线性代数第一章习题解答

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


题 1.11.计算下列二阶行列式.(1)
5
324;(2)α
α
ααcos sin sin cos .
解(1)
14620532
4=−=;(2)α
αααcos sin sin cos αα22sin cos −=.
2.计算下列三阶行列式.
(1)50
1721
33
2−−;(2)00000d c b a ;(3)2
221
11c b a c b a ;
(4)c
b a b a a
c b a b a a c b a ++++++232.
解(1)原式62072)5(1)3(12317)3(301)5(22−=××−−××−−××−××−+××+−××=(2)原式00000000000=⋅⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅+⋅⋅=d c b a c a d b ;(3)原式))()((222222b c a c a b c b ac b a c a ab bc −−−=−−−++=;(4)原式)
()()2()23)((b a ac c b a ab b a ac c b a b a a +−++++++++=3)23())(2(a c b a ab c b a b a a =++−+++−.
3.用行列式解下列方程组.(1)⎩

⎧=+=+3532
4y x y x ;
(2)⎪⎩⎪
⎨⎧=++=++=++8
268
3321321321x x x x x x x x x ;
(3)⎩⎨⎧=−=+0231
3221
21x x x x ;
(4)⎪⎩⎪⎨⎧=−+=+=−−0
31231
2321
32321x x x x x x x x .
解(1)75341−==
D ,253421−==D ,33
32
12−==D 所以721==D D x ,7
3
2==D D y .
(2)2121111
113−==D ,21281161181−==D ,41811611
832−==D ,68
216118
133−==D ;所以111==
D D x ,222==D D
x ,333==D
D x .(3)132332−=−=D ,220311−=−=D ,3
031
22−==D 所以1321==D D x ,13
3
2==D D y .
(4)8113230121−=−−−=D ,81
102311
211−=−−−=D ,
81
032101112=−−=D ;
20
13130
1
213=−=D 所以111==
D D x ,122−==D D
x ,333==D
D x .4.已知x
x x x x x f 211
12)(−−−=,求)(x f 的展开式.

x
x
x x x x f 211
12)(−−−=22)(11)(1)(111)(2)()(2⋅⋅−⋅−⋅−⋅−⋅−−⋅⋅+−⋅⋅−+⋅−⋅=x x x x x x x x x x x
x x 23223+−−=5.设b a ,为实数,问b a ,为何值时,行列式01
0100
=−−−a b b a .

01
0100
22=−−=−−−b a a b b a 0,022==⇒−=⇒b a b a .习
题 1.2
1.求下列各排列的逆序数.(1)1527364;(2)624513;
(3)435689712;(4))2(42)12(31n n L L −.
解(1)逆序数为14;
6
2
4
2
1527364i
t ↓
↓↓↓↓↓↓ (2)逆序数为5;
3
1
1
624513i
t ↓
↓↓↓↓↓ (3)逆序数为19;
5
54310010435689712i
t ↓↓↓↓↓↓↓↓↓
(4)逆序数为
2
)
1(−n n :
2122210000421231↓↓−−−↓↓↓↓↓−n n n n t n i L L L L
2.在由9,8,7,6,5,4,3,2,1组成的下述排列中,确定j i ,的值,使得(1)9467215j i 为奇排列;(2)4153972j i 为偶排列.
解(1)j i ,为分别3和8;若8,3==j i ,则93411)946378215(=+++=τ,为奇排列;若3,8==j i ,则1234311)946873215(=++++=τ,为偶排列;
(2)j i ,为分别6和8;若8,6==j i ,则205135231)397261584(=++++++=τ,为偶排列;若6,8==j i ,则215335131)397281564(=++++++=τ,为奇排列;3.在五阶行列式)det(ij a =D 展开式中,下列各项应取什么符号?为什么?
(1)5145342213a a a a a ;
(2)2544133251a a a a a ;(3)2344153251a a a a a ;(4)4512345321a a a a a .
解(1)因5)32451(=τ,所以前面带“-”号;(2)因7)53142(=τ,所以前面带“-”号;
(3)因10)12543()53142(=+ττ,所以前面带“+”号;(4)因7)13425()25314(=+ττ,所以前面带“-”号.
4.下列乘积中,那些可以构成相应阶数的行列式的项?为什么?(1)12432134a a a a ;(2)14342312a a a a ;(3)5514233241a a a a a ;(4)5512233241a a a a a .解(1)可以,由于该项的四个元素乘积分别位于不同的行不同的列;
(2)不可以,由于14342312a a a a 中的1434a a 都位于第四列,所以不是四阶行列式的项;(3)可以,由于该项的五个元素乘积分别位于不同的行不同的列;(4)不可以,由于5512233241a a a a a 中没有位于第四列的元素。

5.六阶行列式展开式中含有因子23a 的乘积项共有多少项?为什么?
解!5项,因为六阶行列式中每项是六个元素相乘,并且六个元素取自不同行不同列,23a 是取自第二行第三列的元素,所以其余五行从第一、二、四、五、六列里选取出其余的五个元素,共有!
5种取法。

6.用行列式定义计算下列行列式.
(1)
0001100000100100
;(2)
d
c b a 000
000000000.解(1)在展开式
43214321)
1(p p p p a a a a ∑−τ
中,
不为0的项取自于113=a ,122=a ,134=a ,141=a ,而4)3241(=τ,所以行列式值为11111)1(4=×××−.(2)在展开式
43214321)
1(p p p p a a a a ∑−τ
中,不为0的项取自于a a =11,b a =23,c a =32,d a =44,
而1)1324(=τ,所以行列式值为abcd abcd −=−1)1(.
7.在函数x
x x x x x x f 4124121
02
132)(=的展开式中,4x 的系数是什么?
解)(x f 中含x 因子的元素有x a 211=,x a =21,x a =22,x a =33,x a =41,x a 444=,因此,含有x 因子的元素i ij a 的列标只能取11=j ,212,=j ,33=j ,414,=j .
于是含4
x 的项中元素列下标只能取11=j ,22=j ,33=j ,44=j ,相应的4个元素列标排列只
有一个自然顺序排列1234,故含4x 的项为4044332211(1234)
842)1()1(x x x x x a a a a =⋅⋅⋅−=−τ,
故)(x f 中4x 的系数为8.

题 1.3
1.判定下列等式或命题是否正确,并说明理由.
(1)2
22111222
111
8222c b a c b a c b
a c
b a
c b a c b a
=;(2)2
2211122
2
111
c b a ck c bk b ak a ck
bk ak c b a c b a c b a +++=;(3)如果n (1>n )阶行列式的值等于零,则行列式中必有两行元素对应成比例;(4)如果n (1>n )阶行列式的值等于零,则行列式中必有一行元素全为零;
(5)3
332221
113332221113333322222
11111
e c a e c a e c a d b a d b a d b a e d c b a e d c b a e d c b a +=++++++.解(1)不正确,提取公因子是某一行(列)的元素有公因子;
(2)不正确,2
2
2111
222222*********c b a c b a c b a
k c b a ck bk ak ck bk ak c b a c b a ck bk ak c b a ck c bk b ak a ck bk ak =+=+++;(3)不正确,01
112103
21=,但是没有两行元素对应成比例;
(4)不正确,例子同上;(5)不正确,
3
333222*********
22221111333332222211111e d c a e d c a e d c a e d b a e d b a e d b a e d c b a e d c b a e d c b a +++++++=++++++3
3
3
2221
1133
3
22211133
3
22211133
3
222
111e c a e c a e c a d c a d c a d c a e b a e b a e b a d b a d b a d b a +++=.2.设033
3231232221
13
1211
≠==a a a a a a a a a a D ,据此计算下列行列式.(1)131211
232221
33
3231
a a a a a a a a a ;(2)33
32
31
232221
131211
555a a a a a a a a a ;(3)33
32
313123222121
13
121111
254254254a a a a a a a a a a a a −−−;(4)32
32
3331
22222321
12121311
273227322732a a a a a a a a a a a a −−−−−−.
解(1)a a a a a a a a a a r r a a a a a a a a a −=−↔33
3231
23222113
1211
31131211232221
333231
;(2)a a a a a a a a a a
k c a a a a a a a a a 55)0(555533
32
31232221
13
12
11
3333231
232221
131211
=≠÷,(3)33
32
31
2322211312113331312321211311113332
3131
23222121
13121111
242424545454254254254a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a −=−−−a a a a a a a a a a a a a a a a a a a a 88082033
32
31
23222113
1211333131232121
131111
−=−=−=.(4)32333122
232112
13113
2323233312222232112121311232232232c 27c 25732257322732a a a a a a a a a a a a a a a a a a a a a −−−−−−−−−−a a a a a a a a a a c c a a a a a a a a a c c c 121212)
2(32
33
323123222113
12113
2323331222321121311321=↔−÷÷÷.
3.用行列式性质计算下列行列式.
(1)111210
3
21;
(2);ef cf bf
de cd bd
ae ac ab
−−−;(3)y
x y x x y x y
y x y x
+++;(4)
9
876876554324321
;(5)
2
6
5232112131412−.解(1)01
112100
001
11210
3
213
21=−−r r r ;(2)0
20200132
1c e
e
c b adf r
r r r e c b e c b e c b adf ef cf bf
de cd bd
ae ac ab
−++−−−=−−−abcdef e
c e
c b adf r r 42000203
2=−−↔;
(3)y x y
x x y x y x y x y
y
x c c c y x y x x y x y
y x y x
222222321++++++++++x
y y y x
y
x y
y x r r r r −−−++−−00)(21223
2)22()()22(y y x x y x y x +−−+=)(2))((23322y x y x xy y x +−=−−+=;
(4)0
98768765131197131197r r r r 98768765543243213241=++(5)00
0002321121314122605232112131412214=−−−−r r r .
4.把下列行列式化为上三角行列式,并计算其值.
(1)3351110243152113−−−−−−;
(2)
1078255133
15271391−−−−−−−;
(3)
3
214
214314324321;(4)7
222227222227
222227222227.解
(1)2113110243153351335111024315211341−−−−−−−↔−−−−−−r r 11101605510019182403351325141312−−−−−−−
−−+r r r r r r 111016019182401120335155323−−−−−−↔÷r r r 2
00032001
1203
3515
33200760
011203351581243432423−−−−−↔+−−−−−−+r r r r r r r r 402)2(215=×−×××−=;
(2)
7
8130210017251307
139121078255133
152713*********−−−−−−++−−−−−−−−−r r r r r r r 31224
000210017
251307
139117324−=−−−−−++r r r .
(3)
32142143143243213214
21431432
111
1
104321r r r r +++3
21421431432
111
110
423141213r r r r r r −−−1
231211
21101
2
301
2101
21
01
1111032142143
1432
111110423141213−−−−−−=−−−−−−=−−−r r r r r r 16016104
400401
211031
31
2=×=−−−+−r r r r ;
(4)5
00000500000500000501111
115222272222272222
2722222721111
11572222272222
2722
222722222715141
2135
4321r r r r r r r r r r r r r −−−−++++9375
355555155=⋅=××××=5.用行列式性质证明下列等式.
(1)3
2
2
)(22111a b b
b a a b
ab a −=+;(2)0)3()2()1()3()2()1()3()2()1()3()2()1(2
2
2
2
2222
2
2222
222
=++++++++++++d d d d c c c c
b b b b a a a a .
解(1)左边2
22
2
321
2222
21
31
2)(220
1)(2200
1a b a ab a a b a
b a r r r r a b a b a a b a ab a
c c c c −−−−↔↔−−−−−−=−=−−−=−−−−−32
22222
22
3)()(02001)(220012a b a b a ab a a b a a b a ab a a b a b a c c 右边(2)左边
96441
29644129
644129
644122
2
2
2141312++++++++++++−−−d d d d c c c c b b b b a a a a c c c c c c 06
2126212621262123222221
31
2=++++−−d d c c b b a a c c c c 6.计算下列四阶行列式.
(1)d
c b a c b a b a a
d c b a c b a b a a d
c b a c b a b a a
d c b a ++++++++++++++++++=3610363234232D ;
(2)3
3
5
1
1102
4
315
2113−−−−−−=
D .

(1)
从第4行开始,后行减前行:
c b a b a a c
b a b a a
c b a b a a
d c b a r r r r r r +++++++++−−−363023*********D b a a b a a c b a b a a d
c b a r r r r +++++−−30020002
33
44340002000a a b a a c
b a b a a d
c b a r r =++++−.
(2)2113110243153351335111024315211341−−−−−−−↔−−−−−−r r 11101605510019182403351325141312−−−−−−−
−−+r r r r 111016019182401120335155323−−−−−−↔÷r r r 2
00032001
1203
3515
33200760
011203351581243432423−−−−−↔+−−−−−−+r r r r r r r r 402)2(215=×−×××−=;7.计算下列n 阶行列式.
(1)0)1(3210321102113011321−−−−−−−−−−−−−−n n
n n n
n n
n L L M
M M M M L L L ;(2)1
1211
2211
2111
211111−−−−−+++n n n n n b a a a a b a a a a b a a a a L M
M M M L L L ;(3)x y y y y x y y y y x y y y y x L M M M M L L L ;(4)n
L M M M M L L L 001030100211111.
解(1)0)1(3210321102113011321−−−−−−−−−−−−−−n n n n n n n n L L M M M M M L L L !0000210002)1(23002)1(262021321,,3,21n n
n n n
n n
n n n n i r r i =−−−−=+L L M M M M M L L L L ;
(2)112112
21
121
112
11111−−−−−+++n n n n n b a a a a b a a a a b a a a a L M M M M L
L L ∏−=−−==−1
1
1
21
1211
0000
00001,,3,2n i i n n i b b b b a a a n i r r L M M M
M L L L L ;
(3)x
y y y y x y y
y
y x y y
y y x L M M M M L
L L x
y
y y
x y y x y y
x y
y x y x y y y y x L M M M M
L L L )1(n )1(n )1(n )1(n c c n 2i i 1−+−−+−+−++∑=n
i r r i ,,21
L =−y
x 0000y
x 000
0y x 0y
y
y y x −−−−+L M M M M L L
L )1(n )(])1(n [1
n y x y x −−+=−;
(4)n
L M
M M M L L L 0
010301
00211111n
c n c c c )1()31()21(321−++−+−+L n
i n
i L M M M M
L L L 00
0300
0020111112∑=−n i n
i L 32112⋅⋅⎟⎠
⎞⎜⎝⎛
−=∑=.习
题 1.4
1.求行列式1
22
305
4
13
−−中元素3和4的余子式和代数余子式.解
3的余子式4221
323=−−=
M ,3的代数余子式4)1(233223−=−=+M A .
4的余子式102
20513
−=−=M ,4的代数余子式10)1(133113−=−=+M A .2.已知70008
34133
32
31
23
22
21
13
1211
==
a a a a a a a a a D ,求33
3231
23222113
1211
a a a a a a a a a .
解因为7)1(10008
341333231
232221131211
1133
323123
222113
1211
=−⋅==
+a a a a a a a a a a a a a a a a a a D ,所以733
323123222113
12
11=a a a a a a a a a .3.已知四阶行列式D 的第1行元素分别为4,3,2,1,而它们的余子式依次为1,2,2,1−−,求行列式D .
解将行列式D 按第一行元素降阶展开,有
14
14131312121111A a A a A a A a D +++=1511)(42)(1)(321)(21)(1)(143312111−=⋅−⋅+−⋅−⋅+⋅−⋅+−⋅−⋅=++++13
=4.设四阶行列式的第2行元素分别为0,1,,2x ,它们的余子式分别为y ,2,6,2−,第3行的各元素的代数余子式分别为5,1,6,3,求此行列式.
解因03424332332223121=+++A a A a A a A a ,即05011632=×+×++×x ,
所以6
7
−=x .
从而24
24232322222121A a A a A a A a D +++=y
x ⋅−⋅+−⋅−⋅+⋅−⋅+⋅−⋅=++++42322212)1(0)2()1(16)1(2)1(297262−=−−=+−=x .
5.按第3行展开并计算下列行列式.
(1)5021011321014321−−−;(2)4
004030300224321.
解(1)原式5
012
114
31)1()1(502210
43
2)1(33213−−⋅−+−−⋅=++0
211
013
21)1(0521201421)1()1(4333++−⋅+−−⋅−+24
181218−=−+−=(2)原式0
040
223211)(04040224211)(34040024311)(04000024321)(343332
313++++−⋅+−⋅+−⋅+−⋅=92
1)1623(8324)(3−=−−×+−×=6.已知四阶行列式
5
21534120
8131711−−=
D ,求44342414A A A A +++及44434241M M M M +++的值,其中ij M 、ij A 分别为行列式D 中元素ij a 的余
子式和代数余子式.
解(1)由于44
342414443424141111A A A A A A A A ⋅+⋅+⋅+⋅=+++相当于用1,1,1,1代替D 中第4列元素所得的行列式,由行列式按行(列)展开定理知
44342414A A A A +++1215
14121813
1711−=
00
5040303010217
11141213=−−−−−−r r r r r r 同样
1
111
34120813
17114443424144434241−−−−=
+−+−=+++A A A A M M M M 682
824331
121)(2
8024
3031
1021
71121141213−=−−−−−=−−−−−−−+r r r r r r 。

7.计算下列各行列式.
(1)
0100111010100111;(2)
3
214214314321111;(3)a
b c d e e d c b a 0100000
10000010;(4)0
100002000010L L M M M M
L
L n
n −;(5)
b
a b a b a b a b a 000
00000
00000000000L L M M M M M M L L L .
解(1)
01
001
1101
010
11100
10
111101
1)(111=−⋅=+(2)原式
1231211
211
234
1213
1212
0001
4,3,21−−−−−−=−−−−−−=−i c c i 1
2304012112−−−−−−r r 161
31
14=−−−−=;
(3)依次按第二行、第三行、第四行降阶展开,有
a
b c d e
e d c b a 010********
001022e a a e e
a −==
;(4)0
001
0000
2000
010L L M M M M
L L n n −!n n n n n n n 111)1()1(n 21)1(10
00
2000
1)
1(+++−=−×××⋅−⋅=−−⋅=L L M M
M L
L ;(5)
b
a b a b a b a b a 0000
000000000
0000000L
L M M M M M M L L L a
b a a b a b b a b b a b a 000000
0000)1(000000
0000n
1L L M M M M L L L L M M M M L L +−⋅+⋅ 111)1(−+−⋅−+⋅=n n n a b b a 。


题 1.5
1.用行列式定义计算行列式
001
1,22111
,111L M M N M L L n n n
n a a a a a a −−.解
11-11211-1
1,22111,11110
0n n n n n n n n n a a a a a a a a a L L M M N M L L L ,)
)(()(τ−=−−1
1-112
1-1n n n n n a a a L ,)
()
(−=2.计算下列各行列式.(其中k D 表示k 阶行列式)
(1)x
a a a a a a a x a a a a a a a x a a a a a a a x a a a a a a a a n n n n
n n n
n n n n
n n
−+−+−+−+=−−−−−−−113
211232113221
13
21113
21L
L M M M M M L L L D ;
(2)n n n
n n −−−−−=110
0000
2
200
00
111321L M
M M M M L L L D ;
(3)n
n a a a +++=1111
1111121L
M M
M L
L
D ,其中021≠n a a a L ;(4)x
y y
x x y x y x n 000000000
00
000
00L L M
M M M M L L L =
D ;(5)n n
n n n n n n a a a n a a a n
a a a )()1()()1(1
11
111
11−−−−−−=−−−+L L M
M M L
L D ;(6)n
n n
n
n d c d c b a b a O
N
N
O
1
1
112=
D ,其中未写出的元素都是0.

(1)
x a a a a a a a x a a a a a a a x a a a a a a a x a a a a a a a a n n n n n n n n n n n n −+−+−+−+−−−−−−−113211232113221132111321L L M
M M M M L L L x
a x a x
a x a a a a a a n i r r n n n
n i −−−−=−−−−122113
21100
0000000000000
0,,3,2L
L M M M M M L L L L )())((1211x a x a x a a n −−−=−L .
(2)n
n
n n c c n
n n
n n
n n −−−+−+−−−−−=100000
0220000111321110000
02
20000
1113
211-L M
M M M M L L L L M M M M M L L L )(D
n
n n n i
i i n n i c c n
i n i n i i
i −−−+−=+∑∑∑===10
00
000
200
000
10
122-1-3
2
1
1-L
M M M
M M L L
L L )(,,,()2
11211121111212
1
-2
1
-2
1-1
)!()()()!()()!
()()())((+−=+−−=+++−−=−−−=∑=n n n n n n i
n n n n n
i L L (3)n
n
n
n
n n
i n
a a a a a a a n i c c D +−−−−=−−1100100
1001
,,2,11
21L L
M M
M M L L L X
a a a r a a
r n n i i
i
n n 00
010*******
1211
1L L M M M M L
L −−=∑+(其中∑−=++=1
11n i i
n n a a
a X )
)1
1(11(1211
1121∑∑=−=−+=++=n
i i
n n i i n n n a a a a a a a a a a L L ;
(4)按第1列降阶展开,有
y
x y y x y y x y x x y x x D n n L L M M M M L L L
L M M M
M L L
000000
000
)1(00000000001+−+=n n n y x 1)1(+−+=;(5)n
n
n n n n n n a a a n a a a n a a a D )(1)()()1(11
111111
−−−−−−=−−−+L L L L L
L
L L ,该行列式为范德蒙德行列式∏≥>≥+++−−+−=
1
11)]1()1[(j i n n j a i a D ∏∏≥>≥+++−+≥>≥+−⋅
−=−−=1
12
1
1)n 1
1)][()
1()][j i n (n j i n j i j i (L ;
(6)n
n
n
n
n d c d c b a b a D 0
1
1112O
N
N
O
=n
n n n n n
d d c d c b a b a a 00
0000
00
11111111
−−−−L
O
N
M N
O
展开
按第一行0
00
0)
1(11
1
1111
1
1
2n
n n n n n
n c d c d c b a b a b −−−−+−+O
N
N
O
2222−−−n n n n n n D c b D d a 展开
都按最后一行

由此得递推公式222)−−=n n n n n n D c b d a D ,所以∏=−=
n
i i i i
i
n D c b d
a D 2
22)(,而
111111
1
1
2c b d a d c b a D −==,所以∏=−=n i i i i i n c b d a D 1
2)(.3.解下列方程.
(1)
08814412211111
32=−−x x x ;(2)09132513232213
2112
2=−−x x ;
(3)
0)1(11111)2(1111
12111111111111=−−−−−−x
n x n x x L L M
M M M M L L L .

(1)()()()()()())()()(2222112122212212211
1118814412
21111
13
3
32
2
232−−−−−−−−−=−−−=−−x x x x x x
x x x ()()()0
22112=+−−=x x x 所以解为221−===x x x ,,.
(2)因
2
2341222
4000513200103211913
2513232213211x x r r r r x x −−−−−−1
221)4)(1(22x x −−=0)4)(1(322=−−=x x 所以解为1±=x ,2±=x .
(3)因左边
n i r r i ,,3,21L =−x
n x n x x −−−−−−)2(00000)3(0000
01000
00011111L L M M M M
M L L L 0])2[()1(=−−−−=x n x x L ,
所以解为2,,2,1,0−=n x L .
4.证明等式
1432
12)(010010
001−−−−−+=−−−n n n n n x a a a
ax ax ax ax a ax ax a ax a L M M M M M L L L .证明:从第二列开始把第二列的元素乘以(x −)加到第一列,把第三列的元素乘以(x −)加到第二列,……,把第n 列的元素乘以(x −)加到第1−n 列,可得143
2
1
2)(0000010000100001010010001−−−−−+=−+−+−+=−−−n n n n n x a a a
x a x a x a a
ax ax ax ax a ax ax a ax a L M M M M M L L L L M M M M M L L L .习

1.6
1.用克莱姆法则解下列方程组.
(1)⎪⎪⎩⎪⎪⎨⎧=+++=+−+=++=+−+54322512432143213214321x x x x x x x x x x x x x x x ;(2)⎪⎪⎩⎪⎪⎨⎧=−+=++=+−+=++−1212124313214
3214321x x x x x x x x x x x x x x ;
(3)⎪⎪⎩⎪⎪⎨⎧−=−−−=+++−=+−+=+++25320
11232
425
4321
432143214321x x x x x x x x x x x x x x x x ;(4)⎪⎩⎪⎨⎧=++=++=++111322132
213221x c cx x x b bx x x a ax x ,其中c ,b ,a 互不相等.

(1)184********
1111112−=−−=
D ,184
13511220
11511
111
−=−−=
D ,36415
11121015111122−=−−=
D ,36453112210
51
111123−==D ,185
131
21215
11111124=−−=
D ,
由克拉默法则知
111==
D D x ,222==D D x ,233==D D x ,144−==D D
x (2)12110101111
2112111−=−−−=
D ,10110101121211211
11
−=−−−=
D ,9111101211
2112
1112−=−−=D ,
51101
0211111121113−=−−=
D ,31
1
01
21111
211
11114−=−−=
D ,由克拉默法则知
6511==
D D x ,4322==D D x ,12533==D D x ,4
144==D D x .(3)142513
211213412
11111=−−−−=
D ,1425132112104122111
51=−−−−−−=D ,284512211203412111512=−−−−−=D ,4265
232
110134
22115113=−−−−=
D ,1422
13
2
02132
12151114
−=−−−−−=D ,
由克拉默法则知
111==
D D x ,222==D D x ,333==D D x ,144−==D
D
x .(4)))()((111222b c a c a b c c b b a a D −−−==,))()((1112
2
2
1b c a c a b c c b b a a D −−−==,
0111111222
2==c b a D ,0
1
111113==c b a D 由克拉默法则知
111==
D D x ,022==D D x ,033==D
D
x .2.求二次多项式)(x f ,使得0(1)=f ,3)2(=f ,28)3(=−f .
解:设二次多项式c bx ax x f ++=2)(,把0(1)=f ,3)2(=f ,28)3(=−f 带入二次多项式,得
⎪⎩⎪
⎨⎧=+−=++=++28393240
c b a c b a c b a ,20139124111−=−=D ,401328123
1101−=−=D ,6012891341012==D ,2028
393240
1
1
3−=−=D ,由克拉默法则知
21==
D D a ,32−==D D
b ,13==D
D c ,所以132)(2+−=x x x f .
3.问λ取何值时,齐次线性方程组
⎪⎩⎪
⎨⎧=−+=−+=++−0)4(20)6(2022)5(31
2
1321x x x x x x x λλλ有非零解?

系数行列式
)210(4)4)(6)(5(40
2
0622
25λλλλλ
λ
λ−−−−−=−−−=
D )8)(2)(5()82410)(5(2−−−=−+−−=λλλλλλ,
当0=D 时,即8,2,5===λλλ时,齐次线性方程组有非零解.
4.问λ取何值时,齐次线性方程组
⎪⎩⎪
⎨⎧=+=++=+−0202021
321321x x x x x x x x λλ有非零解?

系数行列式
()623110
20311
110212111
23112−λ−λ=λ
−λ−=λ−λ−−λλ
−=+r r D ,
当0=D 时,即32=λ−=λ 时,齐次线性方程组有非零解.
复习题(A)
一、填空题.
1.排列632514的逆序数为
10
;排列321)2)(1(L −−n n n 的逆序数为
2
)
1(−n n .解
2
4
1
2
1
415236
i
t ↓
↓↓↓↓↓排列1
2321012321−−−↓↓↓↓↓↓↓−−n n n t n n n i
L L 排列
2.在五阶行列式)det(ij a 的展开式中,包含因子45342311a a a a 的项是52a .3.偶排列经过一次对换变成

排列,奇排列经过两次对换变成

排列.
4.设x
x x x x
x f 211
232321
01)(=
,则3
x 的系数为-1.
解x a =11,x a =12,x a =22,x a =33,x a =44,因为每项取自不同行不同列,所以取x a =12,
x a =33,x a =44,121=a ,然后3)2134(443321121)1(x x x x a a a a −=⋅⋅⋅−=τ.
5.已知4231214a a a a j 是四阶行列式中的一项,则__3__=j ;该项所带符号为



2
2
1
2
134i
t ↓
↓↓↓排列
,奇排列,所以带负号。

6.行列式3
42102
3
2
1−=D 中的元素3的代数余子式为8,元素3−的代数余子式为
-4


84202)1(3
113=−=+A ,4022
1)1(3333−=−=+A .7.已知行列式1
2
3762
5
4−=a
D 中元素221=a 的代数余子式521=A ,则__5_−=a .解
5101
25
)1(1
221=+=−−=+a a A ,所以,5−=a .8.若三阶行列式零元素的个数超过6个,则该行列式值为
;若n 阶行列式零元素的个数超过
)1(−n n 个,则行列式值为0
.解见课本例1.8.
9.已知四阶行列式D 的第3行元素依次为1,1,2,2−,它们的余子式依次为4,3,2,5,则行列式=D 13
.解
13
4)1(312252)1()1()1()1(34
3433333232313134344333333332322331311334
34333332323131=×−−×+×−×=−+−=−+−+−+−=+++=++++M a M a M a M a M a M a M a M a A a A a A a A a D .
10.n 阶行列式)det(ij a =D 中元素ij a 的余子式ij M 与代数余子式ij A 的关系为
ij
M A j
i ij 1-+=)(.
11.四阶行列式D 的值为91,它的第一行元素为5332−+,t ,,,第一行元素的余子式依次为9,6,0,1−,则____t =.
解因为
919)5(6)3(03)1(2)1()1()1()1(14
1413131212111114144113133112122111111114
14131312121111=×−−×++×−−×=−+−=−+−+−+−=+++=++++t M a M a M a M a M a M a M a M a A a A a A a A a D ,
所以,5
=t 12.若将n 阶行列式)det(ij a =D 中的每个元素添上负号得一新行列式)det(ij a −=Δ,则
__D 1-__Δn
)(=.
13.
=
64
2781169414
3211
111.解12)34)(24)(23)(14)(13)(12(432143214
3211111642781
1694143211111333222=−−−−−−==.
14.方程03214214
314321=x x x
的全部根是
.解0
)4)(3)(2(40000300002043213214214314321=−−−=−−−=x x x x x x x x x 所以4,3,2===x x x .
15.设3
21421431
4324321D =,则____43242322212=+++A A A A .

03
24421331
422431143242
322212==+++A A A A .16.
_______a b a b b a b a =4
4
3322110
0000
000.解类似于例1.31.17.当=λ,______=µ时,齐次线性方程组
⎪⎩⎪
⎨⎧=++=++=++0
200
321
321321x x x x x x x x x µµλ有非零解?


)(()
)(())((2-3-11-2-11-1---11-20-11-011-1211111-1211111µλµλλµλµλµλ
µµλµµλ=+====D ,
齐次方程有非零解,0=D ,所以3
2
-1==µλ,二、选择题.
1.线性方程组⎪⎩⎪
⎨⎧−=−−=−+=+−10
431212321
321321x x x x x x x x x 的系数行列式的值等于

(A )14;(B )14−;(C )28;(D )28−.

28
4
311121
21−=−−−−=D 2.n 阶行列式展开式中1,1342312n n n a a a a a −L 的符号为D (A )正;
(B )负;
(C )n 1)(−;
(D)11)(n-−.

1
00001
1432−↓↓↓↓↓↓−n t n i L L 排列3.六阶行列式D 的展开式共有
B
项.
(A )2
6;(B )!6;(C )12;
(D )24.
4.下列排列是偶排列的是A

(A )13524876;(B )51324867;(C )38124657;
(D )76154283.
5.设31
00100
011−==
x
x x
x x x D ,则=x C
.(A )32

;(B )32;(C )3
2
±;(D )以上都不对.
解满足箭型行列式,见例1.23.
6.多项式x
x
x x x x f 17
1
5427432
013)(2−−−−=
中的常数项是
A .
(A )5;(B )5−;(C )20;(D )20−.
解常数项中不含x ,所以选取534=a ,112−=a ,013=a ,221=a ,323=a ,141=a ,7-42=a ,
143=a ,则
51-1-1-423421133
41342312343
3421122
=++a a a a a a a a a a a a )()()(.
7.行列式01
1
10
22
1
=−k k 的充分条件是B
.(A )2=k ;
(B )2−=k ;(C )0=k ;(D )3−=k .解按第二行展开,01-k k -61
11k k 1-1-12121-1
11022
13212==+=−++)()()(k k ,所以,2-k 3k ==,.
8.若0D 333231
232221
131211≠==a a a a a a a a a a ,则___a 4a 4a 4a 3a 3a 3a 2a 2a 233
3231
1312
1123
2221A =.(A )a 24−;(B )a 24;
(C )a 8;(D )a 12.

a 24-24-a a a a a a a a a 432a 4a 4a 4a 3a 3a 3a 2a 2a 233
323123222113
12
113332311312112322
21333231
131211232221
==⋅⋅=a a a a a a a a a .9.若0D 33
3231232221
13
1211
≠==a a a a a a a a a a ,则=
−−−=13121113331232113123
22211333222a a a a a a a a a a a a D A .
(A )a 3;(B )a 3−;(C )a 6;
(D )a 6−.

a 3333322232-3333222-33333322233
32
31
23222113
12
111312
11
1312112322211312
11
333231
23222113
12111312112322211312113332
31232221131211133312
3211
312322
21
1==⋅==−−−=a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a D 10.若齐次线性方程组⎪⎩

⎨⎧=+−=−+=++0200
z y x z ky x z y kx 有非零解,则k
C

(A )1−≠k 或4≠k ;(B )1−≠k 且4≠k ;(C )1−=k 或4=k ;(D )1−=k 且4=k .

))(()())((4-112-12--22-011011-2
1-11
1-11-11-21-111k k k k k k
k k k k k k k D +=++=++===所以系数矩阵0=D 时有非零解,41-==k k ,.
复习题(B)
一、计算题.1.计算n 阶行列式
1111
101111
10111110111110L L M M M M M L L L .
解把n ,,,L 32各行均加至第一行,则第1行有公因数1−n ,提取公因数1−n 后,再把第1行的1−倍加至第n ,,,L 32各行,可化为上三角行列式,即
01
11110111110111110111110L
L M M L M M M L L L )1()1(1
00
00010000
01000
00101
1111)1(1−−=−−−−−=−n n n L L M M M M M M L L L .
2.利用范德蒙德行列式的结果计算行列式
n
n n
n n n n L M M M L L L 2
2
2
333222111=D .

!133
1
221111111n n n n n n n ⋅=−−−L L L L L L L L D 1
112
2
2
321321
3211111!−−−=n n n n n n n L L L L L L L
L L ∏≤≤≤−=n
i j j i
a a
n 1)
(!
[])1()2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L ⎣⎦[]!1!2)2(21)1(21!⋅−⋅−⋅=L L L n n n !)!1()!2(!3!2!1n n n −−=L .
3.计算五阶行列式
a
a a a a a a a a −−−−−−−−−=
11000110001100
01100015D .解对于三对角型a
c b a c b
a c b
a 行列式,主要用递推法,对于本题,注意到第2至4行的数位相反数,
故可把第2至5列均加至第1列,得
a
a a
a a a a a a −−−−−−−−=1100110001100
0100
0015D +−−−−−−−=
a
a
a a a a a 11001100
110
01a
a a a a a a a −−−−−−−+1100110
01000)1)((15.
即4
1545)(-1)(-a a ++=D D ,类似地
31434)(-1)(-a a ++=D D ,21323)(-1)(-a a ++=D D .
将这三个等式相加得
54325a a a −+−==D D D ,
而221111a a a
a
a +−=−−−=
D ,所以54321a a a a a −+−+−=D .
4.计算n 阶行列式)det(ij n a =D ,其中||j i a ij −=.
解:
4321401233
10122210113210)det(L L L L L L L L L L L −−−−−−−−=
=n n n n n n n n a D ij n L ,3221r r r r −−0
432111111
1111111111
1111
1L
L
L L
L
L
L
L L L L −−−−−−−−−−−−−−n n n n L ,,141312c c c c c c +++1
5
24232102
2210
022100
02100001−−−−−−−−−−−−−−−n n n n n L L L L L L L L L L L 212)1()1(−−−−=n n n .
二、证明题.
1.设c b a ,,为互异实数,证明行列式0222
=+++=b
a a c c
b
c b a c b a D 的充分必要条件是0=++c b a .
1.证明
D 1
3r r +c b a c b a c b a c b a c b a ++++++222111)(222c b a c b a c b a ++=2
221
11
)(c b a c b a
c b a ++=)-)()()((a b b c a c c b a −−++=.
又由c b a ,,为互异的实数,故0=D 的充分必要条件是0=++c b a .
2.用行列式性质证明y
x z x
z y z
y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(3
3+=+++++++++证明bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开

按第左边1bz ay by ax x by
ax bx az z bx
az bz ay y b +++++++bz
ay y z
by ax x y bx
az z x ab bz ay x z
by ax z y
bx az y x
a +++++++2
2分开
列分别再按第
bz ay y x by ax x z bx az z y b bz ay x x
by ax z z
bx az y y ab ++++++++2z y z y x y x z
x ab y y z x x y z z x b a z x z y z y x y
x b a y x z
x z y
z y x
a 2223
3+++分开
列分别再按第z y x
y x z x z y b y y x x x z z z y ab z x x
y z z x y y ab y x
x
x z z
z y y b a 3222++++z y
x y x z x z y b y x z x z y
z y x a 330000+++++==−+=y
x
z
x z y z
y x b y x
z
x z y
z y x a 323)1(右边.3.证明等式
4444
22
2
2
1
111d c b a d
c b a d
c b a ))()()()()()((
d c b a d c d b c b d a c a b a +++−−−−−−=.证明:
左边4
44
44
442222222
0001a d a c a b a a d a c a b a a d a c a b a
−−−−−−−−−=)
()()(2222222222
22222a d d a c c a b b a d a c a b a d a c a b −−−−−−−−−=)
()()(1
1
1
))()((222a d d a c c a b b a
d a c a b a d a c a b ++++++−−−==×−−−))()((a d a c a b )
()()()()(0
0122222a b b a d d a b b a c c a b b b
d b c a b +−++−++−−+×
−−−−−=))()()()((b d b c a d a c a b )
()()()(1
12222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a −−−−−))((d c b a d c +++−.
4.设四阶行列式
p
d d d p c c c p b b b p a a a 3
2
1
321321
3214=D ,证明它的第一列各元素的代数余子式之和为零,即
041312111=+++A A A A .
证明当0=p 时,易知01=i A (4321..,=i ),故
41312111=+++A A A A 当0≠p 时,由行列式展开定理的推论知
41312111=+++pA pA pA pA 也即
(41312111=+++)A A A A p 所以
041312111=+++A A A A .
5.设平面上有不在同一直线上的三个点),(),,(),,(332211y x y x y x ,321,,x x x 互异,求证过这三个点且轴线与坐标轴y 平行的抛物线方程的表达式为
01
1113
23
3
222212112=x x y x x y x x y x x y .
证明
设所求的抛物线方程为c bx ax y ++=2
.由于三点在抛物线上,所以坐标
),(),,(),,(332211y x y x y x 都满足方程,从而得到齐次线性方程组
⎪⎪⎩⎪⎪⎨⎧=+++−=+++−=+++−=+++−0
00
032
3322
2212
112c bx ax y c bx ax y c bx ax y c bx ax y .将),,,1(c b a −视为上述齐次线性方程组的一组非零解,则有
01
11
13
233
222212112=x x y x x y x x y x x y ,这就是满足题设条件的抛物线方程的表达式.。

相关文档
最新文档