一元一次不等式章节复习(含知识点)知识讲解
(完整版)一元一次不等式知识点总结
一元一次不等式知识点一:不等式的概念1.不等式:用“<” (或“≤” ),“>” (或“≥” ) 等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1) 不等号的类型:① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2)等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别: 解集是能使不等式成立的未知数的取值范围, 是所有解的集合, 而不等式的解是使不等式成立的未知数的值. 二者的关系是:解集包括解, 所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
一元一次不等式知识点及典型例题
例 2 用>”或<”填空,并说明理由
如果 a<b 则 1)a-2( )b-2
2)-
a 2
-
b 2
例 3 把下列不等式变成 x>a x<a 的形式。
3)-3a-5( )-3b-5
X+4>7
5x<1+4x
-
4 5
x>-1
2x+5<4x-2
例 4 已知实数 a/b/c/在数轴上的对应点如图,则下列式子正确的是( )
答案:C 把不等式组
的解集表示在数轴上,正确的为图 3 中的( )
不等式组
的解集在数轴上可表示为( )
A 答案:D
B
C
D
实数 在数轴上对应的点如图所示,则 , , 的大小关系正确的是( )
A.
B.
C.
D.
答案:B
用
表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么
这三种物体按质量从大到小的顺序排列应为( )
解:解不等式(1),得 原不等式组的解是
. 解不等式(2),得
.
.
(1)方程
的解为
(2)解不等式
≥9;
(3)若
≤a 对任意的 x 都成立,求 a 的取值范围
解:(1)1 或 . (2) 和 的距离为 7,
因此,满足不等式的解对应的点 3 与 的两侧.
当 在 3 的右边时,如图(2), 易知
.
解不等式组
宿州市第二初级中学 陆连荣
6、不等式与不等式组
一元一次不等式
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个
一元一次不等式组的知识点及其经典习题讲解
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
10一元一次不等式组(基础) 知识讲解及其练习 含答案
一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20, 所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三: 【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x xx +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.一元一次不等式组(基础)巩固练习【巩固练习】一、选择题1.下列选项中是一元一次不等式组的是( )A .B .C .D .2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为 ( ).3.(•来宾)已知不等式组的解集是x≥1,则a 的取值范围是( ) A .a <1 B .a ≤1C .a ≥1D .a >1 4.不等式32015x -<≤的整数解有( ). A .4个 B .3个 C .2个 D .1个5.现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.如果|x+1|=1+x ,|3x+2|=-3x-2,那么x 的取值范围是( ).A .213x -≤≤-B .1x ≥-C .23x ≤-D .213x -≤≤- 二、填空题7.如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 8.(•广东)不等式组x x x x --⎧⎪⎨-⎪⎩1222132≤>的解集是 . 9.不等式组34125x +-≤<的所有整数解的和是______. 10. 如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围为 .11.从彬彬家步行到学校的路程是2400米,如果彬彬7时离家,要在7时30分至40分间到达学校,那么步行的速度x (米/分)的范围是________.12. 在△ABC 中,三边为a 、b 、c ,如果a 3x =,b 4x =,c 28=,那么x 的取值范围是 .三、解答题13.解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩;(2)1<3x-2<4;14.若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求m 的取值范围.15.郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【答案与解析】一、选择题1. 【答案】D ;【解析】解:A 、含有两个未知数,错误;B 、未知数的次数是2,错误;C 、含有两个未知数,错误;D 、符合一元一次不等式组的定义,正确;故选D.2. 【答案】A ;【解析】解不等式组可得:1,2x x >≥且.3. 【答案】A ;4. 【答案】B ;【解析】32053215x x -⎧<⎪⎪⎨-⎪≤⎪⎩,解得:312x -≤<,所以整数解:-1,0,1. 5. 【答案】C ;【解析】设甲种运输车安排x 辆,5x+4(10-x )≥46,x≥6,故至少要甲种运输车6辆.6. 【答案】A ;【解析】由10320x x +≥⎧⎨--≥⎩,解得213x -≤≤-. 二、填空题7. 【答案】x >2,无解;8. 【答案】﹣3<x≤1;【解析】解不等式①得:x≤1,解不等式②得:x >-3,所以不等式组的解集是:﹣3<x≤1.9. 【答案】-5;【解析】所有整数解:-3,-2,-1,0,1,所以和为-5.10.【答案】1<m <2;【解析】由第一幅图得m >1,由第二幅图得m <2,故1<m <211.【答案】60<x <80; 【解析】设步行速度为x 米/分,依题意可得:3240042400x x <⎧⎨>⎩,得60<x <80 12.【答案】4<x <28;【解析】4x-3x <28<4x+3x ,即4<x <28.三、解答题13.【解析】解:(1)由①得解集为x ≥3,由②得解集为x <3,在数轴上表示①、②的解集,如图, 所以不等式组无解.(2)不等式组的解集为1<x <2,表示在数轴上如图:14.【解析】 解:,①+②得2x=4m ﹣2,解得x=2m ﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x 的值为负数,y 的值为正数, ∴,∴﹣4<m <.15.【解析】解:(1)设每个书包的价格为x 元,则每本词典的价格为(x-8)元.根据题意得:3x+2(x-8)=124解得:x =28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y 个,则购买词典(40-y)本.根据题意得:1000[2820(40)]1001000[2820(40)]120y y y y -+-≥⎧⎨-+-≤⎩, 解得:10≤y ≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.。
9.2 一元一次不等式(1).doc
9.2 一元一次不等式第1课时 一元一次不等式活动一. 知识点1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.类比一元一次方程的解法步骤,掌握一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.活动二. 典例精讲知识点1:一元一次不等式的定义例1.下列不等式中哪一个不是一元一次不等式( )A .x >3B .-y +1>y C.1x>2 D .2x >1 知识点2:一元一次不等式的定义和其解法例2.若(m +1)x |m |+2>0是关于x 的一元一次不等式,则m 的取值是________,此不等式的解集为________.知识点3:解一元一次不等式例3.解不等式:(1) 3x -1>5+x . (2)3(x -1)>2x +2.练习:1.下列不等式中哪一个不是一元一次不等式( )A .3x -2>4B .2y >4C .2x<5 D .2<3x +17 2.若(m -2)x 2m +1-1>5是关于x 的一元一次不等式,则该不等式的解集为________.活动三 . 基础巩固1.下列不等式是一元一次不等式的是( )A .2(1-y )+y >4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +2 2.不等式2x <4的解集是( )A .x >2B .x <2C .x >-2D .x <-23.不等式12x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.解不等式:(1)5x +3<3(2+x ). (2)2(x +1)-1≥3x +2.(3)5x +15>4x -1. (4)-2x +2<x +17.活动四. 课堂反馈6.不等式13(x -m )>2-m 的解集为x >2,则m 的值为( ) A .4 B .2 C .32 D .127.若12x 2m -1-8>5是关于x 的一元一次不等式,则m =________.8.不等式5x -12≤2(4x -3)的负整数解是____________.9.已知不等式12x -3≥2x 与不等式3x -a ≤0解集相同,则a =________.10.关于x 的方程ax =3x -5有负数解,则a 的取值范围是________.培优训练11.已知x =12是方程6(2x +m )=3m -6的解,求关于x 的不等式mx +2>m (1-2x )的解集.。
一元一次不等式知识要点及典型题目讲解-
一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。
不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。
这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。
等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。
(即两边仍然相等)。
2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。
一元一次不等式(组)知识点
一元一次不等式(组 )考点一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
一元一次不等式知识点及典型例题
一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。
例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。
三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。
X=2 是不等式 x+3<2 的解。
X=2 是不等式 3x<7 的解。
不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。
解是 x<2。
X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。
-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。
例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。
②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
7 一元一次不等式与不等式组知识点总结
优能个性化辅导--一元一次不等式与不等式组一元一次不等式与一元一次不等式组的解法一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.7.一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( )A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .用不等式表示a 与6的和小于5; x 与2的差小于-1;数轴题1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >0同等变换1.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6借助数轴解不等式(组): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或bx a >)当0a <时,b x a <(或bx a>)4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________.1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在1. 不等式|x |<37的整数解是________.不等式|x |<1的解集是________.1.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A.x <2 B.x >-2 C.当a >0时,x <2 D.当a >0时,x <2;当a <0时, x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)y x<0中,正确结论的序号为________。
第一章:一元一次不等式知识点复习
8年级下册数学期末测试第一章:一元一次不等式知识点复习1、不等式的定义:一般地,用符号‘‘______________________”连接的式子叫做不等式。
例:判断下列哪些式子是不等式,哪些不是不等式。
①32>-;②21x ≤;③21x -;④s vt =;⑤283m x <-;⑥124x x->-; ⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
2、不等式的基本性质记住:不等式两边同乘同除同一负数,不等号方向改变。
比如:不等式b >ax 的解集是abx <,一定会有0<a 。
如果0<<n m ,那么下列结论中错误的是( ) 【答案C 】A .99-<-n m B. n m ->- C. m n 11> D.1>nm3、不等式解集的数轴表示不等式3x <的解集在数轴上表示为( ).. C .. 记住:小于向左,大于向右,有等实心,无等空心(数轴的箭头方向别忘了) 4、一元一次不等式的解法131321≤---x x 解不等式:解:去分母,得______________________ (不要漏乘哟!每一项都得乘) 去括号,得________________________ (注意符号,不要漏乘!) 移 项,得 _____________________ (移项要变号) 合并同类项,得 ____________________ (计算要正确) 系数化为1, 得 ___________ (同除负,不等号方向要改变,分子分母别颠倒了) 5、不等式的特殊解:(先解除不等式,再取符合条件的值)不等式53-x <x +3的正整数解有( )A.1个B.2个C.3个D.4个 6、求不等式中字母的取值(实质仍是解不等式)关于不等式22x a -+≥的解集如图所示,a 的值是( ) A 、0 B 、2 C 、-2 D 、-4 7、不等式组的解集解不等式组,并将其解集在数轴上表示出来.23112.2x x x -<⎧⎪⎨-+-⎪⎩, ① ≥ ②7、求不等式组中字母的取值已知不等式组3210x x a +⎧⎨-<⎩,≥无解,则a 的取值范围是记住:同大取大,同小取小,大小小大中间找,大大小小无解了! 【(1a -≤)别忘等号】8、一元一次不等式(组)的应用(1)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每个小朋友分8个苹果,则有一个小朋友分不到5个苹果。
一元一次不等式(组)知识总结及经典例题分析
二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
人教版七年级数学下册《一元一次不等式》知识点
不等式知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。
2.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。
3.当x 时,代数式52+x 的值不大于零4..若x <1,则22+-x 0(用“>”“=”或“”号填空)5.不等式x 27->1,的正整数解是6.不等式x ->10-a 的解集为x <3,则a7.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质 的含量为 _____ g三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2.解一元一次不等式的一般步骤: (1)去分母 (2)去括号 (3)移项(4)合并同类项 (5)将x 项的系数化为1例:一、 判断题(每题1分,共6分)1、 a >b ,得a +m >b +m ( )2、 由a >3,得a >23 ( ) 3、 x = 2是不等式x +3>4的解 ( )4、 由-21>-1,得-2a >-a ( ) 5、 如果a >b ,c <0,则ac 2>bc 2 ( )6、 如果a <b <0,则ba <1 ( ) 二、 填空题(每题2分,共34分)1、若a <b ,用“>”号或“<”号填空:a -5 b -5; -2a -2b ;-1+2a -1+2b ;6-a 6-b ; 2、x 与3的和不小于-6,用不等式表示为 ;3、当x 时,代数式2x -3的值是正数;4、代数式41+2x 的不大于8-2x 的值,那么x 的正整数解是 ; 5、如果x -7<-5,则x ;如果-2x >0,那么x ; 6、不等式ax >b 的解集是x <a b ,则a 的取值范围是 ; 7、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为 ;8、点A (-5,y 1)、B (-2,y 2)都在直线y = -2x 上,则y 1与y 2的关系是 ;9、如果一次函数y =(2-m )x +m 的图象经过第一、二、四象限,那么m 的取值范围是 ;易错点分析:例 解关于x 的不等式(12-a )x >1-2a . 错解:去分母,得(1-2a )x >2(1-2a ).将不等式两边同时除以(1-2a ),得x >2. 错因剖析:在利用不等式的性质解不等式时,如果不等式两边同乘(或除以)的数是含字母的式子,应注意讨论含字母的式子的符号.本例中不等式两边同乘(或除以)的(1-2a ),在不确定取值符号的情况下进行约分,所以出错.正解:将不等式变形,得(1-2a )x >2(1-2a ).(1)当1-2a >0时,即a <12时,x >2; (2)当1-2a =0时,即a =12时,不等式无解; (3)当1-2a <0时,即a >12时,x <2.。
一元一次不等式知识点
一元一次不等式知识点1. 一元一次不等式的定义一元一次不等式是指包含一个未知数,且未知数的最高次数为一的不等式。
其一般形式为 ax + b > c 或 ax + b < c,其中 a, b, c 是实数,a ≠ 0。
2. 基本性质一元一次不等式具有以下基本性质:- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 0 特殊性:0 不小于任何负数,不大于任何正数。
3. 解一元一次不等式的步骤- 移项:将含有未知数的项移到不等号的一边,常数项移到另一边。
- 合并同类项:将含有未知数的项系数化为1,同时将常数项相加减。
- 求解:根据系数化为1后的不等式,直接求出解集。
4. 特殊注意事项- 当系数化为1时,如果系数的分母为负数,需要改变不等号的方向。
- 解一元一次不等式时,需要注意不等式两边的运算顺序和运算规则。
5. 常见题型及解法- 直接求解:直接根据一元一次不等式的解法步骤求解。
- 应用题:将实际问题转化为一元一次不等式,然后求解。
- 系统求解:多个一元一次不等式组成的不等式组,需要找到满足所有不等式的解集。
6. 不等式组的解集- 同大取大:两个不等式都是大于号,取较大的那个数。
- 同小取小:两个不等式都是小于号,取较小的那个数。
- 大大小小中间找:一个不等式是大于号,另一个是小于号,取中间的数。
- 无解:一个不等式要求大于某个数,另一个要求小于同一个数,这种情况下无解。
7. 练习题- 解不等式 2x - 3 > 5,并表示在数轴上。
- 一个数的两倍减去5不小于10,求这个数的取值范围。
- 有两个房间,第一个房间的温度比第二个房间的温度高至少5度,如果第二个房间的温度是18度,求第一个房间的温度范围。
8. 总结一元一次不等式是初中数学的重要知识点,掌握其性质和解法对于解决实际问题和进一步学习数学都具有重要意义。
第7章一元一次不等式及不等式期末复习教学案
第七章 一元一次不等式及不等式组期末复习教学案【知识要点】、1.不等式: 式子叫做不等式。
2.表示不等式关系的符号及其意义.(1)“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能说明两个量谁大谁小; (2)“>”读作“大于”,它表示其左边的数比右边的数大; (3)“<”读作“小于”,它表示其左边的数比右边的数小;(4)“≥”读作“大于或等于”,其意义是指左边的数不小于右边的数; (5)“≤”读作“小于或等于”,其意义是指左边的数不大于右边的数;3.(1)不等式的解:能使不等式成立的未知数的值叫做 ;(2)不等式的解集:一个含有未知数的不等式的解的全集叫做 ; (3)解不等式:求不等式解集的过程叫做 . 4. 不等式解集的表示方法(1)用不等式表示:不等式的解集是一个范围,这个范围可以用一个最简单的不等式来表示.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,要注意一是定方向,二是定边界点,大于向右画,小于向左画;无等于号时边界点处画空心圆圈,有等于号时边界点处用实心圆点表示一定要注意不等号“ >” ,“ < ”与“ ≥" “≤”在数轴上画法的区别.5.等式的解与不等式的解集的联系与区别.(1)联系: ; (2)区别: .6.不等式的性质.(重点)不等式的性质 1 :不等式的两边 ,不等号的方向不变.不等式的性质 2 :不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;不等式的两边都乘以(或除以)同一个负数,不等号的方向 .7.一元一次不等式 (重点):(1)只含一个未知数,并且未知数的最高次数是1系数不等于0不等式,叫做 . (2)一元一次不等式的一般形式为:b ax+>0或b ax +<0(0≠a )8. 叫做一元一次不等式组。
叫做这个不等式组的解集。
9.一元一次方程与一次函数、二元一次方程(组)与一次函数的联系.(重点)(1)任何一元一次方程都可以转化为)0,(0≠=+a b a bax 为常数,的形式,所以解一元一次方程可以转化为当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线b ax y +=,确定它与x 轴的交点的横坐标的值.(2)二元一次方程与一次函数的联系.若k ,b表示常数且k ≠0,则b kx y =-为二元一次方程,有无数个解,将其变形可得b kx y +=,将 x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同.(3)二元一次方程组与一次函数的联系.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 解一可以看作是两个一次函数1111b cx b a y +-=和2222b cx b a y +-=图像的交点.11.一元一次不等式与一次函数的联系. (重点)(1)任何一个一元一次不等式都可以转化为b ax+>0或b ax+<0(a ,b为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大(小)于0时,求自变量的取值范围. (2)一次函数b kx y +=与一元一次方程0=+b kx 和一元一次不等式的关系:函数b kx y +=的图象在x 轴上方的点所对应的自变量x 的值,即为不等式b kx+>0的解集;在x 轴上的点所对应的自变量x 的值,即为方程0=+b kx 的解;在x 轴下方的点所对应的自变量x 的值,即为不等式b kx +<0的解集.【典型例题】【例1】下列式子中哪些是不等式?(1)x+y=y+x (2)-4>-6 (3)x ≠5 (4)x +2>5 (5)3x<y (6)2a -b 解:是不等式的是: (填序号) 【例2】用不等式表示下列关系。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【当堂测评】
精品文档
精品文档 精品文档
。
变式 1:m 取何值时,关于 x 的方程 x 1 3m 4x 的解大于 1
变式 2:求关于 x,y 的方程组:
3x y 2k
2y
x
3
的解满足
x y
1 ,求 1
k
的
整数值。
精品文档
精品文档
变式
3:若关于
x
的不等式组
2x m 4 3x 2m n
的解集为
2
x
3,求
m
n2
的值.
例 8 某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果 给每个老人分 5 盒,则剩下 38 盒,如果给每个老人分 6 盒,则最后一个老人不足 5 盒,但 至少分得一盒.
)
C. a b 44
D. a b 1
精品文档
考室号:
精品文档
变式:已知 a b ,下列式子:① a2 b2 ;② a 3 b 3 ;③ a b 0 ;④ a b ;
⑤ ac bc .其中正确的有( )
A.1 个
B. 2 个
C. 3 个
D. 5 个
例 3 解不等式:4(x-1)>5x-6.
口诀
x a
x
b
x a
x
b
x a
x
b
x a
x
b
二、典例精析
例 1 下列四个式子:① x 0;② a 2 ③ 2 1;④ y b .其中是不等式的有( )
A. ②③ B. ②③④ C. ①②③④ D. ②④
例 2 若 a b ,则下列不等式成立的是( A. a 3 b 3 B. 2a 2b
,移项,,Leabharlann 在数轴上表示不等式的解集:
班级 :
姓名:
座位号:
解集为:
4.一元一次不等式组的解集:一元一次不等式组中,各个不等式的解集的公共部分,叫
做这个一元一次不等式组的解集.
一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴
表示如下表:(设 a<b)
一元一次不等式组 解集
图示
例4
解不等式组:
x 2
1<x
,
x (3x 1) 5.
例 5 不等式 4-3x≥2x-6 的非负整数解有(
)
A.1 个
B. 2 个
C. 3 个
D. 4 个
x 3 0,
变式:不等式组
x 2
3
的所有整数解之和是(
)
A.9
B.12
C.13
D.15
例 6 关于 x 的不等式 3x-a≤0,只有两个正整数解,则 a 的取值范围是___.
变式
1:
若不等式组
5 x
3x 0, m0
有实数解,则实数
m
的取值范围是(
)
A.m≤ 5 3
B.m< 5 3
C.m> 5 3
D.m≥ 5 3
变式
2:已知不等式组
x x
2a 1, a2
无解,则
a
的取值范围是(
)
A.a≤-3 B.a<-3 C.a≥-3 D.a>-3
例 7 若关于 x 的方程 3x+2m=2 的解是正数,则 m 的取值范围是
………○…………密…………封…………线…………内…………不…………要…………答…………题…………○…………
精品文档
一元一次不等式(组)章节复习
一、归纳总结
1.不等式的概念:
一元一次不等式的概念:
2.不等式的基本性质:
基本性质 1:
基本性质 2:
基本性质 3:
3. 一元一次不等式的解法:
步骤:去分母,