --=与坐标轴交于MN 两点,求PMN 面积的取值范围.59.在平面直角坐标系中,已知点(2,0),(1,3)A B -.(1)求AB 所在直线的一般式方程;(2)求线段AB 的中垂线l 的方程.60.求满足下列条件的直线方程:(1)直线l 过点A (2,-3),并且与直线13y x =的倾斜角相等; (2)直线l 经过点P (2,4),并且在x 轴上的截距是y 轴上截距的12.61.已知两直线1l :240x y -+=,2l :4350x y ++=.()1求直线1l 与2l 的交点P 的坐标;()2设()1,2A --,若直线l 过点P ,且点A 到直线l 的距离等于1,求直线l 的方程. 62.矩形ABCD 的两条对角线相交于点(2,0),M AB 边所在直线的方程为360x y --=,点(1,1)T -在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)若直线:10l ax y b +++=平分矩形ABCD 的面积,求出原点与(,)a b 距离的最小值.63.已知直线l 1:3x+4y ﹣2=0和l 2:2x ﹣5y+14=0的相交于点P .求:(1)过点P 且平行于直线2x ﹣y+7=0的直线方程;(2)过点P 且垂直于直线2x ﹣y+7=0的直线方程.64.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,直线l 与椭圆C 交于M 、N 两点. (1)点P 的坐标为1(1,)3P ,若MP PN =,求直线l 的方程; (2)若直线l 过椭圆C 的右焦点F ,且点M 在第一象限,求23(MA NB MA k k k -、NB k 分别为直线MA 、NB 的斜率)的取值范围.65.已知直线()()222:11310l a a x a a y a a -+-++-+-=,a R ∈(1)求证,直线l 恒过定点,并求出定点坐标;(2)求当1a =和1a =-时对应的两条直线的夹角.66.在平面直角坐标系xOy 中,已知点(20)A ,、3(5)B ,,经过原点O 的直线l 将OAB ∆ 分成面积之比为1:2的两部分,求直线l 的方程.67.已知直线:120l kx y k -++=(1)求证:直线l 经过定点.(2)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(3)若直线l 不经过第四象限,求实数k 的取值范围.68.已知圆C:x 2+(y −3)2=4,直线m:x +3y +6=0,过A(−1,0)的一条动直线l 与直线m 相交于N ,与圆C 相交于P ,Q 两点.(1)当l 与m 垂直时,求出N 点的坐标;(2)当|PQ|=2√3时,求直线l 的方程.69.已知圆P 过点1,0A ,()4,0B .(1)若圆P 还过点()6,2C -,求圆P 的标准方程;(2)若圆心P 的纵坐标为2,求圆P 的标准方程.70.已知(),4A m ,()2,B m -,()1,1C ,()2,3D m +四点.(1)当直线AB 与直线CD 平行,求m 的值;(2)求证:无论m 取何值,总有90ACB ∠=.71.已知圆心为M 的圆经过点(0,4),(2,0),(3,1)A B C 三个点.(1)求ABC 的面积;(2)求圆M 的方程.72.已知过原点O 的直线:40l x y -=和点(6,4)P ,动点(Q m ,)(0)n m >在直线l 上,且直线QP 与x 轴的正半轴交于点R .(1)若QOR 为直角三角形,求点Q 的坐标;(2)当QOR 面积的取最小值时,求点Q 的坐标.73.平面直角坐标系xOy 中,已知点(0,1)F ,直线:3l y =-,动点M 到点F 的距离比它到直线l 的距离小2.(1)求点M 的轨迹C 的方程;(2)设斜率为2的直线与曲线C 交于A 、B 两点(点A 在第一象限),过点B 作x 轴的平行线m ,问在坐标平面xOy 中是否存在定点P ,使直线PA 交直线m 于点N ,且PB PN =恒成立?若存在,求出点P 的坐标,若不存在,说明理由.74.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B .(1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.75.如图所示,将一块直角三角形板ABO 置于平面直角坐标系中,已知1,AB OB AB OB ==⊥,点11,24P ⎛⎫ ⎪⎝⎭是三角板内一点,现因三角板中,阴影部分受到损坏,要把损坏部分锯掉,可用经过点P 的任一直线MN 将三角板锯成AMN ∆,设直线MN 的斜率为k .(1)用k 表示出直线MN 的方程,并求出点,M N 的坐标;(2)求出k 的取值范围及其所对应的倾斜角α的范围;(3)求AMN ∆面积的取值范围.76.求满足下列条件的直线的方程:(1)求与直线20x y -=平行,且过点(2)3,的直线方程; (2)已知正方形的中心为直线220x y -+=和10x y ++=的交点,其一边所在直线的方程为350x y +-=,求其他三边的方程.77.过圆222:C x y r +=上一点()2,2A -作圆的切线,切线与x 轴交于点B ,过点B 的直线与圆C 交于不同的两点M 、N ,MA 、NA 分别交直线4x =-交于点P 、Q .(1)求点B 的坐标;(2)求PBQB 的值.78.已知点()2,0M -,()2,0N ,动点P 满足条件2PM PN -=,记动点P 的轨迹为W . (1)求W 的方程;(2)若P 是W 上任意一点,求2PMPN 的最小值.79.在平面直角坐标系xOy 中,已知圆22:4O x y +=与x 轴的正负半轴的交点分别是M ,N .(1)已知点(2,4)Q ,直线l 过点Q 与圆O 相切,求直线l 的方程;(2)已知点P 在直线:4x =上,直线PM ,PN 与圆的另一个交点分别为E ,F . ①若(4,6)P ,求直线EF 的方程;②求证:直线EF 过定点.参考答案1.A【分析】根据两点之间的距离公式,即可代值求解.【详解】因为(3,4)A ,(1,1)B -,故可得5AB ==.故选:A.【点睛】本题考查平面中两点之间的距离公式,属基础题.2.B【分析】由平行关系可得直线l 斜率,由直线点斜式方程可求得结果.【详解】l 与21y x =-平行,∴直线l 的斜率2k =,l ∴方程为:()2122y x x =-=-.故选:B.3.D【分析】由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案. 【详解】因为直线l 倾斜角是arctan 2π-,所以直线l 的斜率tan(tan 2)tan arctan 22k arc π=-=-=-, 所以直线l 的斜截式方程为:22y x =-+,由22x t y t =+⎧⎨=-⎩消去t 得24y x =-+,故A 不正确;由2x t y t =+⎧⎨=-⎩消去t 得2y x =-+,故B 不正确; 由22x t y t =⎧⎨=-⎩消去t 得122y x =-+,故C 不正确;由22x ty t=⎧⎨=-⎩消去t 得22y x =-+,故D 正确; 故选:D. 【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题. 4.B 【分析】求出直线的斜率,利用斜截式可得出直线的方程. 【详解】由倾斜角为45可知所求直线的斜率为1,由直线的斜截式方程可得1y x =-. 故选:B. 5.A 【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果. 【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A. 6.D 【分析】①利用曲线中变量的范围来判断;②利用点斜式的适用条件来判断;③利用圆的一般式方程的系数关系来判断;④利用椭圆几何性质来判断. 【详解】解:①y =0y >,其仅表示抛物线的一部分,与2y x =表示的不是同一条抛物线,故错误;②所有过原点的直线中,0x =不可设为y kx =,故错误;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->,故正确;④椭圆2248x y +=标准方程为22182x y +=,2b =.故选:D. 【点睛】本题考查学生对圆锥曲线的基础知识的掌握情况,是基础题. 7.D 【分析】联立两直线方程,得到交点坐标,即为圆心,再结合半径就可写出圆的方程. 【详解】解:联立2030x y x y -=⎧⎨+-=⎩,得()2,1M ,则以点M 为圆心,半径长为1的圆的方程是22(2)(1)1x y -+-=. 故答案为:D 【点睛】本题考查圆的标准方程,是基础题. 8.A 【分析】直接利用平行线之间的距离公式化简求解即可. 【详解】两条直线1:3420l x y +-=与2:6810l x y ++=,化为直线1:6840l x y +-=与2:6810l x y ++=,则1l 与2l 12=,故选A. 【点睛】本题主要考查两平行线之间的距离,属于简单题.解析几何中的距离常见有:(1)点到点距离,AB =(2)点到线距离,d =,(3)线到线距离d 9.D 【分析】由平行可得()120m m --=,解之,排除重合的情形即可. 【详解】解:∵直线220mx y +-=与直线(1)20x m y +-+=平行, ∴()120m m --=,即220m m --=,解得1m =-或2m =,经验证当1m =-时,直线重合应舍去, 故选:D. 【点睛】本题考查直线的一般式方程和平行关系,属基础题. 10.B 【分析】设直线123,,l l l 所对应的倾斜角为123,,ααα, 由图可知,12302παααπ<<<<<,由直线的倾斜角与斜率的关系可得231k k k <<,得解. 【详解】解:由图可知,直线1l 的倾斜角为锐角,所以10k >,而直线2l 与3l 的倾斜角均为钝角,且2l 的倾斜角小于3l 的倾斜角,故230k k <<.所以231k k k <<. 故选B.本题考查了直线的倾斜角与斜率的关系,重点考查了识图能力,属基础题. 11.C 【详解】试题分析:直线20ax y +=平行于直线1x y +=122aa -⇒=-⇒=,因此正确答案应是充分必要条件,故选C. 考点:充要条件. 12.A 【分析】提取公因数a ,得()11y a x =+-,即得1x =-时,1y =-,即得定点. 【详解】直线1y ax a =+-,整理得()11y a x =+-,故对于a R ∈,恒有1x =-时,1y =-.故直线恒过点()1,1--. 故选:A. 13.B 【分析】根据题意先求出线段AB 的中点,然后代入直线方程求出a 的值. 【详解】因为(1,4)A ,(3,2)B -,所以线段AB 的中点为(1,3)-,因为直线l 过线段AB 的中点,所以320a -++=,解得5a =.故选B 【点睛】本题考查了直线过某一点求解参量的问题,较为简单. 14.A 【详解】设所求直线为20x y c =++, 由直线与圆相切得,=解得5c =±.所以直线方程为250x y ++=或250x y +-=.选A.【分析】根据两点求出直线1l 的斜率,根据倾斜角求出直线2l 的斜率;可知斜率乘积为1-,从而得到垂直关系. 【详解】直线1l 经过()3,4A -,()8,1B --两点 ∴直线1l 的斜率:141138k +==-+ 直线2l 的倾斜角为135 ∴直线2l 的斜率:2tan1351k ==- 121k k ∴⋅=- 12l l ∴⊥本题正确选项:A 【点睛】本题考查直线位置关系的判定,关键是利用两点连线斜率公式和倾斜角求出两条直线的斜率,根据斜率关系求得位置关系. 16.D 【分析】利用中点坐标公式求得()6,0M ,再利用两点间距离公式求得结果. 【详解】由()10,4B ,()2,4C -可得中点()6,0M又()7,8A AM ∴=本题正确选项:D 【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标. 17.A 【分析】根据题意求出直线l 的斜率,然后利用斜截式即可写出直线的方程,进而转化为一般式方程即可. 【详解】因为与直线210x y -+=的倾斜角互补,而直线210x y -+=的斜率为12,所以直线l 的斜率为12-,则直线l 的方程为112y x =-+,即220x y +-=.故选:A 18.D 【分析】由题可得渐近线方程,利用直线平行可得a =,再利用平行线间距离公式即得. 【详解】根据题意,双曲线C 的渐近线l 的方程为0bx ay +=,该直线与直线g 平行,所以2-=-b aa b,所以a ,此时直线l 的方程为0x +=,直线g 的方程为02+=x ,所以直线l ,g=故选:D . 19.B 【分析】求出斜率后可得直线的倾斜角 【详解】=,故直线的倾斜角为120︒. 故选:B. 【点睛】本题考查直线的斜率与倾斜角的计算,注意倾斜角的范围为0,.本题属于基础题.20.B 【分析】根据倾斜角和斜率的关系,确定正确选项. 【详解】直线的倾斜角为2παα⎛⎫≠ ⎪⎝⎭,则斜率为tan α,tan y x =在0,2π⎛⎫ ⎪⎝⎭上为增函数.由于直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,所以其斜率的取值范围为tan ,tan 43ππ⎛⎫ ⎪⎝⎭,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题. 21.A 【分析】由题意利用两条直线平行的性质,求得m 的值. 【详解】解:两条直线1:60l x my ++=,2:(2)320l m x y m -++=,若1l 与2l 平行,则()213m m -=⨯且()2162m m ⨯≠⨯-,由()213m m -=⨯解得1m =-或3m =, 当3m =时()2162m m ⨯=⨯-故舍去,所以1m =-; 故选:A . 22.C 【解析】设椭圆上点的坐标为()()2cos P R θθθ∈ ,由点到直线距离公式可得:d ==,则当()sin 1θϕ+=- 时,点P 到直线l 的距离有最大值max d =.本题选择C 选项.点睛:求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.23.B 【详解】试题分析:点(3,2)A -关于x 轴的对称点为()3,2A '--.因为点(,0)P m 在x 轴上,由对称性可知PA PA =',所以PA PB PA PB +='+,所以当,,A P B '三点共线时此距离和最短. 因为8+2223A B k '==+,所以直线A B '方程为()822y x -=-,即24y x =+,令0y =得2x =-,即,,A P B '三点共线时()2,0P -.所以所求m 的值为2-.故B 正确. 考点:点关于直线的对称点,考查数形结合思想、转化思想. 24.A 【分析】根据导数几何意义求出切线方程,化成斜截式,即可求解 【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2) 故选:A 【点睛】本题考查由导数的几何意义求解切线方程,直线过定点问题,属于简单题 25.D 【分析】利用两平行线间的距离公式即可求解. 【详解】直线1l 的方程可化为6240x y --=,则1l 与2l 之间的距离d = 故选:D 26.B 【分析】由题意利用两条直线平行的性质,分类讨论,求得结果. 【详解】解:当0a =时,直线1l :即0x =,直线2l :即1x =,满足12l l //. 当0a ≠时,直线21:20l x a y a -+=与直线2:(1)10l a x ay --+=互相平行,∴2211a a a a -=≠--,解得实数a ∈∅. 综上,0a =, 故选:B . 【点睛】本题主要考查两条直线平行的性质,考查分类讨论思想,属于基础题. 27.C 【分析】与直线210x y +-=垂直的直线的斜率为2,结合点斜式即可求解直线方程. 【详解】直线210x y +-=的斜率为12-所以与直线210x y +-=垂直的直线的斜率为2,又过点()0,1, ∴所求直线方程为:21y x =+ 即210x y -+= 故选:C 28.D 【分析】根据直线方程可知直线l 恒过定点()2,0P -,过A B ,分别作准线的垂线,垂足分别为M N ,,由2AF BF =,得到点B 为AP 的中点,连接OB ,进而可知||||OB BF =,由此求得点B 的坐标,最后利用直线上的两点求得直线l 的斜率. 【详解】抛物线2:8C y x =的准线2x =-,直线l :(2)y k x =+恒过定点()2,0P -, 如图过,A B 分别作准线的垂线,垂足分别为M N ,,由2AF BF =,则||2||AM BN =, 所以点B 为AP 的中点,连接OB ,则1||||2OB AF =,∴||||OB BF =,OBF ∴∆为等腰三角形,点B 的横坐标为1,故点B 的坐标为(,又(2,0)P -,所以k =故选:D【点睛】本题主要考查了抛物线的简单性质,抛物线的定义,直线斜率的计算,考查了数形结合,转化与化归的思想,考查了学生的运算求解能力. 29.A 【分析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()()12,0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线1l 过点()13,0F -,直线2l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以e ⎛ ⎝⎭∈. 故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题. 30.B 【分析】 设抛物线2yx 上一点为200),(A x x ,求出点200),(A x x 到直线240x y --=的距离,利用配方法,由此能求出抛物线2x y =上一点到直线240x y --=的距离最短的点的坐标. 【详解】 解:设抛物线2yx 上一点为200),(A x x ,点200),(A x x 到直线240x y --=的距离2201)3d x -+,∴当01x =时,即当()1,1A 时,抛物线2yx 上一点到直线240x y --=的距离最短.故选:B . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,考查学生的计算能力,属于中档题. 31.C 【分析】利用直角三角形的性质求得其内切圆的半径,如图建立直角坐标系,则内切圆的方程可得,设出p 的坐标,表示出,222||||||S PA PB PO =++,利用x 的范围确定S 的范围,则最小值可得 【详解】解:如图,ABO 是直角三角形,设ABO 的内切圆圆心为O ',切点分别为D ,E ,F ,则1(1086)122AD DB EO ++=++=.但上式中10AD DB +=,所以内切圆半径2r EO ==,如图建立坐标系,则内切圆方程为:22(2)(2)4x y -+-= 设圆上动点P 的坐标为(,)x y , 则222||||||S PA PB PO =++222222(8)(6)x y x y x y =-+++-++ 22331612100x y x y =+--+223[(2)(2)]476x y x =-+--+ 34476884x x =⨯-+=-.因为P 点在内切圆上,所以04x ,所以881672S =-=最小值故选:C 32.B 【解析】2a =-时,两条直线分别化为:610,430y y -+=--=,此时两条直线相互垂直,满足条件;由“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”,可得,()()[]22320a a a a +-+⨯+=,解得12a =或2a =-,∴“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的充分非必要条件,故选B. 33.C 【分析】转化以弦AB 为直径的圆刚好经过已知圆的圆心C 为AC ⊥BC ,可得弦心距2d =,再用圆心到直线距离表示d ,即得解 【详解】由题意,AC ⊥BC ,则C (0,2)到直线x ﹣y =0的距离2d =,2=,即r =2. 故选:C34.B 【分析】由已知得到12l l ⊥,1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,作线段CD AB ⊥,先求得CD ,求得PD 的最小值,再由||2||PA PB PD +=可得答案.【详解】设圆C 的半径为1r ,直线1:310l mx y m --+=与2310l x my m +--=∶ 垂直, 又1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,设圆心为M ,半径为2r ,作垂直线段CD AB ⊥,则CDmin 12||||PD CM r r ∴=--=2PA PB PD +=∴||PA PB + 的最小值为故选:B35.B 【分析】代入点验证知①正确,计算点到直线的距离得到②错误,计算圆心距为125r r =+,得到③正确,圆方程相减得到公共弦方程,④错误,得到答案. 【详解】将点代入圆方程,222242110++-⨯+=满足,故①正确;圆22:28130C x y x y +--+=的圆心为()1,4,到直线4330x y -+=1=,②错误;圆()221:11C x y ++=,圆心为()1,0-,半径11r =,圆()()222:2416C x y -+-=,圆心为()2,4,半径为24r =125r r =+,故③正确;两圆22440x y x y ++-=与222120x y x ++-=方程相减得到24120x y -+=,即公共弦方程为:260x y -+=,④错误. 故选:B. 36.A 【分析】解方程213(2)0m m m ⨯-⨯-=,再检验即得解. 【详解】解:因为l 1与l 2平行,所以2213(2)0,(23=0m m m m m m ⨯-⨯-=∴--), 所以(3)(1)=0,0m m m m -+∴=或1m =-或3m =.当3m =时,两直线重合为x +9y +6=0,与已知不符,所以舍去. 当0m =或1-时,符合题意. 故选:A 37.10x y -+= 【详解】圆:x 2+2x +y 2=0的圆心C(-1,0),因为直线0x y +=的斜率为1-,所以与直线0x y +=垂直的直线的斜率为1,因此所求直线方程为+1y x =,即x -y +1=038.2 【分析】先求出两条直线的斜率,再利用两条直线的夹角公式求得a 的值. 【详解】解:直线20x y +-=的斜率为1-,和10ax y -+=的斜率为a ,直线20x y +-=和10ax y -+=的夹角为3π,∴()()1tan311a a π--==+⋅-,求得2a ==,或2a ==,故答案为:2【点睛】本题考查两直线的夹角公式,是基础题. 39.()0,6-或()0,9 【分析】设P 点坐标,由点到直线距离公式求解. 【详解】设(0,)P a 6=,解得a =6-或9.所以P 点坐标为(0,6)-或(0,9). 故答案为:(0,6)-或(0,9). 【点睛】本题考查点到直线的距离公式,掌握点到直线距离公式是解题关键.40.92【分析】根据直线方程求其与坐标轴的交点坐标,再应用三角形面积公式求直线与坐标轴围成的三角形的面积即可. 【详解】令0y =,则3x =;令0x =,则3y =, ∴直线与坐标轴围成的三角形的面积193322S =⨯⨯=. 故答案为:9241.(0,2) 【分析】先计算原点与点P 的距离,此时过点P 与原点的距离最大且仅有一条,过原点和点P 时,距离最小,最小为0,可得与原点的距离为d 的直线有两条时d 的取值范围. 【详解】过点P 的直线中,与原点的距离最大为||2OP ,最小为0, 当02d <<时,与原点的距离为d 的直线有两条. 故答案为:(0,2). 【点睛】本题考查了过定点的直线与定点的距离的范围问题,属于基础题. 42.3 【分析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解. 【详解】因为直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行, 所以()()2324(3)0a a a -----=,解得3a =或5a =, 又因为5a =时,1:210l x y -+=,2:4220l x y -+=, 所以直线1l ,2l 重合故舍去,而3a =,1:10l y +=,2:220l y -+=,所以两直线平行. 所以3a =, 故答案为:3. 【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.43.14【分析】由题意,可得22a b +表示直线上的点(),a b 到原点的距离的平方,根据点到直线距离公式,即可求出最小值.【详解】因为22220(()0)+-+=-a b a b 表示点(),a b 到原点距离的平方,又点(),a b 在直线10x -=上,所以当点(),a b 与原点连线垂直于直线10x -=时,距离最小,即22a b +最小;因为原点到直线10x +-=的距离为12==d , 所以22214≥=+d a b . 即22a b +有最小值14.故答案为:14【点睛】本题主要考查直线上的点与原点距离最值的问题,熟记点到直线距离公式即可,属于常考题型. 44.x-y -5=0 【分析】利用两条直线垂直的条件,求得AB 边上的高线CD 所在直线的斜率,再用点斜式求得AB 边上的高线CD 所在直线的方程. 【详解】AB 直线的斜率为3012AB k -=--=﹣1,故AB 边上的高线CD 所在直线的斜率为1, 故AB 边上的高线CD 所在直线的方程为y +2=1(x ﹣3),即 x ﹣y ﹣5=0, 故答案为:x ﹣y ﹣5=0. 45.22(2)(2)5x y -+-= 【分析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求. 【详解】令2()430f x x x =-+=,得1x =或3x =, 则(1,0)A ,(3,0)B∴外接圆的圆心E 的横坐标为2,设()2,E m ,半径为r ,由(0)3f =,得(0,3)C ,则||||EA EC =r , 得2m =,r =∴ABC 的外接圆E 的方程为22(2)(2)5x y -+-=. 故答案为:22(2)(2)5x y -+-=.46.【详解】试题分析:由12l l ⊥,那么,解得:.考点:两条直线在一般式下垂直的充要条件的应用. 47.0或83【分析】利用已知条件得(1)0a b a +-=⎧⎪=,求解检验即可得解. 【详解】由题意得(1)0a b a +-=⎧⎪, 解得22a b =⎧⎨=-⎩或232a b ⎧=⎪⎨⎪=⎩, 经检验,两种情况均符合题意, ∴a +b 的值为0或83.故答案为:0或83.【点睛】方法点睛:形如直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=, 当l 1∥l 2时,A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0;当l 1⊥l 2时,A 1A 2+B 1B 2=0.48. 【详解】令(),P x y ,而点P 关于直线y x =的对称点为P ',所以(),P y x ',(),OP y x '=;而AQ OP '=,所以(),AQ y x =;而()1,1A ,所以()1,1Q y x ++;所以()1,1PQ y x x y =-+-+,2PQ =()222y x -+;而动点P 在圆221x y +=上,所以()202y x ≤-≤,所以()22226y x ≤-+≤,6PQ ≤,所以PQ 的取值范围是.故答案为. 49.7- 【详解】试题分析:由题意可知系数满足()()()()3542{38532a a a a ++=⨯+⨯≠-⨯,解方程得7a =-考点:两直线平行的判定 50.724【分析】由2()1f x og x =,()()f a f b k ==,得到1ab =,然后根据a ,b 范围画出其图像,找到MON∆面积最大的情况,求出此时MN 长度,及O 点到MN 的距离,从而计算出MON ∆面积的最大值. 【详解】 由题意,可知:1223b ≤≤,()f b ∴2211og b og b ==-. 又()()f a f b k ==,1a ∴>,()2211f a og a og a ∴==.()()f a f b =,2211og a og b ∴=-,即:2221110og a og b og ab +==,1ab ∴=.∴曲线C 的轨迹方程即为:1ab =.1223b≤≤,1ab=.∴322a≤≤,则曲线C的图象如图:MON∆面积要取最大值,∴当M、N为曲线C的两个端点时,MON∆面积最大,M∴点坐标为32,23⎛⎫⎪⎝⎭,N点坐标为12,2⎛⎫⎪⎝⎭.则直线MN的直线方程为:23323122223yx--=--,化简,得:2670x y+-=.MN⎛==⎝原点O到直线MN的距离d==MON∴∆面积的最大值为:1172224MN d⋅⋅==.故答案为724.【点睛】本题考查对数函数的图像与性质,两点间距离,点到直线的距离,题目涉及到的知识点较多,比较综合,属于中档题.51.()1,4【详解】设(,)P x y ' ,则21113(1,4)423122y x x P y y x -⎧⋅=-⎪=⎧⎪-⇒∴⎨⎨=++⎩⎪+⎩'=⎪ 52.3-或2 【详解】试题分析:依题意可得20311a a =≠+,解得3a =-或2a =. 考点:两直线平行. 53.32 【分析】根据题意,由直线经过点(1,2)-,分析可得28a b -=,即82a b =+;进而可得824111224444a b bb b b+++=+=+,结合基本不等式分析可得答案. 【详解】根据题意,直线80(,)ax by a b R +-=∈经过点(1,2)-,则有28a b -=, 即82a b =+;则82441112242432444a b bb b b b ++++=+=+⨯=,当且仅当2b =-时等号成立; 即124ab +的最小值是32;故答案为:32. 【点睛】本题考查基本不等式的性质以及应用,涉及直线的一般式方程,属于中档题. 54.22-【详解】因为点(m 在圆224x y += 上,点9(,)n n 在曲线9y x= 上,所以本题转化为求圆224x y +=与曲线9y x=上的两点之间的最小值,如下图,作直线y x = 与它们的图象在第一象限交于A,B 两点,显然圆224x y +=与曲线9y x=的图象都关于直线y x =对称,所以AB 就是圆224x y +=与曲线9y x=上的两点之间距离的最小值,求出(3,3)A B ,所以222(3(322AB =+=-所以。

(完整版)直线与方程测试题(含答案)

(完整版)直线与方程测试题(含答案)

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

(完整版)直线方程练习题1有答案.docx

(完整版)直线方程练习题1有答案.docx

选择题1、直线的斜率为4 且直线不通过第一象限 ,则直线的方程可能为 ()3,A 、 3x+4y+7=0B 、4x+3y+7=0C 、4x+3y -42=0D 、3x+4y - 42=02、如果 AC<0且 BC<0,那么直线不通过 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、直线 3x -2y=4 的截距式方程为 ()3x - yx y3x - yx yA 、 42 =1B 、 11 1 C 、42 =1D 、4 2 13 234、不论 m 为何值 ,直线 (m - 1)x - y+2m+1=0恒过定点 ( )A 、 (1, 1)B 、 (-2,0)C 、 (2,3)D 、 (2,3)25、直线 ax+by+c=0关于直线 y=x 对称的直线方程是 ( )A 、 bx-ay+c=0B 、 bx+ay+c=0C 、bx+ay-c=0D 、bx-ay-c=06、已知两点 A(-1, 3),B(3,1),点 C 在坐标轴上,若 ACB=60,则点 C 有( )(A)1 个 - (B)2 个 在直线 (C)3个 使 (D)4 个 则 点的坐标是 7、已知点 M 1 (3,5),M 2 (- 1,- 1 2上有一点N, 1 N2), M M |M N|=15, ( ) (A)(15,14) (B)(-9,- 4)(C)(15,-14)或(-9,4) (D)(15,14)或(9,4)8、已知点 A(-1,2),B(2,-2),C(0,3),若点 M(a,b)是线段 AB 上的一点 (a ≠0),则直线 CM 的斜率的取值范围是()(A)[-5,1](B)[- 5,0)∪(0,1](C)[- 1, 5 ](D)(-∞ ,-5]∪[1,+∞)2 222二、填空题9、已知直线 ax+by+c=0( ab 0 ),当 a 、b 、c 满足 _____________时,直线过原点;10、已知直线 ax+by+c=0( ab 0 ),当 a 、b 、c 满足 _____________时,在两坐标轴上的截距之和为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程练习题一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A .0 B .8- C .2 D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x 8.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 9.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b10.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)11.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 12.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 13.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 14.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13 B .3- C .13D .315.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32-D . 23-16.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示 B .经过定点()b A ,0的直线都可以用方程y kx b =+表示 C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示17.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为______。

6.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______. 7.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l , 则直线l 的方程是 .8.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 9.若方程02222=++-y x my x 表示两条直线,则m 的取值是 . 10.当210<<k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 三、解答题1.已知直线Ax By C ++=0,(1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x 轴相交; (4)系数满足什么条件时是x 轴;(5)设()P x y 00,为直线Ax By C ++=0上一点,2.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

3.经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。

4.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.5.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。

6.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么?7.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程8.已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标。

9.求函数()f x =的最小值。

第三章 直线和方程 [基础训练A 组]一、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-= 2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在 6.C 2223,m m m m +--不能同时为0 二、填空题1.2d == 2. 234:23,:23,:23,l y x l y x l x y =-+=--=+ 3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=-- 4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5. 23y x =平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代入Ax By C ++=0,得0C =;(2)此时斜率存在且不为零 即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠ (5)证明:()00P x y ,在直线Ax By C ++=0上00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。

2.解:由23503230x y x y +-=⎧⎨--=⎩,得1913913x y ⎧=⎪⎪⎨⎪=⎪⎩,再设20x y c ++=,则4713c =-472013x y +-=为所求。

3.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;当截距不为0时,设1,x y a a +=或1,x y a a+=-过点(1,2)A , 则得3a =,或1a =-,即30x y +-=,或10x y -+= 这样的直线有3条:2y x =,30x y +-=,或10x y -+=。

4. 解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -, 14165545,4025102S k k k k=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+= 解得2,5k =或 85k = 25100x y ∴--=,或85200x y -+=为所求。

第三章 直线和方程 [综合训练B 组]一、选择题1.B 线段AB 的中点为3(2,),2垂直平分线的2k =,32(2),42502y x x y -=---= 2.A 2321,,132232ABBC m k k m --+===+-3.B 令0,x =则2y b =-4.C 由13kx y k -+=得(3)1k x y -=-对于任何k R ∈都成立,则3010x y -=⎧⎨-=⎩5.B cos sin sin (cos )0θθθθ⋅+⋅-=6.D 把330x y +-=变化为6260x y +-=,则20d ==7.C 32,,4PA PB l PA l PB k k k k k k ==≥≤,或 二、填空题1.2 方程1=+y x2.724700x y ++=,或724800x y +-=设直线为7240,3,70,80x y c d c ++====-或3.3 22b a +的最小值为原点到直线1543=+y x 的距离:155d =4.445点(0,2)与点(4,0)关于12(2)y x -=-对称,则点(7,3)与点(,)m n 也关于12(2)y x -=-对称,则3712(2)223172n m n m ++⎧-=-⎪⎪⎨-⎪=-⎪-⎩,得235215m n ⎧=⎪⎪⎨⎪=⎪⎩5.11(,)k k1=+by ax 变化为()1,()10,ax k a y a x y ky +-=-+-= 对于任何a R ∈都成立,则010x y ky -=⎧⎨-=⎩三、解答题1.解:设直线为2(2),y k x -=+交x 轴于点2(2,0)k--,交y 轴于点(0,22)k +, 1222221,4212S k k k k=⨯+⨯+=++= 得22320k k ++=,或22520k k ++= 解得1,2k =-或 2k =-320x y ∴+-=,或220x y ++=为所求。

相关文档
最新文档