静电场的边值问题
第3章 边值问题及静电场的求解

r r
Q Q
const.
若镜像位置满足
OQ ~ P OPQ
r r
R0 a
const .
由三角形相似,
b R0 R0 a
2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况
■
1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A
■
1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1
r r
Q Q
镜像电荷不应随P 变化,
静电场的边值问题

问题-02-7-1 静电场的边值问题可分为哪几类,是否均满足唯一性定理?
解答:静电场中的典型边值条件包括3类:(1)给定场域边界上的电位值,称为第一类边值条件;(2)给定场域边界上电位的法向导数值,称为第二类边界条件;(3)部分场域边界上给定电位、另一部分场域边界上给定电位的法向导数,称为混合边界条件。
上述三类边界条件与标量电位满足的泛定方程组合成相应的边值问题。
对于第一类边值问题,电位和电场强度的解均唯一;对于第二类边值问题,电场强度的解唯一,电位的解可以相差某一常数,若选定电位参考点,则电位的解也唯一;对于混合边值问题,电位和电场强度的解均唯一。
静电场的边值问题

1静电场的边值问题1.镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2.根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5.用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称 B.电位所满足的方程是否未改变C.边界条件是否保持不变 D.同时选择B和C∇⨯=,其中的J()。
6.微分形式的安培环路定律表达式为H JA.是自由电流密度B.是束缚电流密度C .是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( )。
A .一定相同B .一定不相同C .不能断定相同或不相同8.两相交并接地导体平板夹角为α,则两板之间区域的静电场( )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
9.将一无穷大导体平板折成如图的90°角,一点电荷Q 位于图中(1, π/6)点10. 两个平行于 XOY 面的极大的金属平板,两平板间的距离为 d ,电位差为。
第三章 静电场的边值问题

u (1 2 ) 0
积分后 , 1 - 2 C, 该式既满足场域 , 又满足边界 , 故 C 0,1 2 ,得证
若导体边界为第二类边 界条件 , 即已知电荷面密度
1 2 , n n
即
(1 -2 ) u 0 n n
q
1 2 q 1 2
q
2 2 q 1 2
0
( y 0 ,b x a )
0
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷体密度
为 ,试用解微分方程的方法求球体内、外的电位及电场。
解: 采用球坐标系,分区域建立方程 1 d d 21 2 (r 2 1 ) (0 r a ) r dr dr 0
2u 21 2 2
利用矢量恒等式
0 (uu) u2u (u) 2 ( u )2
对场域求体积分, 并利用高斯散度定理
V
(uu )dV uu dS (u ) 2 dV
s V
S为体积 V的边界面 ,即S S0 S , S S1 S2 Sn , 由于在无穷远 S0处电位为零 ,因此有
静电场的边值问题 数学物理方程定解条件通常分为初始条件和边界条件。 静电场与时间无关,因此电位所满足的泊松方程及拉普拉斯
方程的解仅决定于边界条件。根据给定的边界条件求解泊松方程
或拉普拉斯方程就是静电场的边值问题。
边值问题 微分方程
边界条件
2 2 0
场域 边界条件
分界面 衔接条件
S f1 (s)
已知场域边界 上各点电位 的法向导数
布或边界是电力线的条 件是等价的? 边值问题框图
2.6 静电场边值问题 唯一性定理

V/m
CQU
2.6.3 唯一性定理
1、唯一性定理 在静电场中满足给定边界条件的电位微分方程 满足给定边界条件的电位微分方程( 在静电场中满足给定边界条件的电位微分方程(泊松方 程或拉普拉斯方程)的解是唯一的, 程或拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定 理。 2. 唯一性定理的重要意义 可判断静电场问题的解的正确性 解的正确性: • 可判断静电场问题的解的正确性: 唯一性定理为静电场问题的多种解法(试探解、数值解、 • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。 解析解等)提供了思路及理论根据。
S
第三类 边界条件
(ϕ + β ∂ϕ ) = f3 ( s) ∂n S
第四类 边界条件
ϕ S = f1 ( s)
求解边值问题注意事项: 求解边值问题注意事项:
CQU
点电荷的场
1.根据求解场域内是否有 ρ 存在,决定电位满足泊松方程还是拉氏 .根据求解场域 求解场域内是否有 存在,决定电位满足泊松方程还是拉氏 泊松方程还是 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 2.正确表达边界条件,并利用它们确定通解的待定常数。 正确表达边界条件,并利用它们确定通解的待定常数。 3.若所求解的场域内有两个(或以上)的均匀介质区域,应分区求 若所求解的场域内有两个(或以上)的均匀介质区域, 分区求 场域内有两个 不能用一个电位函数表达两个区域的情况。这时会出现4 解。不能用一个电位函数表达两个区域的情况。这时会出现4个积分 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 分界面上的衔接条件来确定积分常数 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 4.对于开域问题,还需给出无限远处的自然边界条件。 4.对于开域问题,还需给出无限远处的自然边界条件。当场域有 对于开域问题 限分布时,应有: 限分布时,应有:
第三章 静电场边值关系

电位所满足的拉普拉斯方程在圆柱坐标系
中的展开式只剩下包含变量r 的一项,即电 位微分方程为
2 1 d d r 0 r dr dr
求得
C1 ln r C 2
利用边界条件:
V r a
C1 ln a C 2 V C1 ln b C 2 0
q q 4 π r 4 π r
可见,为了保证球面上任一点电位为零,必须选择镜像电荷为
r q q r
上任一点均具有同一数值。由上图可见,若要求三角形 △OPq
r 为了使镜像电荷具有一个确定的值,必须要求比值 对于球面 r
r a 与 △ OqP 相似,则 常数。由此获知镜像电荷应为 r f
代入上述边界条ห้องสมุดไป่ตู้,求得镜像电荷如下:
q
1 2 q 1 2
q
2 2 q 1 2
例 已知同轴线的内导体半径为a,电位为V,外导体接地,其
内半径为b。试求内外导体之间的电位分布函数以及电场强度。
解
V a b
O
对于这种边值问题,镜像法不适
用,只好求解电位方程。为此,选用圆柱 坐标系。由于场量仅与坐标 r 有关,因此,
以格林函数表示的积分解。
数学物理方程是描述物理量随空间和时间的变化规律。对于某 一特定的区域和时刻,方程的解取决于物理量的初始值与边界值, 这些初始值和边界值分别称为初始条件和边界条件,两者又统称为 该方程的定解条件。静电场的场量与时间无关,因此电位所满足的 泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界 条件求解空间任一点的电位就是静电场的边值问题。
q q
电场线与等位面的分布特性与第二章所述的电偶极子的上半
静电场边值问题的唯一性定理

静电场边值问题的唯一性定理摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。
由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽1、问题的提出实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。
这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一;(1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ;其中K=1,2,……为导体的编号。
寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。
这类问题称为静电场的边值问题。
这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。
2、几个引理在证明唯一性定理之前,先作些准备工作——证明几个引理。
为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。
(1)引理一 在无电荷的空间里电势不可能有极大值和极小值。
用反证法。
设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ∇ρ必都指向P 点,即场强U E ∇-=ρρ的方向都是背离P 点的(见图1-1a 。
)这时若我们作一个很小的闭合面S 把P 点包围起来,穿过S 的电通量为0)(>⋅=⎰S d E S E ρρϕ (1)根据高斯定理,S 面内必然包含正电荷。
然而这违背了我们的前提。
因此,U 不可能有极大值。
用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。
(2)引理二 若所有导体的电势为0,则导体以外空间的电势处处为0。
因为电势在无电荷空间里的分布是连续变化的,若空间有电势大于0(或小于0)的点,而边界上又处处等于0,在空间必然出现电势的极大(或极小)值,这违背引理一。
电磁场与电磁波名词解释复习

安培环路定律1)真空中的安培环路定綁在真空的磁场中,沿任总回路取乃的线积分.其值等于真空的磁导率乘以穿过该回路所限定面枳上的电流的代数和。
即in di=^i kk=l2)•般形式的安培环路定律在任总磁场中•磁场强度〃沿任一闭合路径的线积分等于穿过该回路所包鬧而积的自由电流(不包括醱化电流)的代数和。
即B (返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数®的泊松方程(沪卩=一%)或拉普拉斯方程(gp=O)定解的问題。
2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。
很多恒定电场的问題,都可归结为在一定条件下求竝普拉斯方程(▽?信=° )的解答,称之为恒定电场的边值问题o3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题°对于平行平而磁场,分界而上的衔接条件是* 1 3A 1 dAn磁矢位*所满足的微分方程V2A = -pJ(2)磁位的边值问题在均匀媒质中.磁位也满足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问題。
磁位满足的拉普拉斯方程= °两种不同媒质分界浙上的衔接条件边界条件1.静电场边界条件在场域的边界面s上给定边界条件的方式有:第•类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neumann)已知边界上电位的法向导数(即电荷而密度或电力线)第三类边界条件已知边界上电位及电位法向导数的线性组合5静电场分界而上的衔接条件% "和场*二丘"称为静迫场中分界面上的衔接条件。
前者表明.分界而两侧的电通壮密度的法线分址不连续,其不连续虽就等于分界面上的自由电荷血•密度:后者表明分界而两侧电场强度的切线分址连续。
静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。
静电场的边值问题

静电场的边值问题
第三章 静电场旳边值问题
1. 电位微分方程 2. 镜像法 3. 直角坐标系中旳分离变量法 4. 圆柱坐标系中旳分离变量法 5. 球坐标系中旳分离变量法
1
电磁场与电磁波
静电场的边值问题
3.1 电位微分方程
已知电位 与电场强度 E 旳关系为
E 对上式两边取散度,得
E 2
r0作为参照点,则 及l 在l 圆柱面上P点共同产生
旳电位为
P
l 2π
ln r0 l r 2π
ln r0 r
l 2π
ln r r
已知导体圆柱是一种等位体,必须要求比值
r 常数 r
与前同理,可令 r a d
r fa
d a2 f
21
电磁场与电磁波
静电场的边值问题
(4)点电荷与无限大旳介质平面
或者
X (x) C sinh x D cosh x
含变量 x 或 y 旳常微分方程旳解完全相同。
♣这些解旳线性组合依然是方程旳解。一般为了
满足给定旳边界条件,必须取其线性组合作为方
程旳解。
解旳形式旳选择决取于给定旳边界条件。
解中待定常数也取决于给定旳边界条件。
30
电磁场与电磁波
静电场的边值问题
8
电磁场与电磁波
静电场的边值问题
3.2 镜像法
实质: 以一种或几种等效电荷替代边界旳影响, 将原来具有边界旳非均匀空间变成无限大旳均匀自 由空间,从而使计算过程大为简化。
这些等效电荷一般处于原电荷旳镜像位置,所以 称为镜像电荷,而这种措施称为镜像法。
9
电磁场与电磁波
静电场的边值问题
根据:惟一性定理。等效电荷旳引入不能变化原 来旳边界条件。
第三章静电场及其边值问题的解

在圆柱面坐标系中,取 E 0与x轴方向一致,即 E 0 e E ,而 x 0
r r r r ( P) E0 gr ex gE0 (e ez z ) E0 cos
电磁场基础
第3章 静电场及其边值问题的解法
由此解得
C1
利用边界条件,有
x 0 处, 1 (0) 0 2 (a) 0 x a处, x b 处,1 (b) 2 (b),
S 0 2 ( x) 1 ( x) x 0 x x b
所以 D 0 1 C2 a D2 0 C1b D1 C2b D2 C2 C1 S 0 0
故单位长度的电容为
l
U
0
ln ( D a)
F/m
电磁场基础
第3章 静电场及其边值问题的解法
19
例3.1.6 同轴线内导体半径为a,外导体半径为为b,内外导体
间填充的介电常数为 的均匀介质,求同轴线单位长度的电容。 解 设同轴线的内、外导体单位长度带电量分别为 ll, ll 和 应用高斯定理可得到内外导体间任一点的电场强度为
2. 导体内部不存在任何净电荷,电荷都以面电荷形式分布于
导体表面 3.导体为一等位体,其表面为等位面 4.导体表面切向电场为0,而只有法向电场分量En
En en E s /
电磁场基础
第3章 静电场及其边值问题的解法
14
任何两个导体都可看作一点容器 电容器广泛应用于电子设备的电路中: • • • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁 路、选频等作用; 通过电容、电感、电阻的排布,可组合成各种功能的复杂 电路; 在电力系统中,可利用电容器来改善系统的功率因数,以
有电介质的静电场边值问题

有电介质的静电场边值问题姓名:***院校系别班级摘要:我们知道,静电场在一种均匀电介质中是不会发生跃变的。
但在两种均匀电介质边界上是否发生突变?如果发生跃变,那么这个过程是怎样的呢?根据前面的知识,本文我们采用柏松公式和拉普拉斯定理对有电介质的静电场边值问题进行证明!关键词:静电场 电介质 突变 边值问题 唯一性引言:由于在外场作用下,两均匀电介质分界面上一般会出现一层束缚电荷和电流分布,这些电荷、电流的存在又使得界面两侧场量发生跃变,这种场量跃变是面电荷、面电流激发附加的电场产生的,描述在电介质分界面上。
若带电体的形状、尺寸和位置均已固定,则满足边界条件的柏松方程和拉普拉斯方程的解是否唯一?一、讨论两不同电介质交界面两侧场量跃变情况我们先探讨在外电场存在的作用下两种电介质交界面两侧场量跃变情况。
通过对电磁学的学习,我们知道麦克斯韦方程组的微分形式是0BE t ∂∇⨯+=∂ (1)000EB t με∂∇⨯-=∂ (2)0E ∇⋅= (3)0B ∇⋅= (4)微分方程中所涉及的量都必须是良态的。
所谓良态,即函数在其观察点及其领域内连续并有连续的导数,则称该函数是良态的。
所以微分形式的麦克斯韦方程组只能描述一种介质内电磁场的变化规律,然而实际中常常遇到有不同介质交界面的情况。
在分界面上,介质的性质有一突变,电磁常量一般也要发生突变,所以,在分界面上的各点,麦克斯韦方程组的微分形式已失去意义。
由于麦克斯韦方程组的积分形式不要求各个量都是良态,所以它适用于包括介质分界面在内的区域。
因此研究边值关系的基础是积分形式的麦克斯韦方程组。
即:0l s E dl B ds t ∂⋅+⋅=∂⎰⎰ (5)0l S H dl D ds t ∂⋅-⋅=∂⎰⎰ (6)s D ds Q ⋅=⎰⎰ (7)0s B ds ⋅=⎰ (8)式中:环线l 为面s 的闭合边界,其正向与面元d s 法向遵从右手螺旋法则。
环面s 为包围体积v 的闭合面,面元d s 指向为s 面的外法向。
静电场的边值问题

2
该方程称为泊松方程。 对于无源区,上式变为
2 0
上式称为拉普拉斯方程。 2.边值问题 静电场的场量与时间无关,因此电位所满足的泊松方程及 拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求 解空间任一点的电位就是静电场的边值问题。
边界条件不变,从而保证原来区域中静电场没有改变,这是确定
等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位 置,因此称为镜像电荷,而这种方法称为镜像法。 关键:确定镜像电荷的大小及其位置。 局限性:边界必须是封闭的,才有可能确定其镜像电荷。
4
1. 点电荷与无限大的导体平面。
r q P r q h h q P(x,y,z)
P a r q O d
r
q
f
q aq 4π r 4π r f
在球坐标系下考虑,球心为原点,z 轴与oq重
合,则可求得球外任一点的电场强度
同样的,总的感应电荷等于镜像电荷。
10
若导体球不接地,则位于点电荷一侧的导体球表面上的感应电 荷为负值,而另一侧表面上的感应电荷为正值。导体球表面上总的 感应电荷应为零值。因此,对于不接地的导体球,若引入上述的镜 像电荷 q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q", 且必须令
q q
5
电场线与等位面的分布特性与第二章所述的电偶极子的上半
部分完全相同。
z
电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
6
电荷守恒:当点电荷 q 位于无限大的导体平面附近时,导体表 面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量。 半空间等效:上述等效性仅对于导体平面的上半空间成立,因 为在上半空间中,源及边界条件未变。
静电场的边值问题

1静电场的边值问题1.镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2.根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5.用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称 B.电位所满足的方程是否未改变C.边界条件是否保持不变 D.同时选择B和C∇⨯=,其中的J()。
6.微分形式的安培环路定律表达式为H JA.是自由电流密度B.是束缚电流密度C.是自由电流和束缚电流密度D .若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布( )。
A .一定相同B .一定不相同C .不能断定相同或不相同8.两相交并接地导体平板夹角为α,则两板之间区域的静电场( )。
A .总可用镜象法求出。
B .不能用镜象法求出。
C .当/n απ= 且n 为正整数时,可以用镜象法求出。
D .当2/n απ= 且n 为正整数时,可以用镜象法求出。
9.将一无穷大导体平板折成如图的90°角,一点电荷Q 位于图中(1, π/6)点10. 两个平行于 XOY 面的极大的金属平板,两平板间的距离为 d ,电位差为 。
电磁场数值计算边值问题分解备课讲稿

条件构成。基本方程为矢量双旋度方程
1
A
J
在库仑规范下,为矢量泊松方程
1 2 A J
2024/10/21
电磁场数值计算
相应的边界条件,第一类边界条件,在整个边界上给 定矢量磁位或其切线分量。(对应的法向分量)
A A0 或 At At0
2 0
相应的边界条件,在已知电压的电极表面上有 第一类边界条件
0
2024/10/21
电磁场数值计算
在已知流出或流入电流分布的电极表面上有第 二类边界条件
n
J n0
在导体与绝缘体分界面上有第二类齐次边界条
件
0
n
2024/10/21
电磁场数值计算
根据电流分布的对称性,也可构造对称 面上相应的齐次边界条件。
当材料和边界条件沿直角圆柱坐标系中 z 方向不变
时,三维恒定电场简化为二维平行平面场。
2024/10/21
电磁场数值计算
平行平面恒定电流场中,拉普拉斯算子表示为
2 2 2 x2 y2
在平行平面场中,内部衔接条件和外部边界条 件设置在材料的分界线和场域的边界线上。
当材料和边界条件沿圆柱坐标系中旋转坐标 方向不变, 即材料和边界条件围绕圆柱坐标系的 z
电磁场数值计算
电磁场数值计算边值问题分解
电磁场数值计算
2.1 静电场的边值问题
1、电位的基本方程和内部分界面衔接条件 根据静电场环路定理的微分形式
E 0 由矢量恒等式 0 ,可以设
E
静电场的辅助方程为
2024/10/21
电磁场数值计算
D E
有
电磁场与电磁波名词解释复习

安培环路定律1)真空中的安培环路定律在真空的磁场中,沿随意回路取 B 的线积分,其值等于真空的磁导率乘以穿过该回路所限制面积上的电流的代数和。
即2)一般形式的安培环路定律在随意磁场中,磁场强度 H 沿任一闭合路径的线积分等于穿过该回路所包围面积的自由电流(不包含磁化电流)的代数和。
即B( 返回顶端 )边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类界限条件下,求电位函数的泊松方程() 或拉普拉斯方程() 定解的问题。
2)恒定电场的边值问题在恒定电场中,电位函数也知足拉普拉斯方程。
好多恒定电场的问题,都可归纳为在必定条件下求拉普拉斯方程 () 的解答,称之为恒定电场的边值问题。
3)恒定磁场的边值问题( 1)磁矢位的边值问题磁矢位在媒质分界面上知足的连接条件和它所知足的微分方程以及场域上给定的界限条件一同构成了描绘恒定磁场的边值问题。
关于平行平面磁场,分界面上的连接条件是磁矢位 A 所知足的微分方程( 2)磁位的边值问题在平均媒质中,磁位也知足拉普拉斯方程。
磁位拉普拉斯方程和磁位在媒质分界面上知足的连接条件以及场域上界限条件一同构成了用磁位描绘恒定磁场的边值问题。
磁位知足的拉普拉斯方程两种不一样媒质分界面上的连接条件界限条件1.静电场界限条件在场域的界限面S 上给定界限条件的方式有:第一类界限条件( 狄里赫利条件,Dirichlet)已知界限上导体的电位第二类界限条件(聂以曼条件Neumann)已知界限上电位的法导游数( 即电荷面密度或电力线)第三类界限条件已知界限上电位及电位法导游数的线性组合静电场分界面上的连接条件和称为静电场中分界面上的连接条件。
前者表示,分界面双侧的电通量密度的法线重量不连续,其不连续量就等于分界面上的自由电荷面密度;后者表示分界面双侧电场强度的切线重量连续。
电位函数表示的分界面上的连接条件和,前者表示,在电介质分界面上,电位是连续的;后者表示,一般状况下, 电位的导数是不连续的。
第三章静电场边值问题

导体B = 常数
∫ S D ⋅ dS = −τ ,
电荷分布不均匀
能否用高斯定理求解? 能否用高斯定理求解? 根据唯一性定理,寻找等效线电荷 电轴。 根据唯一性定理,寻找等效线电荷——电轴。 电轴
y p ρ1 +τ b o ρ2 b −τ x
2. 两根细导线产生的电场
h
图3.2.10
h
两根细导线的电场计算
• • • •
有限差分法 有限元法 数值法 边界元法 矩量法 实验法 实测法 模拟法 定性 定量 模拟电荷法
• • • •
边值问题 研究方法
数学模拟法 物理模拟法
• • • •
作图法
图3.1.2 边值问题研究方法框图
例3.1.1 图示长直同轴电缆横截面。已知缆芯截面是一边长为2b的正方形, 铅皮半径为a,内外导体之间电介质的介电常数为
q1 = − q q2 = − q q3 = q
d2 y
F = F1 + F 2+ F3
d1
q2
d2 d2
d1 o
q
d2 d2
q2 F1 = − y 4πε 0 (2d 2 ) 2 q2 F2 = − x 4πε 0 (2d1 ) 2 x
∧ ∧ F3 = 2d1 x + 2d 2 y 2 2 3/ 2 4πε 0 (2d1 ) + (2d 2 ) ∧
边界条件
C3 ϕ2( r ) = + C4 r
ϕ1
r →0
ϕ1
ε0
r=a
= ϕ2
r =a
r=a
⇒ 有限值 =0
参考点电位
∂ϕ 1 ∂r
= ε0
∂ϕ 2 ∂r
静电场及其边值问题的解法.pptx

2 L2 L
l 0
ln
2 L2 L
l 0
ln 2L
4π0 2 L2 L 2π0
2π0
L
当
时,上式变为无穷大,这是因为电荷不是分布在有限区域内,而将电位参考点
选在无穷远点之故。这时可在上式中加上一个任意常数,则有
(r ) l0 ln 2L C 2π0
并选择有限远处为电位参考点。例如,选择ρ= a 的点为电位参 考点,则有
静态场
➢静电场是指由静止的且其电荷量不随时间变化的电荷产生的电场。 ➢恒定电场是指导电媒质中,由恒定电流产生的电场。 ➢恒定磁场是指由恒定电流或永久磁体产生的磁场,亦称为静磁场。
第2页/共49页
第3章 静电场及其边值问题解法
The Electrostatic Field and Solution Techniques for
结论:静电场中电场力作的功与路径无关, 只取决于始点和终点的位置;
静电场是保守场, 也称位场;
第11页/共49页
利用斯托克斯公式, 可得其微分形式为
cA dl s A ds
l E (r ) dl 0
E (r) 0
上式说明任何静电荷产生的电场, 其电场强度矢量 E 的旋度恒
等于零, 静电场是无旋场。
(P) l 1n 2 0
x
d
2
y2
2
x
d
2
y2
2
l 4
0
1n
x x
d 2 d
2
2
y2 y2
(V )
2
第38页/共49页
✓ 一维电位方程的求解
电位的微分方程
在均匀介质中,有
D E
E
边值问题的分类与解的唯一性定理

p
q q
q q 2 4 π 2 R
q q ˆ D2 a 2 R 4 πR
2
2
在分界面(R = R′= R″)上,应满足电位和电位移矢量法向分量相 等的边界条件:
1 2
q q
D1n D2n
1
q q
2
q q q q
q a b q d a
a q q d
a2 b d
空间任意点 ( r , ) 的电位: q 1 a 2 2 2 2 1/ 2 4π 0 (r 2dr cos d ) (d r 2dra 2 cos a 4 )1/ 2
a2 b d
l l
两平行线电荷的电位分布
空间电位为: l r2 ln c 2π 0 r1
2 2 r r d 2dr cos 其中: 1
r2 r 2 b 2 2br cos
电动力学
第2章 静电场
8. 带有等量异号电荷的平行长直导体圆柱间的镜像
r2 a 2 b 2 2ab cos
电动力学
第2章 静电场
在柱面上取两个特殊点M和N,则 l l N ln(d a) ln(a b) 2π 0 2π 0
l l M ln(d a) ln(a b) 2π 0 2π 0
电动力学
第2章 静电场
例3: 有一接地导体球壳,内外半径分别为a1和a2,在球壳内外各 有一点电荷q1和q2 ,与球心距离分别为d1和d2 ,如图所示。 求:球壳外、球壳中和球壳内的电位分布。
解:
a1 q1
a2
( r , , )
q2
d2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1静电场的边值问题1•镜象法的理论依据是()。
基本方法是在所求场域的外部放置镜像电荷以等效的取代边界表面的()。
2•根据边界面的形状,选择适当的坐标系,如平面边界,则选直角坐标;圆柱面选圆柱坐标系;球面选球坐标。
以便以简单的形式表达边界条件。
将电位函数表示成三个一维函数的乘积,将拉普拉斯方程变为三个常微分方程,得到电位函数的通解,然后寻求满足条件的特解,称为()3.将平面、圆柱面或球面上的感应电荷分布(或束缚电荷分布)用等效的点电荷或线电荷(在场区域外的某一位置处)替代并保证边界条件不变。
原电荷与等效点电荷(即通称为像电荷)的场即所求解,称为(),其主要步骤是确定镜像电荷的位置和大小。
4.()是一种数值计算方法,把求解区域用网格划分,同时把拉普拉斯方程变为网格点的电位有限差分方程(代数方程)组。
在已知边界点的电位值下,用迭代法求得网格点电位的近似数值。
5•用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是()A.镜像电荷是否对称 B .电位所满足的方程是否未改变C•边界条件是否保持不变 D .同时选择B和C4 4 46.微分形式的安培环路定律表达式为' H二J,其中的J ()。
A.是自由电流密度B •是束缚电流密度C.是自由电流和束缚电流密度D.若在真空中则是自由电流密度;在介质中则为束缚电流密度7.在边界形状完全相同的两个区域内的静电场,满足相同的边界条件,则两个区域中的场分布()。
A. —定相同 B .一定不相同 C .不能断定相同或不相同8.两相交并接地导体平板夹角为:,则两板之间区域的静电场()。
A.总可用镜象法求出。
B.不能用镜象法求出。
C•当:•二二/n且n为正整数时,可以用镜象法求出。
D.当、=2 In且n为正整数时,可以用镜象法求出9.将一无穷大导体平板折成如图的90°角,一点电荷Q位于图中(1, n /6 )点处,求所有镜像电荷的大小和位置并在图中标出10.两个平行于XOY面的极大的金属平板,两平板间的距离为d,电位差为〔。
求两板间的电位及电场分布11.两块彼此平行的半无限大接地金属板,板间距离为b,两平行板的一端另有一块电位为〔的极长的金属条,它们之间缝隙极小,但彼此绝缘。
求两板间的电位分布。
12•四块彼此绝缘(相隔极小的缝隙)的无限长金属板构成一个矩形空管,管子截面为「:「,上下两块板电位为零(接地),右侧板电位为'」,左侧板上电位的法向导数为零,即丄;。
求管内的电位分布规律。
13.求导体槽内的电位。
槽的宽度在x和z方向都为无穷大,槽由两块T形的导体构成,两块间有一狭缝,外加恒定电压-L。
14.一根半径为a,介电常数为「的无限长介质圆柱体置于均匀外电场中, 且与--相垂直。
设外电场方向为..轴方向,圆柱轴与z轴相合,求圆柱内、外的电位函数。
15.同心金属球,内外导体半径分别为a和b,内导体电位为:,外导体电位为[,空气介质填充,求该球形电容器的电容C16.均匀电场H中置一半径为a的介质球。
介质球的介电常数为一,球外空气为[。
球介质球内外的电位分布规律17.均匀电场中的金属球,一孤立导体金属球,半径为a,置于均匀电场7中。
金属球为等位体,球内电场等于零。
求外电场则为感应电荷的电场与原均匀电场之和,试求球外的电位及电场18.一个半径为a的导体球壳,沿赤道平面切割出一窄缝,在两半球壳上外加电压-I o并且使下半球壳的电位为零(接地),上半球壳的电位为-L。
计算球内的电位19•求单导线的对地电容。
一根极长的单导线与地面平行。
导线半径为a,离地高度为h,求单位长度单导线地对地电容20.两根无限长平行圆柱,半径均为a,轴线距离位D。
求两圆柱间单位长度上的电容21.一长方形界面的导体槽,槽可以视为无限长,其上有一块与相绝缘的盖板,槽的电位为零,盖板的电位为-I,求槽内的电位函数22•两平行的无限大导体平面,距离为b,其间有一极薄由y=d到y=b(-:。
上板和薄片保持电位-1.,下板保持零电位求板间电位的解。
... (p=—y设在薄片平面上,从y=0到y=d,电位线性变化,'。
提示:应用叠加原理。
把场分解成两个场相叠加:一是薄片不存在,两平行板(加电压「•)的场; 一是薄片和两个电位为零的平板间的场。
注意两个场叠加后满足题给的边界条件。
23.导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解24.—长、宽、高分别为a、b、c的长方体表面保持为零电位,体积内填充密度p 二皿(一)sin(—为一■:- 的电荷。
球体积内的丨。
提示:假设-可以用三维® = E为工心狮(二_)曲(_^_)如(—)傅里叶级数表示为-■ - - - ' ■',并将」展成相似的三维傅里叶级数,把丨和J的展式代入泊松方程:二决定系数二叱。
25.一对无限大接地平行导体板。
板间有一与z轴平行的线电荷匸,其位置为(0,d),求板间的电位函数。
26.矩形槽电位为零,槽中有一与槽平行的直线电荷讥。
求槽内的电位函数27.在均匀电场匸-二匚I中垂直于电场方向放置一导体圆柱,圆柱半径为a。
求圆柱外的电位函数和导体表面的感应电荷密度。
28.考虑一介电常数为[的无限大的介质,在介质中沿z轴方向开一个半径为a的圆柱形空腔。
沿x轴方向加一均匀电场-一,求空腔内和空腔外的电位29.—个半径为b,无限长的薄导体圆柱面被分割成四分之一圆柱面。
第二象限和第四象限的四分之一圆柱面接地,第一象限和第三象限分别保持电位 -■和一丄。
求圆柱内部的电位分布30.一无限长介质圆柱,在距离轴线"-■-处,有一与圆柱平行的线电荷「计算空间各部分的电位31.一无限长导体圆柱,在距离轴线"-'■-处,有一与圆柱平行的线电荷匚计算空间各部分的电位32 .在均匀电场E中放入半径为a导体球,设⑴导体充电至「;⑵导体上充电荷量Q 试分别计算两种情况下球外的电位分布。
33.无限大介质中外加均匀电场匚二,在介质中有一半径为a的球形空腔,求空腔中的二和空腔表面的极化电荷密度(介质的介电常数为二)34.空心导体球壳内、外半径分别为-,」,球中心放置一偶极子球壳上的电量为Q试计算球内外的电位分布和球壳上的电荷分布35.欲在一半径为a 的球上绕线圈使在球内产生均匀场,问线圈应如何绕(即求绕线密度)?(提示:计算表面电流密度' o ) 36. —半径R 的介质球带有均允极化强度丄o (1)证明:球内的电场强度是均匀P的,等于 \ ;⑵ 证明:球外的电场与一个位于球心的偶极子 「[产生的电场 相同, :37. 半径为a 的接地导体球,离球心 二"处放置一点电荷q 。
用分离变量法 求电位分布38. —根密度为匚长为2a 线电荷沿z 轴放置,中心在原点上。
证明:对于 r>a 的点,有 厂’" " 。
提示:将线电荷分为线 元―一,按点电荷写出r>z 的的球坐标的展开式,再积分39. —半径a 的细导线圆环,环与xy 平面重合,中心在原点上。
环上总电荷量 为Q 证明:空间任意点电位为40. —点电荷q 与无限大导体平面距离为d ,如果把它移到无穷远处,需要做多 少功?41. 一电荷量为q 质量为m 的小带电体,放置在无限大导体平面下方,与平面距 离h o 求q 的值以使带电体上受到的静电力与重力相平衡 (设比」八匸叫衣,h , 0.02m )o<Pi = 2 4兀卫 一;(孑乌伽0)+諮)垢(c 。
询十…] 2 a 8 a 急[1-£ A a 乌伽越+ 紗耳(cos 6)+…]r <a r>a42.(1)证明:一个点电荷q和一个带有电荷量Q半径为R的导体球之间的力是Q RD3 R当q与Q同号,且■/:" 一」「成立时F表现为吸引力43.两点电荷(+Q)和(-Q)位于一个半径为a的导电求直径的延长线上,分别距球心D 和(-D)。
2我(1)证明:镜像电荷构成一偶极子,位于球心,偶极距为—“;亘⑵ 令D和Q分别趋于无穷,同时保持匚“不变,计算球外的电场arcwh(b(X-/严a」。
提示:利用虚位移法46.一个二维静电场,电位函数为,边界条件为上100V下50V左0V右100V,将正方形场域分成20个正方形网格。
有16个内部网格点。
假定16个网格点的初始值都定为零,试用超松弛法确定16个内网格点的电位值。
(本题最好在计算机上求解)47.电荷均匀分布于两平行的圆柱面间的区域中,密度为p ,两圆柱半径分别为a和b,轴线相距c,且a+c v b,如图所示,求空间各区域的电位移和电场强度。
ff - Q *D 丸呦,式中D是q到球心的距离。
(2)证明:44.一与地面平行架设的圆界面导线,半径为a,悬挂高度为h。
证明:导线与地间的单位长度上的电容为arcosh45.上题中设导线与地间电压为U。
证明:地对导线单位长度的作用力为48. 半径为a 的球中充满密度p (r)的体电荷,已知电位移分布为厂? + 加2 r - a a 5 + Aa 4 、 --------- r - a 八 其中A 为常数,试求电荷密度p (r)。
49.验证下列标量函数在它们各自坐标中满足^ 2© =0求:(1) sin(kx)sin(ly)exp(-hz)其中 h2= k2+ 12 ; (2) rn [cos (n © )+ Asin (n ©)]圆柱坐标;(3) r — ncos (n ©) 圆柱坐标;(4) rcos ©球坐球;(5) r — 2cos © 球坐球。
50. 已知y >0的空间中没有电荷,下列几个函数中哪些可能是电位函数解?(1) expycoshx ;(2) exp(-y)cosx ;(3) 汰、、{(4) sinxsinysinz51.中心位于原点,边长为L的电介质立方体极化强度矢量•’j 求:(1)计算面和体束缚电荷密度;(2)证明总的束缚电荷为零。
52.平行板电容器的长、宽为a和b,板间距离为d o电容器的一半厚度(0〜d/2) 用介电常数为£的电介质填充。
(1)板上外加电压U0,求板上的自由电荷面密度、束缚电荷;(2)若已知极板上的自由电荷总量Q,求此时极间电压和束缚电荷;(3)求电容器的电容量53.在介电常数£的无限大均匀介质中,开有如下的空腔,求各个空腔中的E和D;(1)平行于E的针形开腔;(2)底面垂直于E的薄盘形空腔;54.考虑一电导率不为零的电介质(丫,£),设其介质特性和导电特性都是不均匀的。
证明当介质中有恒定电流J时,体积内将出现自由电荷,体密度为P p?若有则进一步求出p p55.两层介质的同轴电缆,介质分界面为同轴的圆柱面,内导体半径为a;分界面半径为b,外导体内半径为c;两层介质的介电数为£ 1和£ 2,漏电导为丫 1 和丫2。