分岔、拟周期与混沌现象
【优】非线性物理倍周期分岔到混沌阵发性混沌PPT资料
μ 控当制n他<论0.的发创立现者维每纳曾次引用分一首岔民摇的对混沌值现象之作了间生动描的述:间丢失隔一个越钉子来,坏越了一小只蹄。铁;他将各个前后间隔
μ 相除,发现平方映射是以恒定的速率接近临界值 。 相切点斜率为+1,每对相交的两个交点处斜率一个大于1,另一个小于1。
大自然中存在一些普适常数,例如长度与直径之比的圆周率, 反映物理量随时间衰变的自然对数e,反映物质微观量度的普朗 克常数h,真空中光速c等,但普适常数为数不多,它们代表了大 自然运动所遵循的某些规律。
费根鲍姆常数的发现说明在对自然规律的认识上又前进一步, 它所包含的意义还有待进一步去发掘。
3.杜芬方程的倍周期分岔
倍周期分岔李氏指数
当 = c以后,映射迭代的终态值
已无周期,进入了混沌状态。进入 混沌后,从图象的深浅程度上仍可 区分出不同的区域,说明混沌不是 混乱一片,而存在着一定层次;
倍周期分岔序列与李氏指数密切关
联。在 = c后,指数λ便转为正值,
但在混沌区的各个窗口中指数值λ又 转为负值,即这里仍是规则运动。 展现一幅规则―随机―规则―随机…交 织起来的丰富多彩的图象,说明混 沌是一种特殊的、包含着无穷层次 的运动形态。
2.费根鲍姆常数
费根鲍姆常数
走廊中七的迭十代很年象是代在不初动点,在附近梅的迭(代,R因此.它M相应a于y周)期的发运动现。 了平方映射的异常复杂的特性
5699~4基本上是混沌区,其中有大小不一的窗口,这里仍规则运动,μ=3.
后,年轻的费根鲍姆(M. Feigenbum)用一台普通计算器进行计算。 自然界、科学实验乃至社会经济生活中,经常可以遇到突发性现象:太阳黑子、野生动物数量涨落、电子或激光振荡中的冲击现象,
非线性动力学中的混沌与分岔现象
非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。
在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。
混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。
混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。
他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。
这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。
这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。
混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。
这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。
一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。
σ、ρ和β是一些常数,它们决定了系统的性质。
这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。
分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。
简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。
分岔现象的经典例子是Logistic映射。
Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。
Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。
动力系统中混沌现象的分岔分析
动力系统中混沌现象的分岔分析混沌现象在动力系统中是一个极为复杂而又充满魅力的问题。
混沌现象指的是在非线性动力系统中出现的不可预测、高度敏感的行为。
混沌现象的研究对于理解动力系统的行为规律、探索自然界的规律以及解决实际问题具有重要意义。
在本文中,我们将对动力系统中混沌现象的分岔分析进行探讨。
动力系统中的分岔现象是指当一个参数发生微小变化时,系统的稳定状态发生突变,并且出现了新的稳定状态或周期轨道。
分岔现象是混沌现象的产生之源,也是系统从有序状态向混沌状态过渡的重要标志之一。
首先,我们需要了解什么是动力系统。
动力系统是一个由一组相互作用的方程组描述的数学模型,用于描述物理、生物、化学以及工程等领域中的现象。
动力系统的行为取决于其初始状态和参数的选择。
在进行分岔分析之前,我们需要明确一个重要概念——周期倍增分岔。
周期倍增分岔是分岔现象中最为典型和常见的形式之一。
它发生在系统中存在一个稳定的周期轨道,而随着一个参数的变化,周期轨道的周期倍增,最终演化成混沌状态。
对于动力系统中的混沌现象,分岔分析方法可以帮助我们揭示混沌的产生机制、寻找混沌现象出现的参数范围以及预测系统的行为。
下面我们将介绍一些常用的分岔分析方法。
一种常用的分岔分析方法是基于映射的分岔分析。
映射是动力系统中的一种简化形式,通过在相空间中取样并进行离散化,将连续的动力系统转化为迭代的映射。
通过改变映射参数,我们可以观察到一系列周期倍增分岔现象。
这种方法在理论研究中非常有用,可以帮助我们理解混沌现象的产生机制。
另一种常用的分岔分析方法是基于连续系统的分岔分析。
连续系统的分岔分析主要通过数值模拟的方法进行,可以得到系统的参数空间以及相应的分岔图。
这种方法在实际问题中具有重要意义,可以帮助我们确定系统的关键参数范围,从而控制或优化系统的性能。
除了映射和连续系统的分岔分析方法,还有一些其他的方法可以用于分析复杂动力系统中的混沌现象,比如通过Lapunov指数来判断系统是否处于混沌状态,通过Poincare截面来观察系统的稳定状态以及周期轨道等。
实验7 非线性电路振荡周期的分岔与混沌实验
实验7 非线性电路振荡周期的分岔与混沌实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。
但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。
1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。
于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。
从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。
该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。
该电路包括有源非线性负阻, LC 振荡器和移相器三部分。
采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。
费根鲍姆常数是伴随着非线性科学的发展产生的一个新的常数.本文对费根鲍姆常数进行简单的介绍并利用非线性电路混沌实验来测量验证。
【实验目的】1.了解混沌的基本概念2.了解实现混沌电路的基本结构3. 进一步地了解描述混沌的相关参量如倍周期分岔、混沌、奇怪吸引子等的物理意义【实验仪器】816FB A 型非线性电路混沌效应实验仪,有源非线性负阻元件(NR ),电感器L 和电容器1C , 电容器2C ,可变电阻V R ,示波器,连接线若干等【实验原理】1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻V R 和电容器1C 串联将振荡器产生的正弦信号移相输出。
较理想的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极11211()dVc C G Vc Vc g Vc dt =∙--∙2212()LdVc C G Vc Vc i dt=∙-+性是相反的。
混沌名词解释
混沌名词解释混沌名词解释一、概述混沌是一个用于描述非线性系统中的无序、不可预测行为的数学概念。
它源自于希腊神话中的混沌之神,意味着无序、杂乱和无规律。
二、混沌理论1. 定义混沌是指非线性动力系统中的一种状态,其特征是系统在长时间演化过程中表现出极其敏感的依赖初始条件和微小扰动的特性。
简单来说,就是微小的变化会导致系统演化出完全不同的结果。
2. 混沌吸引子混沌吸引子是描述混沌系统演化过程中所呈现出来的吸引态。
它具有分形结构,即在不同尺度上都具有相似的形态。
混沌吸引子可以帮助我们理解和描述复杂系统中的无序行为。
三、混沌现象1. 灵敏依赖初始条件混沌系统对初始条件极其敏感,微小差异会导致系统演化出完全不同的结果。
这种现象被称为“蝴蝶效应”,即蝴蝶在某个地方轻微拍动翅膀,可能会引起在另一个地方的龙卷风。
2. 随机性和确定性混沌系统表现出随机性和确定性的结合。
尽管系统的演化是确定的,但由于初始条件的微小差异,结果变得无法预测,呈现出随机性。
3. 分岔现象分岔是混沌系统中常见的现象。
当控制参数逐渐变化时,系统可能会从一个稳定状态突然跳跃到另一个稳定状态或周期状态,这种突变称为分岔。
四、应用领域1. 自然科学混沌理论在自然科学领域有广泛应用。
在气象学中,混沌理论可以帮助我们理解气候系统中的不可预测性;在天体物理学中,混沌理论可以解释行星轨道的复杂运动等。
2. 工程与技术混沌理论在工程与技术领域也有重要应用。
在通信领域中,利用混沌信号可以实现加密通信;在控制系统中,利用混沌控制方法可以实现对非线性系统的稳定控制等。
3. 社会科学混沌理论在社会科学领域也有一定的应用。
在经济学中,混沌理论可以帮助我们理解金融市场的波动和非线性行为;在社会学中,混沌理论可以用于研究人类行为和社会系统的复杂性等。
五、总结混沌是描述非线性系统中无序、不可预测行为的概念。
它具有灵敏依赖初始条件、随机性和确定性的特点,以及分岔现象。
混沌理论在自然科学、工程与技术以及社会科学等领域都有广泛应用。
数学中的混沌动力系统与分岔理论
在数学领域中,混沌动力系统与分岔理论是两个重要而引人注目的主题。
混沌动力系统是指那些对初始条件极其敏感,呈现出难以预测和复杂演化的系统。
分岔理论则是研究系统从一个稳定状态突变为多个稳定状态的过程。
这两个理论在许多领域都有广泛的应用,从自然科学到社会科学,深深地影响了人们对系统运行和演变的理解。
混沌动力系统最早是由美国气象学家、数学家爱德华·洛伦兹在1960年代中期提出的。
他的研究工作主要集中在研究大气运动模型。
在这个系统中,初始条件的微小变化会引起模型的输出结果相差甚远。
这引发了洛伦兹的兴趣,他将这种现象命名为“蝴蝶效应”来形容起初微弱的变化可能会引发大规模的效应。
洛伦兹在混沌动力系统的研究中发现了奇异吸引子的存在,这是一种引导系统演化过程的特殊性质。
奇异吸引子在混沌动力系统理论中起着重要的作用,它不仅提供了对系统行为的定量描述,同时也揭示了系统中的复杂结构。
分岔理论则着重研究系统的稳定性突变过程。
分岔是指当系统参数发生细微变化时,系统从一种稳定状态突变为另一种稳定状态的现象。
最著名的分岔是“费根鲍姆分岔”,早在19世纪末由法国数学家亨利·费根鲍姆提出。
他发现简单的非线性方程可能引起系统从一个稳定状态到周期运动,然后到混沌。
这种突变行为使得分岔理论成为许多自然现象的重要解释机制,例如生物进化、气候变化等。
混沌动力系统和分岔理论在现代科学中有广泛的应用。
在天气预报中,混沌动力系统理论帮助科学家们理解气象系统的复杂行为,进而提高了预测的准确性。
在物理学中,混沌动力系统的研究揭示了粒子运动的随机性和确定性之间的微妙平衡。
在生物学中,分岔理论帮助研究者理解进化过程中物种数量的突变和物种多样性的起源。
在社会科学中,混沌动力系统的影响范围更加广泛,从经济学到心理学,都有许多应用案例。
总之,数学中的混沌动力系统与分岔理论是对系统运行和演化进行研究的重要工具。
混沌动力系统的研究揭示了系统的复杂性和不确定性,而分岔理论则研究了系统从一个稳定状态到多个状态的突变过程。
常微分方程的分岔和混沌现象
常微分方程的分岔和混沌现象在数学中,常微分方程是一种可以描述物理现象的数学模型。
它可以用来研究物体的位置、速度和加速度之间的关系,以及变化的趋势。
常微分方程的分岔和混沌现象是该领域中的一个重要的课题,本文将从这个角度来深入探讨。
一、什么是常微分方程的分岔?在物理现象中,往往有一些参数是可以改变的,比如弹簧的弹性系数,转动惯量等等。
在数学模型中,这些参数往往以某个常数的形式出现,我们称之为控制参数。
当控制参数发生微小变化时,数学模型的解也会发生微小的变化。
分岔就是指,当控制参数发生连续或突然的变化时,数学模型的解出现了明显的差别,显示出了不同的行为特征。
例如,当控制参数发生小变化时,物理现象可能在一个稳定的状态下来回振动,而当控制参数的值超过某个特定的临界点时,物理现象会出现混乱的不规则波动,这就是分岔现象。
二、什么是混沌现象?混沌现象是指,当物理现象受到微小的扰动时,它的运动过程变得高度不稳定和不可预测。
这种不可预测的现象表现为波动或震荡的不规则运动,这种不规则运动又称为混沌运动。
混沌现象在物理、化学、生物等多个领域中都有应用。
三、常微分方程的分岔与混沌现象之间的关系分岔是混沌现象的前提条件之一。
通过调整控制参数,一些数学模型可以表现出非常有规律但是复杂的行为。
随着控制参数的改变,它们会经历一系列的分岔,最终出现混沌现象。
例如,著名的洛伦兹系统,通过改变其参数,可以很容易地使方程产生分岔,最终出现混沌现象。
四、常微分方程的分岔和混沌现象的应用常微分方程的分岔和混沌现象在很多领域都有应用。
在物理领域中,这些现象可以用于描述流体、气体等的运动方式,从而帮助物理学家更好地理解它们的性质和行为。
在经济学中,常微分方程的分岔和混沌现象可以用来研究经济模型中的行为和趋势,以更好地预测和管理经济的发展。
在生物学中,常微分方程的分岔和混沌现象可以用于描述细胞生长和病毒传播的方式,为人们提供更好的治疗和预防方法。
非线性微分方程的分岔和混沌现象
非线性微分方程的分岔和混沌现象非线性微分方程是自然科学中经典的研究对象之一。
在广泛的自然现象和实验研究时,非线性微分方程都是用来描述这些现象的数学工具。
但是,非线性微分方程的动力学特性非常复杂,包括分岔、混沌等现象。
这些现象对于科学家而言是非常重要而且有很多有趣的数学理论成果与实际应用。
在本文中,我们将探讨非线性微分方程的分岔和混沌现象的一些基本概念与数学理论。
一、非线性微分方程的分岔现象分岔现象是指一个系统中的某些参数发生变化时,该系统的稳定性质发生变化。
特别是当这些参数逐渐变化到一定的“临界点”时,系统的稳定性质突然发生改变,这种现象叫做分岔。
通常,这个临界点称为临界参数值。
分岔现象是非线性微分方程的一个根本动力学现象,在自然科学中有着广泛的应用。
1. 常见的分岔类型非线性微分方程的分岔有许多类型,其中比较常见的有:鞍点分岔、极小极大分岔、超过阈值分岔、分支分岔等。
鞍点分岔是指由一个稳定的状态发生分裂从而出现两个不同状态的现象。
这种分岔是由一个简单稳定节点与一个鞍点相遇时产生的。
极小极大分岔是指当参数发生微小的变化时,极小值点和极大值点突然出现的现象。
超过阈值分岔是指当参数超过某些阈值时,系统从一个极限环突变到一个新的解的现象。
分支分岔是指在参数空间中出现分支条件,这通常在响应系统行为的外部变量出现周期性变化时会发生。
2. 分岔的重要性分岔现象对于非线性微分方程而言是非常重要的,因为它可以揭示系统的稳定性和动力学性质。
而且,正是由于分岔现象才使得非线性微分方程在自然科学领域中有着广泛的应用。
例如,在物理领域中,分岔现象可以帮助我们研究光学、空气动力学、气象学等领域中的不同系统。
在生物学领域中,分岔现象可以帮助我们研究細胞過程中的周期性行为、神经行为、化學反應等。
在经济学领域中,分岔现象可以帮助我们理解市場泡沫、动态平衡等问题。
二、非线性微分方程的混沌现象混沌现象是指某些动力学系统(如非线性微分方程)的随时间演化的状态具有无限的、不可预测的细节。
流体动压轴承-转子动力系统的分岔和混沌
Biu c to n f r a i n a d Cha s o dr d na i a i g Ro o o f Hy o y m c Be r n - t r
Dy a ia y tm n m c lS se
L a jn Z a gY n fn J n n F n i w uY nu h n o ga g i gMi a g a gYn u g
2.S h o fElcrc a d I o ma in, rh se n P lt c n c lUn v r iy, ’ n S a n 0 2, i a; c o lo e ti n nfr to Not we tr o ye h i a i e st Xi a h a xi 1 07 Ch n 7
Qio W eion L Ya g Shq a g a d g i Qi n ii n
( . c o l f a hn r a dP e i o s u e t n ie r g X ’ nU ies yo T c n lg , i a h a x 7 0 4 , h a 1 S ho o c ie n rc i I t m n E gn ei , i a nv r t f e h oo y X ’ nS a n i 0 8 C i ; M y snnr n i 1 n
维普资讯
20 0 7年 1 月
润滑与密封
L UBRI CATI ON ENGI NEEo l3 .1
第3 2卷 第 l期
流 体 动 压 轴 承 一 子 动 力 系统 的分 岔 和 混沌 转
3 S ho o eeo m nct nE gne n , iF reE g er gU i r t, ia h ax 70 7 ,hn ) . col f l m u i i nier gAr oc n i ei nv sy X ’nS an i 0 7 C ia T c ao i n n ei 1
周期分岔与混沌现象
主要内容
又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率, 等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这 里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自
对于稳定的周期n,有李雅普诺夫指数小于0, 对于倍周期分岔点李雅普诺夫指数等于0, 混沌状态李雅普诺夫指数大于0,所以李雅 普诺夫指数由负变正表明运动向混沌转变。
x=0.7; for j=1:4 subplot(2,2,j) u=input('输入增殖 系数系数u=') for i=1:10 x=u*(x-x^2); a=[i,i+1] b(1,1)=x x2=u*(x-x^2) b(1,2)=x2
保留所有的X值,每次计算的X值 生成矩阵的一行元素,最后作图, 程序可读性强,但占用内存较大
初值的影响
混沌现象有个特点,就是初值的微小变化将 引起结果的完全不同,它说明混沌现象的 不可预测性。
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
10
20
30
40
50
60
2 n
(0 4,0 x 1)
初值相同,增殖系数不同时的结果
改变初值的情况
费根保姆图
为了研究增殖系数对分叉现象的影响,可以 取相同的初值对所有的增殖系数进行计算。
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2.6
混沌的定义基本特征
2.1.2混沌的基本特征混沌理论是近代非线性动力学中重要的组成部分,虽然混沌的定义多繁复杂,但混沌还是有自己的一些与其他非线性系统所没有的基本特征,具体表现为如下[37,38,39]:(1)对初始条件的敏感性经典学说认为:确定性的系统只要初始条件给定,方程的解也就随之确定了。
一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。
在动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件,这就是系统对初值的敏感,还有混沌的敏感表现在一些控制参数的变化。
1972年洛伦兹在华盛顿科学进步协会上的报告上指出:“在巴西的一只蝴蝶拍打翅膀会引发得克萨斯州的一场龙卷风”。
这就是著名的“蝴蝶效应”。
这句话的意思是说任意一个微小的扰动可能会引起世界另一边天气的变化,这种微小的扰动如同蝴蝶扇一下翅膀,都有可能发生巨大的改变。
这一现象的指出就是对混沌初值敏感性的最好的诠释。
(2)整体稳定局部不稳定稳定性是有关扰动现象的。
如果一个动力系统中发生轻微的变化,这个系统还会保持它的运动状态,保持它的能力和属性。
混沌的整体稳定性指一个微小的扰动也不会改变系统原有的性能。
一个系统并不能只是绝对的稳定,还要有局部的稳定,这样这个系统才能进化。
局部不稳定性表现在混沌对初值的敏感依赖性,一个微小的初值变化就会引起系统局部的不稳定。
(3)奇怪吸引子及其分形奇怪吸引子将混沌运动的特征初始条件的敏感性和确定性的随机直观地反映出来。
在耗散系统当中,当连续流在收缩体积时,一边沿这些地方压缩,另一边又沿其他地方延伸。
不过连续流是固定在一个有界的区域内,这种伸缩和折叠过程会使运动轨道在奇怪吸引子上产生混沌运动。
可见,奇怪吸引子是轨道不稳定和耗散系统相体积收缩两种因素的内在性质同时发生的现象[40]。
它的几何特性由分形来刻画,具有大尺度与小尺度之间的相似性,具有无穷无尽自相似的精细图案,具有分数维数。
分岔与混沌理论与应用作业
分岔与混沌理论与应用学院:专业:姓名:学号:我对混沌理论的认识1、混沌理论概述混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。
混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。
所谓“差之毫厘,失之千里”正是此一现象的最佳批注。
具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。
但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。
混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。
混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。
混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。
我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。
我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。
我们认识到,知道这些规律不等于能够预言未来的行为。
这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。
实质上,这一思想就是蝴蝶效应。
初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。
对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。
这个方法已取得若干成功。
2、分叉的概述分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。
动力系统中的分岔与混沌行为探究
动力系统中的分岔与混沌行为探究动力系统是指由物理、数学或工程等领域中的方程、规则或模型构成的系统,用于描述物体、系统或过程的运动、变化和演化规律。
动力系统的行为可以呈现出多种形式,其中分岔与混沌行为是常见且引人注目的现象。
分岔是指在动力系统中,当某个参数的变化达到一定的条件时,系统的行为从一种状态转变为多种或无穷多种状态的现象。
分岔分为离散分岔和连续分岔两种。
离散分岔通常发生在离散时间点上,系统的状态从一个值突然跳变到多个不同的值。
而连续分岔则是在连续时间上发生的,系统的状态从一个平衡态跳变到多个平衡态。
分岔现象通常在非线性系统中出现,且常常伴随着系统的复杂性增加。
混沌行为是指在动力系统中,微小的初始条件变化会导致系统的演化结果迅速发散,且系统的状态表现出随机、不可预测的特征。
混沌行为在数学上可以用混沌吸引子等概念描述。
混沌系统具有灵敏依赖于初始条件的特性,也被称为“蝴蝶效应”,即初始条件的微小变化可以导致系统的演化结果巨大差异。
混沌行为通常在非线性系统中出现,并且常常呈现出复杂、分形的特征。
分形是指具有自相似性和统计性质的几何图形或数学对象。
在动力系统中,分岔与混沌行为常常伴随着分形的出现。
分形结构既可以在系统的状态空间中观察到,也可以在时间序列中观察到。
分形的出现进一步增加了系统的复杂性,并丰富了我们对动力系统行为的认识。
分岔和混沌行为在许多科学领域都有着广泛的应用和理论研究。
在物理学中,分岔和混沌理论被用来解释各种现象,如天体力学中的三体问题、非线性动力学系统中的相变等。
在工程学中,分岔和混沌现象的研究可以应用于电力系统、电路、通信等领域中,帮助我们更好地理解和控制这些系统的行为。
研究分岔和混沌行为不仅对于科学理论的发展有着重要意义,也对实际应用具有重要价值。
通过深入研究动力系统中的分岔与混沌行为,我们可以更好地理解自然界和人造系统的复杂性,并探索其中的规律和机制。
在处理分岔与混沌行为时,数学方法和计算机模拟技术被广泛应用。
混沌系统的复杂动力学行为研究及应用
混沌系统的复杂动力学行为研究及应用
混沌系统是一类具有高度非线性、异步和随机行为的随机系统,其复杂动力学行为表现出一系列奇异的现象,例如混沌现象、分岔、奇异吸引子等现象,这些现象在物理学、数学、工程学等领域具有重要的应用价值。
混沌系统的复杂动力学行为研究及应用可以分为以下几个方面:
1. 混沌现象研究:混沌现象是混沌系统的基本特征,其研究涉及到数学、物理、工程等领域的交叉学科,包括偏微分方程、分形几何、随机过程等多个领域。
混沌现象的应用包括天气预报、金融市场、流体力学等领域。
2. 分岔现象研究:分岔是混沌系统的另一类重要特征,其研究涉及到数学、物理、工程学等多个领域。
分岔现象的应用包括光学、通信、分子模拟等领域。
3. 奇异吸引子现象研究:奇异吸引子是混沌系统的一类特殊形态,其研究涉及到数学、物理、工程学等多个领域。
奇异吸引子的应用包括天体物理学、粒子物理学、生物医学等领域。
4. 混沌系统的应用:混沌系统在数学、物理、工程学等领域都有
重要的应用,例如混沌天气预报、混沌控制、混沌加密、混沌优化等领域。
混沌系统的应用正在不断拓展和深化。
混沌系统的研究和应用涉及到数学、物理、工程学等多个领域,其研究不仅具有理论意义,同时也具有重要的工程意义和实际价值。
分岔、拟周期与混沌现象
(7 6)
2006-2007年于南京
现 代 电 路 理 论
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
d u1 d du2 d du3 d
2 1 0
1 2 1
k u1 1 u 2 1 u3
混沌现象
非线性电路中的平衡点、周期解、拟周期的共同特征:
1、完全确定性; 2、解对初值的不敏感; 3、对周期解和拟周期解,频谱是离散的; 4、对于周期激励的电路,无论解是周期振荡或是拟周期 振荡,当选取激励信号的周期作等间隔横截其响应时,周 期信号在横截面表现为一个点,或m个点,一个点称周期1, m个点称周期m;拟周期则是一个无限填充的封面椭圆。这 种截面称为庞卡莱截面。
2006-2007年于南京
现 代 电 路 理 论
7.3
非线性电路中的拟周期现象 南京理工大学自动化学院sunjh
7.3
非线性电路的分歧 主要内容
1、分歧
2、过临界分歧
3、叉形分歧
4、Hopf分歧
2006-2007年于南京
现 代 电 路 理 论
7.4 混沌现象 南京理工大学自动化学院sunjh
7.4
局部分歧:讨论平衡点或轨道附近相图的拓扑结构的变化。
全局分歧:研究大范围内拓扑结构的变化。 静态分歧:鞍结分歧、跨临界分歧等。
动态分歧:霍普夫(Hopf)分歧、闭轨分歧、环面分歧、同 宿或异宿分歧等等。
只有平衡点是非双曲平衡点时,才会有分歧现象发生。
2006-2007年于南京
现 代 电 路 理 论
所谓确定的电路,是指所有元件参数全是确定的,不含任何随机 因数。
频闪映射模型及分岔与混沌现象
频闪映射模型及分岔与混沌现象作者:朱建林来源:《中国科技博览》2013年第32期摘要:在一定条件下电力电子电路具有丰富的非线性现象,近年来将混沌动力学引入这一领域,研究其非线性现象取得了一定的成果。
本文介绍了分岔理论,并应用分岔理论,结合数据采样,建立了PWM型DC/DC变换器的动力学方程,在凯莱-哈密顿定理的基础上得到了系统的频闪映射模型。
关键词:频闪映射分岔混沌 DC/DC 变换中图分类号:TU855 文献标识码:A 文章编号:1009-914X(2013)32-363-011 前言混沌现象是确定性非线性系统中一种貌似随机的运动,具有轨道不稳定性、对初始条件的敏感依赖性、长期演化行为的不可预测性以及四是具有分形的性质[1],以往把它们当作系统随机干扰和故障来处理。
实际上非线性系统混沌现象有其一定的的运动规律,当系统参数改变时,一些非线性系统将从稳定态过渡到不稳定态,因此出现多个工作状态,即产生分岔现象;当系统参数进一步变化,有可能出现无数个工作状态,导致系统工作状态失控,进入的混沌状态。
2 分岔理论及分类研究发现,在非线性系统中,当控制参数产生变化达到某个临界值时,系统的动力学性质发生定性变化,这种现象称为分岔(bifurcations),它是非线性系统内部固有的一种特性[2,3]。
分岔理论的主要研究分岔的类型、分岔解的方向和数目、分岔解的稳定性、分岔点的位置、分岔的过程与终态等。
从分岔过程来看,失去稳定状态是发生分岔的前提。
分岔导致系统状态间的不连续的过渡,这就是突变。
混沌理论则研究系统最后所达到的终态。
分岔可分为静态分岔、动态分岔或局部分岔、全局分岔等。
静态分岔又可分为平衡点的鞍结分岔、叉式分岔、跨临界分岔等。
动态分岔可以分为闭轨分岔、Hopf分岔、环面分岔、异宿分岔、同宿分岔等。
其中局部分岔主要研究平衡状态或相轨迹线附近拓扑结构的变化,是全局分岔和系统大规模混沌的前兆,因此混沌研究一般从局部分岔的研究入手。
非线性电路振荡周期的分岔与混沌实验讲解
图3非线性电路原理图图4非线性负阻器件R的伏安曲线图3电路的非线性动力学方程为:
11211( dVc C G Vc Vc gVc dt
=--
2212( L dVc C G Vc Vc i dt
=-+ 2Vc dt
di L L -=式中,导纳12V V G R R =+, 1C V和2C V分别表示加在1C和2C上的电压, L i表示流过电感器L的电流, g表示非线性电阻R的导纳。
1(x kx x -→
其中k是0和4之间的常数。迭代这映射,我们得离散动力学系统
1(1n n n x kx x -=+ , 0=n , 1, 2„
我们发现:①当k小于3时,无论初值是多少经过多次迭代,总能趋于一个稳定的不动点; ②当k大于3时,随着k的增大出现分岔,迭代结果在两个不同数值之间交替出现,称之为周期2循环; k继续增大会出现4, 8, 16, 32„周期倍化级联; ③很快k在58. 3左右就结束了周期倍增,迭代结果出现混沌,从而无周期可言。④在混沌状态下迭代结果对初值高度敏感,细微的初值差异会导致结果巨大区别,常把这种现象称之为“蝴蝶效应”。⑤迭代结果不会超出0~1的范围称为奇怪吸引子。
图5图6
图7实际非线性混沌电路图
分岔与混沌
3 典型实例
2016/4/3
机械系统与振动国家重点实验室
13
典型实例
3.1 叉型分岔
典型实例是
x x3 x( x2 ) x
(1)
上式中,x 是实数, 是可正可负的参数,令 x =0,可知方程(1)的定态平衡 解是
x 0, x 0和 x ,
•中心流形法
•李雅普诺夫-施密特约化(LS约化)
•幂级数法 •摄动法 •Shilnikov法 •数值法
机械系统与振动国家重点实验室
21
奇异性理论方法
奇异性研究可微映射的退化性和分类,首先将分叉问题化 为较简单的范式(Normal Form)进行识别和分类,再通 过“普适开折”得到一般扰动下可能出现的所有分叉性态, 随后讨论分叉图的保持性和转迁集等。可以处理:静态分 叉、Hopf分叉和退化Hopf分叉。 对于高维问题,理论上可借助LS约化方法降维,然后再应 用奇异性方法。 该方法参考:
2016/4/3
机械系统与振动国家重点实验室
10
十分明显,叉型分岔和鞍-结分岔是实分岔, 而霍普分岔是复分岔,不论哪一种分岔,它 们在分岔点均满足:
d [Re( ( )] 0 d
2016/4/3
机械系统与振动国家重点实验室
11
2.静态分岔和动态分岔 静态分岔,研究当参数发生变化时,平衡点数目和 稳定性如何发生变化,如叉形分岔和鞍结分岔等; 动态分岔,主要是指解的类型发生变化,如由平衡 点变为周期解(Hopf分岔),周期解的分岔(倍周 期分岔)等。 3. 局部分岔和全局分岔 局部分岔研究某个不动点附近动力系统的拓扑结构 如何发生变化。全局分岔则分析向量场的大范围的 拓扑结构。静态分岔和Hopf分岔都属于局部分岔 ,而其它的分岔则属于全局分岔。局部分岔是全局 分岔分析的一个重要内容。一般来说,完整的全局 分岔分析是十分困难的,甚至是不可能的,所以对 局部分岔的研究就显得尤为重要。 机械系统与振动国家重点实验室
第6章 混沌与分岔ppt课件
BIT
PEMC
1. 对初值的敏感性
混沌的特点
混沌对初值具有敏感依赖性,初值的微小差别会导致未 来的混沌轨道的巨大差别,正是所谓“失之毫厘,谬以千 里”。 1963年,荷兰科学家洛伦兹(Hendrik Antoon Lorenz)在 《大气科学》杂志上发表了“决定性的非周期流”的著 名论文。该论文以一个底部加热、顶部冷却的两维运动 流体块中的对流为模型,提出了著名的 Lorenz 方程。 Lorenz 用数值方法揭示了该模型中存在混沌运动,并发 现系统初值的微小变化会导致轨道在长时间以后完全不 同,即解对初值的极端敏感性,就是著名的蝴蝶效应。
BIT
PEMC
混沌与分岔的起源与发展
混沌现象发现以后,关于分岔与混沌之间联系的 研究得到迅速发展,如
Rulle和Takens发现环面分岔通向混沌;
Feigenbaum发现倍周期分岔通向混沌; Pomeou等发现伴随鞍结分岔的阵发性通向混沌。
BIT
PEMC
混沌概念
混沌,英文为 chaos ,意思是混乱,紊乱。混沌是指发生 在确定系统中貌似随机的无规则或不规则运动。然而混沌 作为一门科学发展至今,仍没有一个准确、完整、科学的 定义,不同领域的科学家往往对其有不同的理解。混沌一 词由李天岩(Tian-yan Li)和约克(Yorke)于1975年首先 提出。 混沌的定性描述,“混沌是确定性非线性系统的有界的敏 感初始条件的非周期行为”。
BIT
PEMC
混沌与分岔的起源与发展
分岔现象最早来源于 1729 年 Musschenbrock 对压杆失稳实 验的观察,这种分岔现象在固体力学中称屈曲。 1834年雅可比首次提出分岔这个术语。 1885年,庞卡莱提出旋转液体星平衡图形的演化过程的分 岔理论。固体力学的屈曲和流体力学的转捩一直是分岔研 究的重要动力。 20世纪30年代,范德波、安德罗诺夫等在非线性振动研究 中发现大量的分岔现象。 以后在很长时间内,分岔的研究主要集中在应用领域,直 到20世纪60年代,微分动力系统、突变、奇异性、非线性 分析等方面逐渐形成了现代数学理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
分歧、拟周期与混沌现象 南京理工大学自动化学院sunjh
第七章
7.1 7.2 7.3 7.4
分歧、拟周期与混沌现象
引言 非线性电路的分歧 非线性电路中的拟周期现象 非线性电路方程中的混沌现象
2006-2007年于南京
现 代 电 路 理 论
7.1 引言 南京理工大学自动化学院sunjh
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
2006-2007年于南京
现 代 电 路 理 论 2、过临界分歧
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
2006-2007年于南京
现 代 电 路 理 论 3、叉形分歧
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
混沌现象
非线性电路中的平衡点、周期解、拟周期的共同特征:
1、完全确定性; 2、解对初值的不敏感; 3、对周期解和拟周期解,频谱是离散的; 4、对于周期激励的电路,无论解是周期振荡或是拟周期 振荡,当选取激励信号的周期作等间隔横截其响应时,周 期信号在横截面表现为一个点,或m个点,一个点称周期1, m个点称周期m;拟周期则是一个无限填充的封面椭圆。这 种截面称为庞卡莱截面。
1 RC 1 RC 1 RC
( 2 u1 u 2 u 0 )
u1 2 u 2
( u2 u3 )
u3
(7 5)
令
d u1 d du2 d du3 d
3 2 u1 u 2 k u 3 m u 3 u1 2 u 2 u 3 u2 u3
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
由电路参数发生(微小)改变而引起电路的解或相图发生质的变化。 能引起分歧的参数称分歧参数,而此参数值称为分歧点。 静态分歧:平衡点的个数和稳定性的变化。 动态分歧:相平面轨道定性性质的变化。
局部分歧:讨论平衡点或轨道附近相图的拓扑结构的变化。
2006-2007年于南京
现 代 电 路 理 论
7.4 混沌现象 南京理工大学自动化学院sunjh
7.4
混沌现象
u
2006-2007年于南京
2006-2007年于南京
现 代 电 路 理 论 4、Hopf分歧: 移相式RC振荡电路
3 设放大器的转移特性为 u 0 g ( u 3 ) k u 3 m u 3
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
d u1 dt du2 dt du3 dt
t RC
(7 6)
2006-2007年于南京
现 代 电 路 理 论
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
d u1 d du2 d du3 d 2 1 0
1 2 1
k u1 1 u 2 1 u3
2、分歧或分岔
电路参数变化——解的性质发生质的变化——变化称为分歧。
2006-2007年于南京
现 代 电 路 理 论
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
7.2
非线性电路的分歧 主要内容
1、分歧
2、过临界分歧
3、叉形分歧
4、Hopf分歧
2006-2007年于南京
现 代 电 路 理 论 1、分歧
2006-2007年于南京
现 代 电 路 理 论
7.3
非线性电路中的拟周期现象 南京理工大学自动化学院sunjh
7.3
非线性电路的分歧 主要内容
1、分歧
2、过临界分歧
3、叉形分歧
4、Hopf分歧
2006-2007年于南京
现 代 电 路 理 论
7.4 混沌现象 南京理工大学自动化学院sunjh
7.4
7.1
引言
1、非线性电路的稳态解
①平衡点 ②周期解 ③拟周期解 ④混沌解 传统的认识:一个确定的系统,其解也是确定的——即在两组相近的 初始条件下,其解也是相近的。
所谓确定的电路,是指所有元件参数全是确定的,不含任何随机 因数。
现在的认识:确定的非线性电路存在一种特殊稳态解——在一定区域 内永不重复类似随机的振荡。这种振荡对初始值极为敏感,不能从任 一点预测未来的振荡行为。解即为混沌。
全局分歧:研究大范围内拓扑结构的变化。 静态分歧:鞍结分歧、跨临界分歧等。
动态分歧:霍普夫(Hopf)分歧、闭轨分歧、环面分歧、同 宿或异宿分歧等等。
只有平衡点是非双曲平衡点时,才会有分歧现象发生。
2006-2007年于南京
现 代 电 路 理 论
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
电路如图所示,非线性电阻的u-i特性为i=u2,以uC为状态变量,则方程为
du dt du dt
C
IS u 1 C
2
(IS u )
2
2006-2007年于南京
现 代 电 路 理 论
7.2 非线性电路的分歧 南京理工大学自动化学院sunjh
2006-2007年于南京
现 代 电 路 理 论