巴拿赫压缩不动点定理
15 巴拿赫不动点定理

1.5 Banach 不动点定理及应用巴拿赫不动点定理(Banach Fixed Point Theorem ),又称为压缩映射定理或压缩映射原理,它是用泛函分析方法统一处理许多关于解的存在性和唯一性问题(如微分方程、代数方程组、积分方程等)的一个重要定理.许多方程求解问题往往可以转化为求某映射的不动点,而压缩映射原理描述了映射不动点的存在性和唯一性的充分条件,并提供了一个迭代程序,按此程序逐次逼近可求不动点的近似值和误差,这是代数方程,微分方程,积分方程,泛函方程以及计算数学中的一个很重要的方法.1.5.1 Banach 不动点定理及推论定义 1.5.1 不动点(Fixed points)设X 是一个非空集合,:A X X →为映射,如果存在x X ∗∈满足()A x x ∗∗=,则称x ∗为映射A 的不动点.例如(1)从R 到R 上的映射2:f x x →有两个不动点,即0x =和1x =.(2)从2R 到2R 上的映射:(,)(,)f x y y x →有无穷多个不动点,即直线y x =上的所有点均是不动点.设f 是空间X 到自身的映射,方程()0f x =的求解可转化为求映射:()T x f x x α→+的不动点,其中常数0α≠(显然当Tx x ∗∗=时,即()f x x x α∗∗∗+=,可得()0f x ∗=).关于不动点的定理,最简单而又最广泛应用的是著名的压缩映射原理.定义 1.5.2 压缩映射(Contraction mapping)设X 是一个度量空间,:A X X →为映射,如果存在常数(0,1)α∈,对于任何,x y X ∈,有(,)(,)d Ax Ay d x y α≤则称A 为X 上的压缩映射.称常数α为压缩系数.显然压缩映射是连续映射.下面的压缩映射原理是由Banach 于1922年给出的,也称为Banach 不动点定理.定理 1.5.1 Banach 不动点定理(压缩映射原理Contraction mapping principle )设X 是完备的度量空间,:A X X →是压缩映射,则A 在X 中具有唯一的不动点,即存在唯一的x ∗,使得()x A x ∗∗=.证明 任取0x X ∈,构造点列{}n x :10()x A x =,21()x A x =,32()x A x =,43()x A x =,…,1()n n x A x −=,….下面证明 (1)证{}n x 为基本列;(2)证n x x ∗→,()x A x ∗∗=;(3)证x ∗的唯一性.(1)证{}n x 为基本列.因为A 是压缩映射,所以不妨设(,)(,)d Ax Ay d x y α≤,其中(0,1)α∈,记100(,)d x x c =,于是有2110100(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤; 23221210(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤;34332320(,)(,)(,)d x x d Ax Ax d x x c αα=≤≤;…… ……1112120(,)(,)(,)n n n n n n n d x x d Ax Ax d x x c αα−−−−−−=≤≤.因此对于正整数k 有1121(,)(,)(,)(,)n n k n n n n n k n k d x x d x x d x x d x x +++++−+≤+++L110()n n n k c ααα++−≤+++L0(1)1n k c ααα−=−01nc αα≤−0→ (n →∞) 故{}n x 为基本列.(2)证n x x ∗→,()x A x ∗∗=.因为X 是完备的度量空间,所以基本列{}n x 收敛,不妨设n x x ∗→(n →∞);又知压缩映射是连续映射以及1()n n x A x −=,于是lim n n x x ∗→∞=1lim ()n n A x −→∞=1(lim )n n A x −→∞=Ax ∗=.(3)证x ∗的唯一性.若存在1x X ∗∈且11()x A x ∗∗=,那么111(,)(,)(,)d x x d Ax Ax d x x α∗∗∗∗∗∗=≤于是1(1)(,)0d x x α∗∗−≤,从而1(,)0d x x ∗∗≤,即1x x ∗∗=.□注1 Banach 不动点定理给出了在完备度量空间X 中求解不动点的迭代法,即1x X ∀∈,由1n n x Ax +=(1,2,n =L )获得不动点n x x ∗→.第n 次迭代后的近似解n x 与不动点x ∗的误差估计:根据上述定理证明的第二部分知0(,)1nn n k d x x c αα+≤−,于是令k →∞有01000(,)(,)(,)111n n nn d x x c d x x d Ax x αααααα∗≤==−−−.即00(,)(,)1nn d x x d Ax x αα∗≤−.注 2 Banach 不动点定理中的两个条件压缩性和空间的完备性都是十分重要的.例如当(,)(,)d Ax Ay d x y <时,未必存在不动点.设:A →R R ,()arctan 2A x x x π=+−,那么,x y ∀∈R ,有(,)d Ax Ay Ax Ay =−(arctan )(arctan )22x x y y ππ=+−−+−(arctan arctan )x y x y =−−−2()1x yx y ξ−=−−+(由Lagrange 中值定理知存在(,)x y ξ∈或(,)y x ξ∈) 22()1x y ξξ=−+(,)x y d x y <−=.但是,当Ax x =时,方程arctan 2x π=无解,因此映射A 在R 中没有不动点.Lagrange 中值定理:如果函数()f x 在闭区间[,]a b 连续,在开区间(,)a b 内可导,那么在(,)a b 内至少存在一点ξ(a b ξ<<),使得()()()()'f b f a f b a ξ−=−.推论 1.5.1 设X 是完备的度量空间,映射:A X X →是闭球0(,)B x r 上的压缩映射,并且00(,)(1)d Ax x r α≤−,其中(0,1)α∈是压缩系数,那么A 在0,)B x r 中具有唯一的不动点.证明 显然0,)B x r 是完备度量空间X 的闭子集,所以0,)B x r 是完备的子空间.0,)x B x r ∀∈,有0(,)d x x r ≤,于是0000(,)(,)(,)d Ax x d Ax Ax d Ax x ≤+0(,)(1)d x x r αα≤+−(1)r r αα≤+−r ≤即0(,)Ax B x r ∈.可见A 是完备度量空间0(,)B x r 到0,)B x r 上的压缩映射,因此A 在0,)B x r 中具有唯一的不动点.□设映射:A X X →,记n nA AA A =64748L ,那么映射:n A X X →.推论 1.5.2 设X 是完备的度量空间,映射:A X X →,如果存在常数(0,1)α∈和正整数n ,使得,x y X ∀∈有(,)(,)n n d A x A y d x y α≤那么A 在X 中存在唯一的不动点.证明 显然n A 是压缩映射,所以n A 在X 中存在唯一的不动点x ∗,即n x A x ∗∗=.于是1()()n n n A Ax A x A A x Ax ∗+∗∗∗===可得Ax ∗也是n A 的不动点,由不动点的唯一性知:Ax x ∗∗=.同时易得2A x x ∗∗=,3A x x ∗∗=,…,n A x x ∗∗=下面证明x ∗的唯一性.设存在1x X ∗∈且11()x A x ∗∗=,得112A x x ∗∗=,113A x x ∗∗=,…,11n A x x ∗∗=,那么11(,)(,)d x x d Ax Ax ∗∗∗∗==K 1(,)n n d A x A x ∗∗=1(,)d x x α∗∗≤于是1(1)(,)0d x x α∗∗−≤,从而1(,)0d x x ∗∗≤,即1x x ∗∗=.□1.5.2 Banach 不动点定理的应用◇ 求方程的近似解定理 1.5.2 设:f →R R 是可微函数,且()1'f x α≤<,则方程()f x x =具有唯一解.证明 根据Lagrange 中值定理知存在(,)x y ξ∈,使得()()()()'f x f y f x y x y ξα−=−≤−,因此f 是完备度量空间R 上的压缩映射,于是由压缩映射原理知,()f x x =具有唯一解.例 1.5.1 求方程510x x +−=的根.解 显然函数5()1g x x x =+−的导函数为4()510'g x x =+>,即g 单调递增,且115()0232g =−<,(1)1g =,所以原方程只有一个根而且在(0.5,1)内.原方程可写为 51x x −=由于51x −不是一个压缩映射,即54(1)5'x x −=在(0.5,1)内并不小于1.将上式改造为5(1)x x λλ−=,即为5(1)(1)x x x λλ−+−=,于是当(0.5,1)x ∈及(0,1)λ∈时有54[(1)(1)]15'x x x λλλλ−+−=−−1λ<−.令14λ=,531()(1)44f x x x =+−,那么在(0.5,1)上()f x 满足 3()14'f x << 于是得()f x 是(0.5,1)上的压缩映射,取00.75x =,由迭代1()n n x f x +=可得10.7521x =,20.7533x =,30.7540x =,40.7544x =, 50.7546x =,60.7547x =,70.7548x =,80.7548x =,….若取8x 作为不动点x ∗的近似解,其误差为80.750.75210.750.000810.75nx x ∗−≤−=−.□◇ 解线性代数方程组定理 1.5.3 设1111n n nn a a A a a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠L M M L ,1nn x x x ⎛⎞⎜⎟=∈⎜⎟⎜⎟⎝⎠M R ,1n n b b b ⎛⎞⎜⎟=∈⎜⎟⎜⎟⎝⎠M R ,若对每个1i n ≤≤,矩阵A 满足11n ij j a =<∑,即11max 1nij i nj a α≤≤==<∑,则线性方程组Ax b x +=具有唯一解x ∗.证明 在n R 上定义距离1(,)max{i i i nd x y x y ≤≤=−,其中T 12(,,,)n n x x x x =∈L R ,T 12(,,,)n n y y y y =∈L R ,易验证(,)n d R 是完备的度量空间.令映射:(,)(,)n n T d d →R R 为Tx Ax b =+.记T 12(,,,)n Tx u u u u ==L ,T 12(,,,)n Ty v v v v ==L ,于是11111n i j j n n ni j n j a x b u u u a x b ==⎛⎞+⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠+⎜⎟⎝⎠∑∑M M ,11111n i j j nn ni j n j a y b v v v a y b ==⎛⎞+⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠+⎜⎟⎝⎠∑∑M M . 因此1(,)max{}i i i nd Tx Ty u v ≤≤=−11max{()}nij j j i nj a x y ≤≤==−∑111max{}max{}nij j j i ni nj a x y ≤≤≤≤=≤⋅−∑(,)d x y α=由11max 1nij i nj a α≤≤==<∑可知T 是压缩映射,从而存在唯一的不动点x ∗,即线性方程组Ax b x +=具有唯一解x ∗,且可根据迭代1n n x Ax b +=+求得方程的近似解.□◇ 证明隐函数存在定理定理 1.5.4 设二元函数(,)F x y 在区域{(,),}x y a x b y ≤≤−∞<<+∞上连续,关于y 的偏导数存在,且满足条件0(,)'y m F x y M <≤≤,其中m ,M 是正常数,则存在连续函数()y f x =,[,]x a b ∈满足:[,]x a b ∀∈,(,())0F x f x =.证明 在完备度量空间[,]C a b 中定义映射T :()[,]x C a b φ∀∈,1()()()(,())T x x F x x Mφφφ=−. 由于(,)F x y 是连续函数,所以[,]T C a b φ∈,即:[,][,]T C a b C a b →.下面证T 是压缩映射.设,[,]C a b φϕ∈,根据微分中值定理得,存在(0,1)θ∈,使得11()(,())()(,())T T x F x x x F x x M Mφϕφφϕϕ−=−−+ 1()()[(,())(,())]x x F x x F x x Mφϕϕφ=−+− 1()()[(,()(()())](()()'y x x F x x x x x x Mφϕφθϕφϕφ=−++−− (1)()()mx x Mφϕ≤−−. 记1mMα=−,显然01α<<,于是有T T φϕαφϕ−≤−,因此 [,](,)max ()()()()x a b d T T T x T x φϕφϕ∈=−[,]max ()()x a b x x αφϕ∈≤−(,)d αφϕ=因此T 是压缩映射,由压缩映射原理知存在唯一的()[,]f x C a b ∈,使得()()()Tf x f x =即(,())0F x f x =,[,]x a b ∈.□◇ 在微分方程方面的应用设(,)f t x 在矩形区域00{(,),}D t x t t a x x b =−≤−≤连续,那么存在0M >使得(,)t x D ∀∈有(,)f t x M ≤,进一步假定(,)f t x 关于变量x 满足李普希兹(Lipshitz)条件:存在常数K ,12(,),(,)t x t x D ∀∈有1212(,)(,)f t x f t x K x x −≤−,那么有微分方程为00d (,)d ()xf x t tx t x ⎧=⎪⎨⎪=⎩ (2.4) 定理 1.5.5 (皮卡德Picard 定理)满足上述条件的微分方程(2.4)在区间00[,]t t ββ−+上有唯一解,其中1min{,,}2b a M Kβ=. 证明 设00[,]J t t ββ=−+,则J 上的连续函数组成的空间()C J 是完备的度量空间,显然()C J 的子集0{(),()}E x x C J x t x M β=∈−≤是闭集,于是E 也是完备的度量空间.通过积分可将微分方程(2.4)写成积分方程00()(,())d tt x t x f x τττ=+∫.()x t E ∀∈定义:00()()(,())d tt Tx t x f x τττ=+∫,下面验证Tx E ∈.由于(,)f t x 在在矩形区域00{(,),}D t x t t a x x b =−≤−≤连续,所以()()Tx t 在00[,]J t t ββ=−+上连续, 00()()Tx t x =,以及00()()(,())d tt Tx t x f x τττ−=∫(,())d tt f x τττ≤∫0M t t ≤−M β≤,于是Tx E ∈,即T 映射为:T E E →.再证T 是压缩映射.根据李普希兹条件得1212()()()()(,())d (,())d ttt t Tx t Tx t f x f x ττττττ−=−∫∫012max Jt t K x x τ∈≤−−12(,)Kd x x β≤又由β的定义知12K αβ=≤,于是1212(,)(,)d Tx Tx Kd x x β≤,即T 是压缩映射.因此T 在E 中存在唯一的不动点x ∗,即存在00[,]J t t ββ=−+上的连续函数x ∗,满足积分方程0()(,())d tt x t x f x λτττ=+∫,两边微分可得x ∗是微分方程(2.4)的唯一解,并且x ∗是迭代序列012,,,,,n x x x x L L 的极限,其中010()(,())d tn n t x t x f x τττ+=+∫.□◇ 在积分方程方面的应用设(,)K t τ在矩形区域{(,),}D t a t b ττ=≤≤连续,()[,]f x C a b ∈,且[,]t a b ∀∈有(,)d baK t M ττ≤<+∞∫,那么费雷德霍姆(Fredholm)积分方程为()()(,)()d ba x t f t K t x λτττ=+∫. (2.5)定理 1.5.6 对于任意的()[,]f x C a b ∈,当1Mλ<时,Fredholm 积分方程(2.5)有唯一连续解()x t ∗,并且函数()x t ∗是迭代序列012,,,,,n x x x x L L 的极限,其迭代过程为1()()(,)()d bn n a x t f t K t x λτττ+=+∫.证明 设()()()(,)()d bn aTx t f t K t x λτττ=+∫,由(,)K t τ的连续性知,T 是从[,]C a b 到[,]C a b 上的映射:[,][,]T C a b C a b →.(),()[,]x t y t C a b ∀∈有(,)max{()()()()a t bd Tx Ty Tx t Ty t ≤≤=−max{(,)()d (,)()d }b baaa t bK t x K t y λτττλτττ≤≤=−∫∫max{(,)[()()]d }baa t bK t x y λττττ≤≤=−∫max{(,)()()d }baa t bK t x y λττττ≤≤≤−∫max{()()}a bM x y τλττ≤≤≤−(,)Md x y λ=由于1M λ<,即T 是压缩映射,根据压缩映射原理知T 在[,]C a b 上存在唯一的不动点()x t ∗,即为Fredholm 积分方程的唯一连续解,且函数()x t ∗是迭代序列012,,,,,n x x x x L L 的极限,其迭代过程为1()()(,)()d bn n ax t f t K t x λτττ+=+∫.□◇ 牛顿迭代法的证明牛顿迭代法(Newton's method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在 17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要.牛顿迭代法是求方程根的重要方法之一,而且其最大优点是在方程的单根*()0f x =附近具有平方收敛,该法还可以用来求方程的重根、复根,另外该方法广泛用于计算机编程中.定理 1.5.6 设f 是定义在[,]a b 上的二次连续可微的实值函数,*x 是f 在(,)a b 内的单重零点,那么当初值0x 充分靠近存*x 时,由关系式1()n n x g x +=,()()()n n n 'n f x g x x f x =−所定义的迭代序列收敛于*x .证明 因为*()0f x =,依据中值定理可得***1()()()()'f x f x f x f x x k x x ξ=−=−≤−.由于*x 是f 的单重零点,所以存在*x 的某闭邻域*1()(,)U x a b ⊂,使得*1()x U x ∀∈,()0f x ≠,而且()"f x 连续.于是2()[()]"'f x f x 在*1()U x 上有界2k ,所以*1()x U x ∀∈,有 2*21222[()]()()()()()1()[()][()]'""'''f x f x f x f x f x g x k f x k k x x f x f x −=−=≤≤−. 显然当*1212x x k k −<时,1()2'g x <.令**2121(){}2U x x x x k k =−<以及***12()()()U x U x U x =I ,于是()g x 在邻域*()U x 内为压缩映射,根据压缩映射原理可知命题成立.□。
Banach空间上的不动点理论及其应用

Banach空间上的不动点理论及其应用Banach空间是数学中的一个重要概念,它在函数分析领域具有广泛的应用。
不动点理论是研究映射在自身上是否存在不动点的数学理论。
本文将介绍Banach空间上的不动点理论,探讨其应用领域和意义。
一、Banach空间的定义和性质Banach空间是一个完备的向量空间,具有一个范数,使得该空间中的任意Cauchy序列收敛于该空间中的某一元素。
Banach空间的一个重要性质是完备性,即任意柯西序列在该空间内收敛。
Banach空间的完备性对于不动点理论的推导和证明至关重要。
二、不动点理论的基本概念在Banach空间上,给定一个映射F,若存在一个元素x使得F(x) = x,则称x为F的不动点。
不动点理论研究的是映射在自身上是否存在不动点,并通过各种方法寻找和证明不动点的存在性和唯一性。
三、不动点理论的证明方法1. 压缩映射原理:若存在一个常数k (0<k<1),使得对于任意x和y,有d(F(x),F(y)) ≤ kd(x,y),其中d为Banach空间中的距离函数。
则F为压缩映射,且存在唯一的不动点。
2. 构造性证明:通过构造合适的映射函数,找到不动点的存在性和唯一性。
3. Brouwer不动点定理:对于n维球面上的连续映射,存在至少一个不动点。
4. Kakutani不动点定理:对于凸紧合集上的凸映射,存在至少一个不动点。
等等。
四、应用领域不动点理论在许多领域具有广泛的应用,包括:1. 微分方程:通过不动点理论,可以证明微分方程存在解,且解的存在是稳定的。
2. 经济学:不动点理论在经济学中的应用较为常见,特别是涉及到均衡分析和最优化问题。
3. 优化问题:通过将优化问题转化为不动点问题,可以使用不动点理论来解决各种优化问题。
4. 图像处理:不动点理论在图像处理中的应用,如图像恢复、压缩感知等方面具有重要意义。
5. 动力学系统:不动点理论在动力学系统中的应用广泛,通过不动点理论可以研究动力学系统的稳定性和渐进行为。
banach空间中的积分算子不动点定理及其应用

banach空间中的积分算子不动点定理及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在数学领域中,Banach空间是一种非常重要的空间概念,它是一个完备的赋范空间。
不动点定理

不动点定理
(Fixed-point theorem )
举例:头皮的旋儿,指纹,地球表面无风处等,搅动杯中咖啡,两张报纸
三维空间中的情况:如果我们用一个密封的锅子煮水,那么总有一个水分子在煮开前的某一刻和煮开后的某一刻处于同样的位置。
地球绕着它的自转轴自转。
自转轴在自转过程中的不变的,也就是自转运动的不动点。
布劳威尔不动点定理
1. 区间[0,1]到[0,1]的连续映射f . 存在0[0,1]x ∈,使得00()f x x =.
2. 矩形[0,1]⨯[0,1]到自身的连续映射F . 存在00(,)x y ∈[0,1]⨯[0,1],使得0000(,)(,)F x y x y =。
3. 推广到多维情况: Brouwer 不动点定理断言:从有限维欧氏空间中的紧凸集到自身的任意连续映射具有不动点。
据调查统计90%以上的数学家都能叙述这个定理,但只有不到10%的数学家能够给出证明.
由于价格均衡原理Deberu 获得诺贝尔经济学奖(1983)
Nash 在普林斯顿的博士论文中,证明多人博弈平衡点的存在性时用的正是他重新发现的―Brouwer 不动点原理
巴拿赫压缩映像原理
先介绍压缩的含义
一维情况举例
二维情况举例,地图与真实地域关系。
三位情况举例,占满容器的海绵再压缩。
描述高维情况
庞卡莱-伯克豪夫扭转定理
(Poincare-Birkhoff Twist Theorem)
莫泽扭转定理
(Moser Twist Theorem)。
第5讲 巴拿赫不动点定理

An x∗ = x∗
下面证明
x∗
的唯一性.设存在
x∗ 1
∈X
且
x∗ 1
=
A(
x∗ 1
)
,得
A2
x∗ 1
=
x∗ 1
,A3
x∗ 1
=
x∗ 1
,…,An
x∗ 1
=
x∗ 1
,
那么
d
(
x∗
,
x∗ 1
)
=
d ( Ax∗ , Ax1∗ )
=…
=
d
(
An
x∗
,
An
x∗ 1
)
≤
α
d
(
x∗ 1
,
x
∗
)
于是
(1
−
α
)d
(
4
44
f ' (x) < 3 < 1 4
于是得 f (x) 是 (0.5,1) 上的压缩映射,取 x0 = 0.75 ,由迭代 xn+1 = f (xn ) 可得 x1 = 0.7521 , x2 = 0.7533 , x3 = 0.7540 , x4 = 0.7544 ,
x5 = 0.7546 , x6 = 0.7547 , x7 = 0.7548 , x8 = 0.7548 ,….
d (xn
,
xn−1 )
=
d
( Axn−1,
Axn−2
)
≤
α
d (xn−1,
xn − 2
)
≤
α
c n−1 0
.
因此对于正整数 k 有
第 1-5-1页
西安电子科技大学理学院 杨有龙
压缩映射定理

压缩映射定理压缩映射定理是数学中的一个重要定理,它在分析学、微积分、拓扑学、物理学等多个领域都有广泛应用。
下面,我们来分步骤阐述一下这个定理的相关内容。
1. 定义首先,我们需要对压缩映射进行定义。
压缩映射是指一个映射,它将一个度量空间中的点压缩到一个与原点越来越近的点。
具体来说,如果存在一个实数 k (0 < k < 1),使得任意两点 x 和 y 在映射后的距离小于它们在原空间中的距离的 k 倍,则称这个映射为压缩映射。
2. 定理接下来,我们来介绍压缩映射定理的内容。
该定理是对于完备度量空间的一个定理,称为“Banach不动点定理”或者“压缩映射原理”。
其表述如下:设 (X,d) 是一个完备度量空间,f : X → X是一个压缩映射。
则存在一个唯一不动点x* ∈ X,即 f(x*) = x*。
不动点是指在映射中被映射到自己的点。
上述定理的内容表明,在存在压缩映射的情况下,我们一定可以找到一个不动点。
3. 应用压缩映射定理在实际应用中有着广泛的应用。
下面简单介绍一下其中的两种应用情况:(1)求解实数方程的不动点。
例如,假设我们要求解方程 f(x) = x^2 + x -1 = 0 的根,那么我们可以将该方程看作一个映射,即f : R → R,f(x) = x^2 + x -1。
然后,我们证明该映射是一个压缩映射,这样就能保证存在一个不动点。
最后,我们通过压缩映射定理,求得了该方程解的唯一不动点。
(2)求解微分方程的解。
例如,假设我们要求解微分方程 y' = -y,y(0) = 1。
我们可以将该方程看作一个映射,即 f : C([0,1])→ C([0,1]),f(y) = y' + y,其中 C([0,1]) 表示连续函数的空间。
然后,我们证明该映射是一个压缩映射,这样就能保证存在一个不动点。
最后,我们通过压缩映射定理,求得该微分方程的解。
以上就是压缩映射定理的相关内容。
巴拿赫压缩映射原理

巴拿赫压缩映射原理一种数学方法的应用与拓展一、引言在数学领域,巴拿赫压缩映射原理(或称巴拿赫不动点定理)是一个具有重要意义的结果。
本文旨在介绍压缩映射的概念,证明巴拿赫压缩映射原理,并探讨其在不同领域中的应用,特别是动态规划问题和经济学领域。
通过实例分析,我们将了解到压缩映射原理在证明问题解的存在性、均衡的存在性以及可到达性等方面具有广泛的应用。
二、压缩映射与巴拿赫不动点定理1.压缩映射定义:映射映射是集合到集合的关系,微观上,它是两个元素之间的元素的关系。
定义:压缩映射压缩映射是指在度量空间中,映射后的两点间距离小于原两点间距离。
具体来说,对于度量空间(M,d),如果存在一个映射T:M→M,使得对于所有的x,y∈M,有d(Tx,Ty)≤d(x,y),则称T为压缩映射。
2.不动点定理定义:不动点不动点是指在映射作用下,某个点x不受改变,即Tx=x。
不动点定理:在完备的距离空间中,压缩映射具有唯一不动点。
证明:不动点证明过程主要依据距离性质、压缩映射性质和完备性。
首先,通过三角不等式和压缩映射性质,我们可以得到d(x,Tx)<d(x,x)。
然后,利用完备性,我们可以证明Tx会收敛到某个点x,即存在极限lim(Tnx)=x。
最后,通过反证法证明x唯一,假设存在另一个不动点y,则会导出d(x,y)=0,与距离性质矛盾。
三、压缩映射原理的应用1.动态规划问题压缩映射原理可以用来证明动态规划问题解的存在性。
在动态规划中,状态转移方程可以表示为T(x)=f(x),其中f(x)是关于x的函数。
如果f(x)满足压缩映射条件,那么根据巴拿赫压缩映射原理,我们可以得知动态规划问题存在唯一解。
2.经济学领域在经济学中,压缩映射原理可以用来证明均衡的存在性以及可到达性。
例如,在微观经济学中,投入产出分配方程组可以表示为T(x)=x,其中x为投入产出向量。
通过证明T为压缩映射,我们可以得知投入产出分配方程组存在唯一解,从而证明市场均衡的存在性以及可到达性。
宏观经济学分析方法系列:(课堂放映版、11硕已讲)拓扑空间、不动点定理

==================================附录:宏观经济学分析方法:不动点定理(09、10、11硕已讲,2009年01月21日,精细订正)我们开始讨论不动点定理,那么什么是不动点定理?所谓不动点,就是使方程(x)f=x有解的点x,这里f可以是单变量函数,也可以是度量空间到自身上的映射。
因为点x是在f的映射下固定不变的点,我们称为不动点。
所谓不动点定理就是描述方程()f=xx的解的存在条件的定理。
不动点的存在性问题就称为不动点问题,不动点定理由此得名。
有许多不同的不动点定理。
其中一些是构造性的,但大多数不是构造性的,例如,最著名的布劳威尔不动点定理就不是构造性的,布劳威尔不动点理只告诉我们不动点是存在的,但没有说明寻找不动点的方法。
在数学中,有许多类似描述解的存在性定理,其中最著名的就是代数基本定理和微积分中的各种中值定理,正如我们已经看到的一样,这样的存在性定理在理论上和实际应用中都是非常重要的。
设想使用计算机去寻找近似解,如果我们知道解是存在的,我们就不会无的放矢。
(不讲,跳过)事实上,不动点问题是普遍存在的,我们知道的许多问题都可以转化为不动点问题。
例如:设nnR R g :是一个映射,我们欲解方程0)(=x g ,其中nR x ∈。
这个问题就等价于不动点方程x x g x =+)( 或 x x g x =+)(70;更一般地,等价于x x g x =Φ+))((,式中nnR R →Φ:满足,0)(=Φy 当且仅当0=y 。
我们将介绍三个重要的不动点定理:巴拿赫(Banach )不动点定理,布劳威尔(Brouwer )不动点定理和角谷(Kakutani )不动点定理。
一、压缩映射与巴拿赫不动点定理我们首先介绍巴拿赫不动点定理,这个定理也称为压缩映射原理。
这是一构造性定理,定理的证明提供一个构造不动点的方法,这个方法称为逐次逼近法(即迭代法)。
在介绍巴拿赫不动点定理之前,先引进压缩映射的概念。
不动点理论及其应用

不动点理论及其应用主要内容:●不动点理论—压缩映像原理●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用目录:一、引言二、压缩映像原理三、在微分方程中的应用四、在中学数学中的应用五、其它一、 引言取一张照片,按比例缩小,然后把小照片随手放在大照片上,那么大小两张照片在同一个部位,一定有一个点是重合的。
这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理定理:(Banach 不动点定理—压缩映像原理)设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。
X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:(1)。
0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。
),(),(x y y x ρρ=;(3)。
),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。
定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<<a , 使得 ),(),(y x a Ty Tx ρρ≤ ),(X y x ∈∀成立。
三、 在微分方程中的应用定理:(存在和唯一性)考虑如下初值问题⎪⎩⎪⎨⎧==.00)(),,(y x y y x f dx dy假设 ),(y x f 在矩形区域b y y a x x R ≤-≤-||,||:00内连续,而且对 y 满足Lipschitz 条件,则上述问题在区间],[00h x h x I +-= 上有且仅有一个解,其中.|),(|max },,min{),(y x f M Maa h R y x ∈>=(1)。
不动点定理和Banach压缩映像定理的应用

不动点定理和Banach压缩映像定理的应用一、引言在数学中,不动点定理和Banach压缩映像定理是两个非常重要的定理。
不动点定理是一个基本定理,它能够帮助我们证明很多问题。
而Banach压缩映像定理则是一个实用定理,它能够帮助我们求解很多实际问题。
本文将重点讨论这两个定理的应用。
二、不动点定理不动点定理(Fixed point theorem)是数学中一种基本的定理,也是一个非常重要的定理。
它的实质是给定一个运算,能够保证这个运算至少有一个不变点。
例如,在一维空间中,一条直线与 x 轴的交点就是一个不动点。
不动点定理的常用形式有 Banach定理,Brouwer定理和Kakutani定理等。
这三种定理都是确保在一定条件下,给定一个映射,必定存在一个不动点。
其中,Banach定理是应用最广泛的一种不动点定理。
三、Banach压缩映像定理Banach压缩映像定理(Banach contraction mapping theorem)是应用最广泛的不动点定理之一。
它是一种强化的不动点定理,能够给出一个更加精确的结论。
该定理的实质是,给定一个映射,如果它能够将任意两个点映射到更靠近一起的两个点,那么这个映射一定存在不动点。
具体来说,设 (X,d) 是一个非空完备度量空间,f:X → X是一个压缩映像,即存在常数0≤s<1,使得对于任意x,y∈ X,有:$d(f(x),f(y))≤s\times d(x,y)$则 f 存在唯一的不动点 z,即 f(z)=z。
在实际中,Banach压缩映像定理被广泛应用于求解非线性方程组的根。
例如,对于一个形如 f(x)=0 的方程组,可以通过适当的转化,将它表示成 g(x)=x 的形式,然后应用Banach压缩映像定理求解。
此外,Banach压缩映像定理还在优化算法、控制论等领域得到广泛应用。
四、应用举例下面我们通过两个具体的例子来说明不动点定理和Banach压缩映像定理的应用。
几类不动点定理的推广及证明

几类不动点定理的推广及证明几类不动点定理的推广及证明引言:不动点定理是数学中一个重要的定理,它在很多领域都有广泛的应用。
不动点,顾名思义,是指函数中某一点在映射后仍保持不变的点。
不动点定理从不动点的角度给出了函数存在或唯一性的条件。
本文将介绍几类不动点定理的推广,并给出证明。
一、Banach不动点定理的推广及证明:Banach不动点定理是最经典的不动点定理之一。
它适用于完备度量空间中的压缩映射,并保证了该映射存在唯一的不动点。
然而,在非完备度量空间中的压缩映射是否存在不动点呢?为了解决这个问题,可以引入相似性映射的概念。
相似性映射是指满足$d(f(x),f(y))\leq k\cdot d(x,y)$的映射,其中$k\in(0,1)$,$d$表示度量空间中的距离函数。
根据较弱的条件,我们可以推广Banach不动点定理到非完备度量空间中的相似性映射,并得到存在不动点的结论。
证明:设$X$为一个非完备度量空间,$f:X\rightarrow X$为一个相似性映射,即存在$k\in(0,1)$,使得$d(f(x),f(y))\leqk\cdot d(x,y)$对任意$x,y\in X$成立。
我们需要证明$f$存在一个不动点。
首先选取$X$中的任意点$x_0$,定义序列$\{x_n\}$如下:$$x_n=f(x_{n-1}),\ n=1,2,3,\cdots$$接下来,我们证明$\{x_n\}$是一个Cauchy序列。
由相似性映射的性质可知:$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leq k\cdotd(x_n,x_{n-1})$$不妨设$m>n$,则有:$$d(x_m,x_n)\leq\sum_{i=n}^{m-1}d(x_{i+1},x_i)\leq\sum_{i=n}^{m-1}k^{i-n}d(x_1,x_0)$$利用等比数列求和公式,可以得到:$$d(x_m,x_n)\leq\frac{k^n}{1-k}\cdot d(x_1,x_0)$$ 由于$k\in(0,1)$,故$\frac{k^n}{1-k}$是一个有界数列。
巴拿赫(Banach)不动点定理的应用

一
、
B nc a a h不动点定理
C 口6 空 间上 讨论 方 程 ( ) 并 定 义 度量 P , [ ,] 1, ( )
作者简介 : 王美娜 (9 3 )女 , 18一 , 贵州安龙人。贵州省黔西南民族师范高等专科学校数学系, 云南师范大学[ ( ) ()d I t ) . 一 . ]r K . r r r I
所 以定理 得证 。
四 、闭区 间套 定理的证 明
巴拿赫 ( aah 不动点定理的应用 B ne )
王 美 娜
( 西南民族师范 高等专科 学校 数 学 系, 州 兴 义 520 ) 黔 贵 640
摘 要: aah空间 中的不动点定理是泛函分析 中的一个重要定理 , 用该定理证明第二类 Fehl B nc 运 rdo m积分方程解的存在唯
一
性定理 、 代数方程的解的存在唯一性定理和闭 区间套定理 , 以体现 Bn e aah不动点定理应用的广泛性 。 关键词 :aah空间; B nc 不动点定理; 第二类 Fehl rdo m积分方程 ; 代数方程 ; 闭区间套 定理
= m ax
.
1B n c 间 . a ah空
1 ()一 ()1 t t 。
称 完备的赋范线 性空间为 B n c 间。 a ah空 2 压缩 映射 . 设 ( P 是度量 空间 , , ) 是 到 的映射 , 如果
首先, 明 C nb 说 [ ,]空间完备 , { () 是 令 £}
=
下面把 Bn c 不动点定理作为积分方程解的 aah
《几类经典的不动点定理与Edelstein不动点定理的统一》范文

《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理在数学分析、微分方程以及泛函分析等多个领域都有广泛应用,它是关于自映射或非自映射在一定条件下的存在性定理。
本文旨在探讨几类经典的不动点定理以及Edelstein不动点定理的统一性,分析其内在联系与异同,以期为相关研究提供参考。
二、经典不动点定理简介(一)巴拿赫不动点定理巴拿赫不动点定理是一种重要且基本的泛函分析不动点定理,是现代数学理论中一个重要的工具。
该定理指出,在完备的度量空间中,一个压缩映射必存在唯一的不动点。
(二)斯宾格勒不动点定理斯宾格勒不动点定理则是针对多值压缩映射提出的。
在特定条件下,斯宾格勒不动点定理也证明了该类映射的不动点的存在性。
(三)查特利斯—怀特-戈利雅-尼尔森(Chatterjea-Whitney-Gorias-Nielsen)定理查特利斯—怀特-戈利雅-尼尔森定理关注的是具有收缩性的非自映射。
在适当的条件下,该定理保证了这类非自映射存在一个不动点。
三、Edelstein不动点定理Edelstein不动点定理是一种广义的不动点定理,它适用于更广泛的自映射和拓扑空间。
Edelstein定理描述了在具有特殊性质的空间中,即使不满足其他不动点定理的条件,仍有可能存在不动点。
这一理论的引入进一步扩展了不动点理论的应用范围。
四、几类经典的不动点定理与Edelstein不动点定理的统一性分析虽然几类经典的不动点定理和Edelstein不动点定理在形式和适用条件上有所不同,但它们在本质上都探讨了自映射或非自映射的不动点的存在性。
这些定理的共同点是它们都要求映射具有某种形式的“压缩”或“收缩”性质,从而保证不动点的存在性。
此外,这些定理的证明方法也具有一定的相似性,都依赖于特定的拓扑性质和空间结构。
五、结论通过对几类经典的不动点定理与Edelstein不动点定理的统一性分析,我们可以看出这些定理在形式和实质上具有内在联系。
不动点定理及其应用

不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。
Banach空间压缩映像原理和不动点原理及其应用

Banach空间压缩映像原理和不动点原理及其应用——摘要本文进一步揭示了Banach空间压缩映像原理与完备性的关系,对压缩映像原理与不动点的相关理论做了详细地阐述,并对Banach 空间中压缩映像原理与不动点原理的应用做了详细的举例说明。
——关键词Banach空间压缩原理完备性不动点——引言泛函分析是本世纪出才逐渐形成的一个新的数学分支,以其高度的统一性和广泛的应用性,在现代数学领域占有重要的地位。
在泛函分析中,Banach空间理论在隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理等等中,否起到了关键的作用,且都归结为一个定理——不动点定理。
这正是抽像的结果。
=的求解问题,是分析学的各不动点定理实际上是算子方程Tx x个分支中存在和唯一性定理的重要基础,它是关于具体问题解的存在唯一性的定理,其中Banach不动点定理,亦称压缩映射原理,它提供了线性方程解的最佳逼近程序,给出了近似解的构造,在常微分方程、积分方程等领域中也有着广泛的应用,在现代数学发展中有着重要的地位和作用。
——正文⒈Banach空间压缩映像定理及其应用随着现代电子计算机技术的发展,我们在解方程(包括常微分方程、偏微分方程、积分方程、差分方程、代数方程等)的过程中,大量使用的是逐次逼近的迭代法。
几乎可以这样说:对一个方程,只要我们找到一个迭代公式,就算解出了这个方程(当然我们还要考虑迭代公式的收敛性、解的稳定性和收敛速度等问题)。
但是,在逐次迭代中,我们必须保证迭代过程中得到的是个收敛序列,否则就是毫无意义的了。
而选代法解方程的实质就是寻求变换(映射、映像)的不动点。
例如求方程f(x)=0的根,我们可令g(x)=x-f(x),则求f(x)=0的根就变成求g(x)的不动点,即求,使.而在通常求映射的不动点的方法中,最简单的就是下面我们所讲的--Banach空间压缩映像定理。
定义(压缩映像)设T是度量空间X到X中的映像,如果对都有(是常数)则称T 是X上的一个压缩映像。
不动点和压缩影射的原理及其应用(5篇)

不动点和压缩影射的原理及其应用(5篇)第一篇:不动点和压缩影射的原理及其应用不动点和压缩影射的原理及其应用摘要:学习了数学分析中一些不动点问题的解题方法和递推数列的极限,将不动点和压缩映像原理运用到求一些极限问题中,使我们更容易去解决关于数列极限存在性和如何快速求出极限的值。
关键词:不动点压缩影射递推数列应用自从波兰数学家巴拿赫在1992年提出了有关压缩映像在完备的度量空间必然存在唯一的不动点的一些理论。
而后,许多数学工作者投入的大量的时间来研究,并取得了一些丰硕的成果。
今天,不动点和压缩映像原理在我们日常生活中运用十分广泛。
不动点原理在数学分析,常微方程,积分方程等很多地方都有它的应用。
而压缩映像可以用于证明一些简单的隐函数存在定理,特别是在求一些递推数列中。
然而在不少数学分析教材中一般不介绍它,这给我们带来许多问题的困扰。
建议老师将它放在微分中值定理和数列柯西收敛准则后学习,这样可以让学生更进一步了解泛函分析。
1不动点和压缩映像定义及原理定义1设X为一个非空集合,映射T是X到X的一个映射,如果存在x*X使得Tx*=x*则称x *是T的一个不动点。
定义2设X是度量空间,T是X到X中的映射,如果存在一个数c,0第二篇:管理学原理简答精华压缩1、计划工作程序:①估量机会②确定目标③确定前提条件④确定可供选择的方案⑤评价各种方案⑥选择方案⑦制订派生计划⑧用预算形式使计划数字化。
2、内部提升制优缺点:优点:1.由于对机构中的人员有较充实可靠的资料,可了解候选人的优缺点,以判断是否适合新的工作。
2.组织内成员对组织的历史和现状比较了解,能较快地胜任工作。
3.可激励组织成员的进取心,努力充实提高本身的知识和技能。
4.工作有变换机会,可提高组织成员的兴趣和士气,使其有一个良好的工作情绪。
5.可使过去对组织成员的训练投资获得回收,并判断其效益如何。
缺点:1.所能提供的人员有限,尤其是关键的管理者,当组织内有大量空缺职位时,往往会发生“表黄不接”的情况。
《几类经典的不动点定理与Edelstein不动点定理的统一》范文

《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理在数学分析、微分方程以及泛函分析等多个领域都有广泛应用,为诸多复杂问题提供了有效且深入的研究工具。
本篇论文将聚焦几类经典的不动点定理和Edelstein不动点定理的统一研究。
这些经典定理各自独特且有其内在的联系,将它们联系起来有助于我们更全面地理解不动点理论。
二、经典的不动点定理1. 压缩映射不动点定理:该定理是Banach不动点定理的特例,适用于连续的压缩映射在完备空间中必存在唯一的不动点。
2. 斯科特-史密斯不动点定理:此定理在拓扑空间中,对于连续的映射函数,如果存在一个非空闭凸子集,那么该函数在此子集上必存在至少一个不动点。
3. 纳什-维诺斯基-凯勒不动点定理:此定理适用于多值映射,对于每个点的多值映射都存在至少一个固定点。
三、Edelstein不动点定理Edelstein不动点定理在多值映射领域中占有重要地位。
它对于紧空间中的连续多值映射和连续的单值函数提供了不动点的存在性条件。
这个定理强调了多值映射和单值函数之间的联系,并提供了在特定条件下寻找不动点的有效方法。
四、几类经典的不动点定理与Edelstein不动点定理的统一理解通过仔细对比和研究各类经典的不动点定理和Edelstein不动点定理,我们发现这些定理虽然有不同的前提条件和结论,但都体现了“存在性”这一基本概念。
因此,我们可以在统一的框架下对这些定理进行理解。
在满足一定条件下,如空间的完备性、映射的连续性和单调性等,这些经典的不动点定理和Edelstein不动点定理都可以用来证明不动点的存在性。
五、结论本文通过对几类经典的不动点定理和Edelstein不动点定理的深入研究,提出了一个统一的框架来理解这些定理。
这些经典的不动点定理和Edelstein不动点定理不仅在数学领域有着广泛的应用,而且为其他领域如物理、经济等提供了重要的理论支持。
因此,对它们进行统一理解和研究具有重要的理论意义和实践价值。
Banach不动点理论和应用

不动点定理及其应用综述摘要 本文主要研究Banach 空间的不动点问题。
[1]介绍了压缩映射原理证明隐 函数存在定理和常微分方程解得存在唯一性定理上的应用;[2][3]介绍了应用压 缩映射原理需要注意的问题;[4]介绍了不动点定理在证明Fredholm 积分方程和 Volterra 积分方程解的存在唯一性以及在求解线性代数方程组中的应用; [5]讨论了不动点定理在区间套定理的证明中的应用。
一、压缩映射原理压缩映射原理的几何意义表示:度量空间中的点x 和y 在经过映射后,它们 在像空间中的距离缩短为不超过 d (x,y )的倍(1 )。
它的数学定义为: 定义1.1设X 是度量空间,T 是X 到X 的映射,若存在 , 1,使得对所有x, y X ,有下式成立d (Tx,Ty ) d (x, y )(1.1)则称T 是压缩映射。
定理1.1 (不动点定理):设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有唯一的不动点,即方程 Tx=x 有且只有唯一解。
证明:设X o 是X 种任意一点,构造点列{X n },使得则{X n }为柯西点列。
实际上,Lmd (X 1,x 。
)根据三点不等式,当n m 时,mm 1n 1(L)d(x °,X 1)(1.4)由于 1,故1 n m 1,得到X 1 TXoXTx 1 T 2x °丄,X n TX n 1nT X o(1.2)d(X m 1,X m )d(Tx m ,Tx m 1) d(X m ,X m 1)d(TX m 1,TX m 2)2d(X m 1d(X m ,Xn )d(Xm ,Xm 1 )d(X m 1,X m 2) Ld(X n 1,X n )(1.3)mgn m——d(x °,为)d(X m,X n) d(x o,xj( n m) (1.5)所以当m ,n 时,d(X m,X n)0,即{x.}为柯西列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巴拿赫压缩不动点定理
巴拿赫压缩不动点定理是泛函分析中的一个重要定理,它研究了压缩映射的不动点存在性和唯一性问题。
该定理不仅在数学中有广泛应用,也在计算机科学、经济学等领域有着重要的应用价值。
巴拿赫压缩不动点定理的内容比较抽象,但是它实际上是在研究一个特殊的映射,即压缩映射。
压缩映射是一种将一个空间中的元素映射到另一个空间中的映射,它具有某种紧缩性质,即能将空间中的元素“压缩”到较小的范围内。
巴拿赫压缩不动点定理的核心问题就是:对于一个给定的压缩映射,是否存在一个不动点,即映射的输出等于输入的点。
在理解巴拿赫压缩不动点定理之前,我们先来看一个简单的例子。
假设有一个函数f(x) = x/2,它将实数集合[0,1]中的每个元素映射到[0,1]中的另一个元素。
我们可以发现,无论我们从[0,1]中的哪个点开始,经过多次迭代,最终都会收敛到f(x)的不动点x=1/2。
这个例子中的函数f(x)就是一个压缩映射,而不动点就是这个压缩映射的一个特殊点。
巴拿赫压缩不动点定理的严格表述是:在一个完备度量空间中,任何压缩映射都存在唯一的不动点。
这里的完备度量空间指的是一个具有度量的空间,使得其中的柯西序列都能收敛到该空间中的某个元素。
这个定理的证明比较复杂,需要用到一些泛函分析的基本概
念和技巧。
巴拿赫压缩不动点定理的应用非常广泛。
在数学中,它被广泛应用于函数逼近、微分方程的求解等领域。
在计算机科学中,它被用于设计迭代算法,求解各种优化问题。
在经济学中,它被用于研究均衡状态和经济模型的稳定性。
除了巴拿赫压缩不动点定理,还有一些相关的定理和方法也被用于研究压缩映射的不动点问题。
例如,泛函分析中的开映射定理和闭图像定理可以用于判断一个映射是否为压缩映射。
而迭代法和牛顿法等方法则是常用的求解压缩映射的不动点的数值算法。
巴拿赫压缩不动点定理是泛函分析中的一个重要定理,它研究了压缩映射的不动点存在性和唯一性问题。
这个定理在数学、计算机科学和经济学等领域都有着广泛的应用。
通过研究压缩映射的不动点,我们可以更好地理解和解决各种实际问题。