中考数学应用题专题复习上课讲义
题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)
![题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)](https://img.taocdn.com/s3/m/241c253491c69ec3d5bbfd0a79563c1ec5dad782.png)
对点训练 1.(2020·上海)去年某商店“十一”黄 周进行促销活动期间,前六天的总营业
额为450万元,第七天的营业额是前六天总营业额的12%. (1)求该商店去年“十一”黄 周这七天的总营业额;
解:(1)450+450×12%=504(万元). 答:该商店去年“十一”黄 周这七天的总营业额为504万元.
解:设甲物资采购了x吨,乙物资采购了y吨.
依题意,得
x y 540, 解得 3x 2y 1380,
x
y
300, 240.
答:甲物资采购了300吨,乙物资采购了240吨.
上一页 下一页
(2)现在计划安排A,B两种不同规格的卡车共50辆来运输这批物资.甲物资7
吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B
上一页 下一页
以分配类问题中购买商品为例,常出现的量有:购买数量、单价及购买
额,常见等量关系式为:单价×数量=总价.
1.以购买商品背景为例,常考以下三种形式:
模型一:已知a,b的单价、购买a,b的总数量及总花费,求a,b各自购
买的数量;
模型二:已知购买一定数量的a和一定数量的b的总花费(两组信息),求
上一页 下一页
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场 买十送一,B商场全场九折,试问去哪个商场购买足球更优惠?
(2)在A商场实际需要购买的足球为100× 10 = 1000 ≈91(个),
11 11
在A商场需要的费用为162×91=14 742(元), 在B商场需要的费用为162×100× 9 =14 580(元).
方案2:安排26辆A型卡车,24辆B型卡车;
方案3:安排27辆A型卡车,23辆B型卡车.
中考数学一轮复习讲义第16讲 函数的应用
![中考数学一轮复习讲义第16讲 函数的应用](https://img.taocdn.com/s3/m/dd6b3221640e52ea551810a6f524ccbff121ca3a.png)
中考数学一轮复习讲义考点十六:函数的应用聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第回到家中.设小明出发第时的速度为,离家的距离为.与之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第时离家的距离为;(2)当时,求与之间的函数表达式;(3)画出与之间的函数图像.考点典例二、反比例函数相关应用题【例2】(2018河北省石家庄市裕华区模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.考点典例三、二次函数相关应用题【例3】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【举一反三】如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?课时作业☆能力提升1星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.2. 心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min 时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为()A. y=﹣(x﹣13)2+59.9B. y=﹣0.1x2+2.6x+31C. y=0.1x2﹣2.6x+76.8D. y=﹣0.1x2+2.6x+433.某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)(1)求y与x之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.4.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.5. 根据牛顿发现的有关自由落体运动的规律,我们知道竖直向上抛出的物体,上升的高度h(m)与时间t(s)的关系式为h=v0t-12gt2,一般情况下,g=9.8m/s2.如果v0=9.8m/s,那么经过__s竖直向上抛出的小球的上升高度为4.9m.6.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择那种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2017-2018学年陕西安市爱知初级中学九年级(上)期末)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?8.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.9.为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.410.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.11.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.12. 某校科技小组进行野外考察,途中遇到一片的烂泥湿地,为了人员和设备安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道,已知当压力不变时,木板对地面的压强p(Pa)是木板面积S(m 2)的反比例函数,其图象如图所示.(1)请直接写出p 与S 之间的关系式和自变量S 的取值范围; (2)当木板面积为0.2 m 2时,压强是多少?13. “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
中考数学复习讲义课件 中考考点全攻略 第四单元 三角形 第20讲 解直角三角形及其应用
![中考数学复习讲义课件 中考考点全攻略 第四单元 三角形 第20讲 解直角三角形及其应用](https://img.taocdn.com/s3/m/6bdb1f60f342336c1eb91a37f111f18582d00c57.png)
▪ 解直角三角形的实际应用题的解题步骤:
▪ (1)审题:画出正确的平面图或截面示意图, 并通过图形弄清楚已知量和未知量;
▪ (2)构造直角三角形:将已知条件转化为示意 图中的边、角或它们之间的关系,把实际问 题转化为解直角三角形的问题,若不能在图 中体现,则需添加适当的辅助线,作高线是 常用的辅助线;
CE 连接 CE,则AD的值为( D )
3
A.2
B. 3
15
C. 2
D.2
7.如图,在四边形 ABCD 中,AC 与 BD 相交于点 O,∠ABC=∠DAC 1 BO 4 S△ABD 3
=90°,tan∠ACB=2,OD=3,则S△CBD= 32 .
1 15 8.(2021·绵阳)在直角△ABC 中,∠C=90°,tanA+tanB=2,∠C 的平 分线交 AB 于点 D,且 CD=2 2,斜边 AB 的值是 3 5 .
[解答] 解:在 Rt△ABD 中, AD 1
∵sinB=AB=3.又 AD=1,∴AB=3. ∴BD= 32-12=2 2. 在 Rt△ADC 中, ∵∠C=45°,∴CD=AD=1. ∴BC=BD+DC=2 2+1.
5.(2021·淄博)如图,在 Rt△ABC 中,∠ACB=90°,CE 是斜边 AB 上的
[解析] 过点 B,C 分别作 AE 的垂线,垂足分别为 M,N,过点 C 作 CD ⊥BM,垂足为 D. 在 Rt△ABM 中,∵∠BAE=60°,AB=16cm,
3 ∴BM=AB·sin60°=16× 2 =8 3(cm), ∠ABM=90°-60°=30°.
在 Rt△BCD 中, ∵∠DBC=∠ABC-∠ABM=50°-30°=20°, ∴∠BCD=90°-20°=70°. ∴BD=BC·sin70°=8×sin70°≈8×0.94=7.52(cm). ∴CN=DM=BM-BD=8 3-7.52≈6.3(cm), 即点 C 到 AE 的距离约为 6.3cm.
初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)
![初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)](https://img.taocdn.com/s3/m/cdba6d521ed9ad51f01df2c4.png)
【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段
际
应 小明在纸上画了一条直线,
用
小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,
中考应用题辅导讲义
![中考应用题辅导讲义](https://img.taocdn.com/s3/m/5418e527f61fb7360a4c65b7.png)
龙文教育学科教师辅导讲义要注意关键词语、隐含条件;读表格图像时,要结合文字信息理解,将信息转化为实际意义。
建模、分析见以下例题。
一、方程型1、(股票问题)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到元)2、(增长率问题)为了拉动内需,广东启动“家电下乡”活动。
某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴方程了多少元(结果保留2个有效数字)?3、(传染问题)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?4、为了贯彻落实关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对、(含)、三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知3倍,求、、三大类产品分别销售多少万台(部),并计算获得销售的冰箱(含)数量是彩电数量的2的政府补贴分别为多少万元?二、不等式型5、(方案设计)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?三、函数型近几年常考分段函数。
中考数学一轮复习讲义6__应用题
![中考数学一轮复习讲义6__应用题](https://img.taocdn.com/s3/m/62474c13cc175527072208cb.png)
中考数学一轮复习讲义6应用题列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多”、“少”、“增加”、“减少”、“快”、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.一、解应用题的一般步骤可以归结为:“审、设、列、解、验、答”:1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).书写格式:解:设,则,所以列方程:解得。
经验证:是原方程的根,符合题意。
答:二、常见的应用题类型(一)行程问题:1)一般的行程问题等量关系:速度×时间=路程2)相遇问题:两个物体同时从不同地点出发相向而行最后相遇的行程问题等量关系:甲路程+=相遇路程甲速度×相遇时间+乙速度×相遇时间=原两地的路程3)追及问题:a、两个物体在同一地点不同时间同向出发最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时间=乙速度×(甲时间+乙先走的时间)b、两个物体从不同地点同时同向出发最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程练习一1.轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为_________________________________.2、甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动。
2019-2020中考数学专题复习讲义(共十讲)
![2019-2020中考数学专题复习讲义(共十讲)](https://img.taocdn.com/s3/m/43ae4055bed5b9f3f80f1c0c.png)
(3)先连接正方形的中心和各顶点,然后将正方形各边m等分,连接中心和各分点,再依次将相邻的4个小三角形拼合在一起,这就把这个正方形的面积m等分了。
(4)连接正n边形的中心和各顶点,然后将这个正n边形各边m等分,再依次将n个相邻的小三角形拼在一起,这就将这个正n边形的面积m等分了。
(2)当台风中心移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据 , ).
解:(1)100;(2) ;
⑶作 于点H,可算得 (千米),设经过t小时时,台风中心从P移动到H,则 ,算得 (小时),此时,受
台风侵袭地区的圆的半径为: (千米)<141(千米)
∴城市O不会受到侵袭。
⑴按该公司要求可以有几种购买方案?
⑵若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?
解:(1)设购买甲种机器x台,则购买乙种机器(6-x)台。
由题意,得 ,
解这个不等式,得 ,即x可以取0、1、2三个值,
所以,该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台;
【例4】某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?
解:根据题意,可有三种购买方案;
方案一:只买大包装,则需买包数为: ;
解:(1)BE=DG,证明如下:
在Rt△BCE和Rt△DCG中,BC=CD,CE=CG,
中考数学专题复习课件分式方程及应用共33页
![中考数学专题复习课件分式方程及应用共33页](https://img.taocdn.com/s3/m/f2af519c852458fb760b564b.png)
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
中考数学专题复习《代数应用性问题复习》的教案
![中考数学专题复习《代数应用性问题复习》的教案](https://img.taocdn.com/s3/m/1550ce19a9956bec0975f46527d3240c8547a154.png)
中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题概述1.1 教学目标让学生了解代数应用性问题的基本概念和特点。
培养学生解决代数应用性问题的基本思路和方法。
1.2 教学内容代数应用性问题的定义和特点。
代数应用性问题解决的步骤和方法。
1.3 教学过程引入代数应用性问题的概念,让学生举例说明。
引导学生分析代数应用性问题的特点,如实际背景、数学模型等。
讲解代数应用性问题解决的步骤,如理解问题、建立方程等。
第二章:一元一次方程的应用2.1 教学目标让学生掌握一元一次方程的基本概念和解法。
培养学生应用一元一次方程解决实际问题的能力。
2.2 教学内容一元一次方程的定义和性质。
一元一次方程的解法和应用。
2.3 教学过程引入一元一次方程的概念,让学生举例说明。
讲解一元一次方程的性质和解法,如加减法、代入法等。
给出实际问题,让学生应用一元一次方程解决。
第三章:二元一次方程组的应用3.1 教学目标让学生掌握二元一次方程组的基本概念和解法。
培养学生应用二元一次方程组解决实际问题的能力。
3.2 教学内容二元一次方程组的定义和性质。
二元一次方程组的解法和应用。
3.3 教学过程引入二元一次方程组的概念,让学生举例说明。
讲解二元一次方程组的性质和解法,如代入法、消元法等。
给出实际问题,让学生应用二元一次方程组解决。
第四章:不等式的应用4.1 教学目标让学生掌握不等式的基本概念和解法。
培养学生应用不等式解决实际问题的能力。
4.2 教学内容不等式的定义和性质。
不等式的解法和应用。
4.3 教学过程引入不等式的概念,让学生举例说明。
讲解不等式的性质和解法,如大小比较、解集表示等。
第五章:整式的应用5.1 教学目标让学生掌握整式的基本概念和运算规则。
培养学生应用整式解决实际问题的能力。
5.2 教学内容整式的定义和性质。
整式的运算规则和应用。
5.3 教学过程引入整式的概念,让学生举例说明。
讲解整式的性质和运算规则,如加减法、乘除法等。
中考数学专题复习 实际生活应用问题(二)讲义
![中考数学专题复习 实际生活应用问题(二)讲义](https://img.taocdn.com/s3/m/b3f6a36d581b6bd97f19ea84.png)
实际生活应用问题(二)课前预习1.已知二次函数 y =x 2-2mx +4m -8,若 x ≥2 时,函数值 y 随 x 的增大而增大,则 m 的取值范围是 ;若 x ≤1 时,函数值 y 随 x 的增大而减小,则 m 的取值范围是 . 提示: ①根据开口方向向上,对称轴为直线 x =m 画出大致图象;②由增减性可知,x ≥2 在对称轴以右,确定 x =2 和 x =m 的相对位置.2.已知二次函数y =x 2+2x +m 的图象C 1与x 轴有且只有一个交点, 则 m 的值为 ;若 y =x 2+2x +m 的函数值总为正数,则图象顶点在第 象限,m 的取值范围是 .提示:“函数值总为正数”能转化为函数 y =x 2+2x +m 与 x 轴交点个数的问题吗?3.在解决“已知函数y1 x 22x 1,且 0<x ≤5,则此函数 2的最大值是多少?”这一问题时,小明采用了将二次函数化成顶点式的做法:y 1x 2 2x 121 (x2 4x ) 12 1 (x 2 4x 44) 12 1 (x 2 4x 4) 4 12 1 (x 2) 2 5 2 ∵0<x ≤5∴当 x =2 时,y 最大=-5① 提二次项系数 ② 括号内配方③ 化简整理 ④观察小明的具体操作后,回答下列问题: 在①,②,③,④的变形操作中错误的是 .请写出正确的求解过程.试一试:你能借助二次函数图象解决这个问题吗?知识点睛应用题的处理思路1.理解题意,梳理信息结合图表理解题意,将实际场景与图象中轴、点、线对应起来理解分析.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际精讲精练1.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2 m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O 点的水平距离为9 m,高度为2.43 m,球场的边界距O 点的水平距离为 18 m.(1)当h=2.6 时,求y 与x 的关系式(不要求写出自变量x的取值范围).(2)当h=2.6 时,球能否越过球网?球会不会出界?请说明理由.(3)若球一定能越过球网,又不出边界(球落在边界上不算出界),求h 的取值范围.O 6 9 18 x2.如图 1,地面 BD 上两根等长立柱 AB ,CD 之间悬挂一根近似成抛物线 y 1 x2 4x 3 的绳子.10 5图1图2(1)求绳子最低点离地面的距离;(2)因实际需要,在离 AB 为 3 米的位置处用一根立柱 MN 撑起绳子(如图 2),使左边抛物线 F 1 的最低点距 MN 为 1 米,离地面 1.8 米,求 MN 的长;(3)将立柱 MN 的长度提升为 3 米,通过调整 MN 的位置,使抛物线 F 2 对应函数的二次项系数始终为 1.设 MN 离 AB4的距离为 m ,抛物线 F 2 的顶点离地面距离为 k ,当 2≤k ≤2.5 时,求 m 的取值范围.3.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买 60 元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OA B 表示y2 与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1,y2 与x 的函数表达式;(3)在图中画出y1 与x 的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x 的范围.4.方成同学看到一则材料,甲开汽车,乙骑自行车从 M 地出发沿一条公路匀速前往 N 地,设乙行驶的时间为 t (h ),甲、乙两人之间的距离为 y (km ),y 与 t 的函数关系如图 1 所示,方成思考后发现了图 1 的部分正确信息:乙先出发 1 h ,甲出发 0.5 h 与乙相遇,……,请你帮助方成同学解决以下问题:(1)分别求出线段 BC ,CD 所在直线的函数表达式;(2)当 20<y <30 时,求 t 的取值范围;(3)分别求出甲、乙行驶的路程 s 甲,s 乙与时间 t 的函数表达式,并在图 2 所给的直角坐标系中分别画出它们的图象.(4)丙骑摩托车与乙同时出发,从 N 地沿同一条公路匀速前往 M 地,若丙经过 4h 与乙相遇,问丙出发后多少时间与甲3相遇?O1t (h)3 图1图2甲【参考答案】课前预习1. m ≤2;m ≥1.2. 1;二,m >1.3. ③;y 1 (x 2)21 ,过程略.2精讲精练1. (1)y 1(x 6) 2 2.6; 60(2)球能越过球网,会出界,理由略;(3)h ≥ 8 . 32. (1)绳子最低点离地面的距离为 7米;5(2)MN 的长为 2.1 米;(3)4≤m ≤ 8 2 3. (1)30;(2)y 1=18x +60,y 2 .30x15x150(0 ≤ x ≤10)(x 10);(3)图略;5<x <30.4. (1)l BC :y =40t -60,l CD :y =-20t +80;(2)2 t 9 或 5t 3 ; 4 2(3)s =60t -60(1≤ t ≤ 7);s 3乙=20t (0≤t ≤4),图略;(4)丙出发 7h 与甲相遇.55. (1)l OA :y =20x ,l BC :y =25x -50;(2)图略;(3)乙队铺设完的路面长是 125 m ;(4)乙队需要提前开工 7h .52。
中考数学专题复习《代数应用性问题复习》的教案
![中考数学专题复习《代数应用性问题复习》的教案](https://img.taocdn.com/s3/m/875ed94453d380eb6294dd88d0d233d4b14e3fdb.png)
中考数学专题复习《代数应用性问题复习》的教案第一章:代数应用性问题的基本概念与解题方法1.1 代数应用性问题的定义与特点解释代数应用性问题的概念分析代数应用性问题的特点1.2 代数应用性问题的解题步骤提出问题建立代数模型求解代数模型检验解的合理性1.3 代数应用性问题的常见类型线性方程问题不等式问题函数问题第二章:线性方程应用性问题复习2.1 线性方程的定义与解法解释线性方程的概念介绍线性方程的解法:代入法、消元法、图解法等2.2 线性方程在实际问题中的应用分析实际问题,建立线性方程模型求解线性方程,得出实际问题的解答2.3 线性方程应用性问题的常见题型比例问题利润问题行程问题第三章:不等式应用性问题复习3.1 不等式的定义与解法解释不等式的概念介绍不等式的解法:同大取大、同小取小、大小小大中间找、大大小小找不到3.2 不等式在实际问题中的应用分析实际问题,建立不等式模型求解不等式,得出实际问题的解答3.3 不等式应用性问题的常见题型盈亏问题范围问题排序问题第四章:函数应用性问题复习4.1 函数的定义与性质解释函数的概念介绍函数的性质:单调性、奇偶性、周期性等4.2 函数在实际问题中的应用分析实际问题,建立函数模型求解函数,得出实际问题的解答4.3 函数应用性问题的常见题型最大值与最小值问题函数图像问题函数性质问题第五章:代数应用性问题的综合训练5.1 综合训练的目的与意义强调综合训练的重要性说明综合训练对于提高解题能力的帮助5.2 综合训练的内容与方法设计与实际问题相关的综合训练题目引导学生通过自主学习、合作学习、讨论交流等方式进行训练5.3 综合训练的评估与反馈评估学生的训练成果给予学生反馈,帮助学生提高解题能力第六章:典型代数应用性问题解析6.1 典型问题的选材与分析选择具有代表性的代数应用性问题对问题进行深入分析,揭示其背后的数学原理6.2 典型问题的解答与讲解提供详细、清晰的解答步骤对解答过程进行讲解,帮助学生理解解题思路6.3 典型问题的拓展与延伸对典型问题进行拓展,提出相似或相关的问题引导学生思考问题的延伸,提高解决问题的能力第七章:中考代数应用性问题的解题策略7.1 中考代数应用性问题的特点与趋势分析中考代数应用性问题的特点探讨中考代数应用性问题的趋势7.2 中考代数应用性问题的解题技巧介绍解题技巧,如:审题、建模、求解、检验等引导学生运用解题技巧,提高解题效率7.3 中考代数应用性问题的备考建议给出备考建议,如:加强基础知识的复习、多做练习等鼓励学生积极备考,提高中考成绩第八章:代数应用性问题在生活中的应用8.1 代数应用性问题与实际生活的联系探讨代数应用性问题与实际生活的关系强调代数应用性问题在生活中的重要性8.2 生活实例中的代数应用性问题解析分析生活中的实际问题,将其转化为代数应用性问题引导学生运用数学知识解决实际问题8.3 代数应用性问题在生活中的实际应用训练设计生活化的代数应用性问题练习题鼓励学生积极参与,提高解决问题的能力9.1 代数应用性问题的解题思路引导学生运用解题思路,提高解题效果9.2 代数应用性问题的解题方法引导学生掌握解题方法,提高解题速度9.3 代数应用性问题的解题策略与方法的运用结合实际问题,运用解题策略与方法引导学生灵活运用解题策略与方法,提高解题能力第十章:代数应用性问题复习的评估与反思10.1 复习效果的评估评估学生的复习效果,如:知识掌握程度、解题能力等给予学生反馈,帮助学生了解自己的学习状况10.2 复习过程中的问题与反思引导学生反思复习过程中的问题,如:学习方法、时间管理等给出改进建议,帮助学生提高复习效果鼓励学生分享复习经验,共同提高学习能力重点和难点解析重点环节一:代数应用性问题的基本概念与解题方法补充说明:学生需要理解代数应用性问题是如何将实际问题转化为数学问题,以及如何按照步骤解决问题。
中考数学复习讲义课件 专题6 实际应用问题
![中考数学复习讲义课件 专题6 实际应用问题](https://img.taocdn.com/s3/m/4c58280ffbd6195f312b3169a45177232f60e493.png)
(1)若制作三种产品共计需要 25 小时,所获利润为 450 元,求制作展板、宣 传册和横幅的数量; [分析] 设制作展板数量为 x 件,横幅数量为 y 件,则宣传册数量为 5x 件, 根据题意列出二元一次方程组求解即可;
解:设制作展板的数量为 x 件,横幅的数量为 y 件,则制作宣传册的数量为
根据题意,得12x00=2×2x9-0030.解得 x=60.
经检验,x=60 是原方程的解,且符合题意.∴2x-30=90. 答:足球的单价是 60 元,篮球的单价是 90 元.
(2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球和 篮球的总费用不超过 15500 元,学校最多可以购买多少个篮球? [分析] 设学校可以购买 m 个篮球,则可以购买(200-m)个足球,利用总价 =单价×数量,结合购买足球和篮球的总费用不超过 15500 元,即可得出 关于 m 的一元一次不等式,解之取其中的最大整数值即可得出结论.
由题意,得 60m+60m+50(90+m)+70(90+m)≤32000. 解得 m≤8813. ∵m 为正整数, ∴m 可以取的最大值为 88. 答:这次最多购买《西游记》88 本.
2.(2021·佳木斯)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大 粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,
[分析] 先由 DE 的坡度计算 DC 的长度,根据矩形性质得 AB 长度,再由 AF 的坡度得出 BF 的长度,根据勾股定理计算出 AF 的长度. 解:∵DE=10m,其坡度为 i1=1∶ 3, ∴在 Rt△DCE 中,DE= DC2+CE2=2DC=10, ∴DC=5. ∵四边形 ABCD 为矩形,∴AB=CD=5. ∵斜坡 AF 的坡度为 i2=1∶4,∴ABBF=14.
中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件
![中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件](https://img.taocdn.com/s3/m/480568dab8d528ea81c758f5f61fb7360b4c2bfc.png)
二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题
中考数学专题复习 第十三讲二次函数的应用(共69张PPT)
![中考数学专题复习 第十三讲二次函数的应用(共69张PPT)](https://img.taocdn.com/s3/m/e3734ee3866fb84ae45c8dfe.png)
t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4
…
下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?
中考复习《数学应用问题》建议讲义及练习详解
![中考复习《数学应用问题》建议讲义及练习详解](https://img.taocdn.com/s3/m/1d690fb433d4b14e8424684d.png)
北京市西城区重点中学3月初三数学中考复习《数学应用问题》复习建议讲义及补充练习一、研究背景分析《考试说明》(版)关于“四基”的要求中明确指出:“注重对基本活动经验的考查. 考查在阅读、观察、实验、计算、推理、验证等活动过程中所积累的学习与应用基础知识、基本技能、基本思想方法的经验和思维经验.”“能力要求”中指出:“分析和解决问题的能力主要是指阅读、理解问题,根据问题背景,运用所学的知识、思想方法和积累的活动经验,获取有效信息,选择恰当方法,形成解决问题的思路,并用数学语言表述解决问题的过程.”“模型思想和应用意识主要是指有意识的利用数学概念、原理和方法解决实际问题;根据具体问题,抽象出数学问题,将问题中的数量关系、位置关系和变化规律用方程(组)、不等式、函数、几何图形、统计图表等进行表示,求出并检验结果,验证模型的合理性.”事实上,数学的产生和发展与各式各样的人类文明息息相关,例如:埃及和古巴比伦的数学源于人们生存的需要,希腊数学与哲学密切相关,中国数学的活力来自历法改革,印度数学的源泉始于宗教,而波斯的数学和天文学互不分离. 文艺复兴时期的艺术促使了射影几何学的诞生,17世纪微积分的产生解决了科学和工业革命的一系列问题……新课程的改革重视数学在实际生活中的应用,一方面,着眼现实大众生活. 传统的应用问题包括恰当数量的已知条件,用完题目中的所有条件,恰好能确定地解出这道题;而实际生活中的问题,常常要么条件不足,要么信息太多,甚至结论不确定;另一方面,关注传统文化中数学的渗透,关注数学史知识的传播.二、中考改革趋势及特点纵观12至15年的中考题会发现,15年对数学应用问题的考察有以下几个特点:2.题目信息量增加,需要自己筛选有用信息进行解题.【•北京第25题】阅读下列材料:年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20 万人次、17.6万人次;北京 动物园游客接待量为18万人次,熊猫馆的游客密集度较高.清明小长假,天气晴好,北京市属公园游客接待量约为 200万人次,其中,玉 渊潭公园游客接待量比 年清明小长假增长了25%;颐和园游客接待量为26.2万人次, 比 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9万人次.根据以上材料解答下列问题:(1)清明小长假,玉渊潭公园游客接待量为 万人次; (2)选择统计表或.统计图,将-清明小长假玉渊潭公园、颐和园和北京动物园 的游客接待量表示出来.3. 重视应用数学知识解决实际问题,尽量使用原始数据,尊重实际结果,结果也许不是唯一确定的. 找规律是应用数学知识,解决新的数学问题,估算则是结合生活经验和已有数学信息,对实际情况进行预测,言之有理即可.【•北京第12题】在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)【•北京第12题】如图,在平面直角坐标系xOy 中,已知直线l :y=﹣x ﹣1,双曲线y=,在l 上取一点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,…记点A n 的横坐标为a n ,若a 1=2,则a 2= _________ ,a= _________ ;若要将上述操作无限次地进行下去,则a 1不可能取的值是_________ .【•北京第12题】在平面直角坐标系xOy 中,对于点(,)P x y ,我们把'(1,1)P y x -++叫做点P 的伴随点。
中考数学复习讲义课件 专题4 数与代数实际应用
![中考数学复习讲义课件 专题4 数与代数实际应用](https://img.taocdn.com/s3/m/d7672d453d1ec5da50e2524de518964bcf84d2d1.png)
(2)若该公司购进 A 商品 200 件,B 商品 300 件,准备把这些商品全部运往 甲、乙两地销售.已知每件 A 商品运往甲、乙两地的运费分别为 20 元和 25 元;每件 B 商品运往甲、乙两地的运费分别为 15 元和 24 元.若运往甲地 的商品共 240 件,运往乙地的商品共 260 件. ①设运往甲地的 A 商品为 x(件),投资总运费为 y(元),请写出 y 与 x 的函数 关系式; ②怎样调运 A,B 两种商品可使投资总费用最少?最少费用是多少元?(投 资总费用=购进商品的费用+运费)
考法示例
方程(组)应用型 ☞示例 1 (2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、小 两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大 垃圾桶和 8 个小垃圾桶共需 1560 元. (1)求大、小两种垃圾桶的单价; [解答] 解:设大垃圾桶的单价为 x 元/个,小垃圾桶的单价为 y 元/个. 依题意,得62xx++84yy==1650600,. 解得xy==6108.0, 答:大垃圾桶的单价为 180 元/个,小垃圾桶的单价为 60 元/个.
1.(2021·西藏)列方程(组)解应用题 为振兴农村经济,某县决定购买 A,B 两种药材幼苗发给农民栽种,已知购 买 2 棵 A 种药材幼苗和 3 棵 B 种药材幼苗共需 41 元;购买 8 棵 A 种药材 幼苗和 9 棵 B 种药材幼苗共需 137 元.问每棵 A 种药材幼苗和每棵 B 种药 材幼苗的价格分别是多少元?
解:设乙工程队每天能完成 x 平方米的绿化改造面积,则甲工程队每天能 完成(x+200)平方米的绿化改造面积.依题意,得 x+200+x=800.解得 x=300. ∴x+200=300+200=500.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学应用题专题训练
一、方程应用题
1.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元。
若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
2.岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.
(1)甲、乙两队单独完成这项工程各需几个月的时间?
(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
3.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.乙队单独完成这项工程需要多少天?
4.2014年春季我国西南五省持续干旱,旱情牵动着全国人民的心。
“一方有难、八方支援”,某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水
5. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨
11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?
6.为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)
二、不等式应用题
1.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?
2.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?
3. 某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,且其单价和为130元.
⑴请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?
⑵若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球
数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?
4.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)若此车间每天所获利润为y(元),用x的代数式表示y.
(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?
5.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?
6.某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?
(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第
7.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
三、一次函数应用题
1. 2014年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:
的3倍还多8张,设购买A种票张数为x,C种票张数为y
(1)写出y与x之间的函数关系式;
(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.
四、二次函数应用题
1.某商店经销一种泰山旅游纪念品,4月的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.
(1)求该种纪念品4月份的销售价格;
(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?
2.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,
设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?
3.莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.
(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?
(2)在(1)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.
4.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?
5.东方百货商店服装柜在销售中发现“宝乐”牌童装每天可售出20件,每件赢利40元,经市场调查发现;如果每件童装每降价4元,那么平均每天就可多售出8件。
为扩大销售量,增加盈利,减少库存,商场决定采取适当的降价措施。
问:要想平均每天在销售这种童装上赢利1200元,那么每件童装应降价多少元?
6.铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.
(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.
(2)请问前多少个月的利润和等于1620万元?
7.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?
8.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部。
月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元。
①若该公司当月卖出3部汽车,则每部汽车的进价为万元;
②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利。