空调基本知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机房空调基础知识之基本概念

一、物质的热力状态

热力状态有三个基本表达数:

1、温度T:物质的冷热程度(物质的内能U和温度有关);

2、体积V:一定质量的物体占有的空间大小(比容:单位质量的物质占有的体积);

3、压力P:即单位接触面积上承受的压力。

二、能量——内能、推动功

1、内能:物质因大量份子剧烈运动而具有的内热能,和由于份子之间有西尽力而具有的内位能之和。

2、推动功:物质因流动性而具有的使本身质量迁移的能量,这部分能量我们称之为:推动功=P(压力)×V(体积)

3、气体受热膨胀做工有能量形式转化:热能转化为机械能;

4、热力状态也变化:压力P变小、体积V增大;

5、推动功只有传递:推动流体迁移做功,热力状态不变。

三、能量——焓

1、焓:是热力状态参数之一。H=U+P•V即:焓=内能+推动功

2、物体流动时,不仅携带有自身的内能,还有从后面得到的推动自身移动的推动力。焓更为全面地概括了物体具有的能量总和,我们衡量某一空调的制冷能力就可以根据蒸发前后制冷的焓差来进行精确计算。

流体还具有一定的流动速度而具有的动能,和因具有一定的高度而具有的势能。但在热力学中占的比例很小,一般可以忽略不计,

四、能量——熵

1、熵:也是热力状态参数之一

熵是表现物质吸热或放热特性的量,物质吸收了热量熵增加,物质放出了热量熵减小,物质绝热变化过程熵不变。

2、热力参数之间内在关系:状态方程

A、理想气体的状态方程:

P•V/T=常数从式中我们可以看出,在一个密闭容器中,温度越高,气体的压力就越大。

B、实际气体的状态方程:

(P+a/V2)•(V-b)=R•T

本公式虽然为实际应用中仍有很高的可靠性和准确性。

五、显热

1、物体吸热或放热后,只改变物体的温度,而不改变物体的相态,这种热量称显热。是物质分子运动的能量,它可以通过温度计进行测量。例如:1Kg水从30℃加热到80℃,水吸热了209.38kJ(50kcal)。计算某一房间的热负荷时,空气温度高于设定温度而产生的热负荷成为显热负荷。

2、显热的计算公式:

1POUND×(212-32F)=180BTU

2POUND×(212-32F)=360BTU

六、潜热

1、物体吸热或放热时,只改变物体的状态,,而物体的温度不变,这种热量称潜热。是物质分子分离与重组放出(吸收)的热量,它不能通过温度计进行测量。例如:1kg100℃的水改变成100℃的水蒸气需需吸热2257.2kJ;1kg0℃的水改变成0℃的水蒸气需需吸热2501kJ。

计算某一房间的热负荷时,空气湿度高于设定湿度而产生的热负荷成为潜热负荷。

潜热计算公式:1POUND×970BTU/POUND=970BTU

七、显热比

1、某一个房间来说,显热比即该房间的热负荷中显热负荷占总热负荷的百分比。

空调的性能参数中描述的显热比则表示该空调的制冷能力中,显冷量占总冷量的百分比。我们对某一特定房间惊醒空调设备选型时,应根据该房间的热负荷的显热比,选择对应显热比制冷能力的空调设备。

2、1kg水的热值比较(一个标准大气压)

①、在小于一个标准大气压情况下,水的沸点低于100度。即水的蒸发温度是随着压力而改变的,压力越高,蒸发温度越高。

②、一个标准大气压下,水的温度低于100度时,它一定处于也太,我们称为过冷水。水的温度高于100度,一定处于气态,我们称为过热蒸汽。

③、蒸发及其逆向的冷凝过程是一个饱和过程,在此过程中温度压力均不变。当水完全蒸发为蒸汽后,如果继续加热,水蒸气的温度将继续升高,这是对应于其饱和温度来说我们称为过热蒸汽。

一、制冷发展简史

1800年人们发现冰/雪和盐混合时具有制冷效应,能够大幅度降低水温,使水结冰。

1834年英国人波尔金斯制成第一台使用乙醚作为制冷剂的压缩式制冷机。

1873年德国人林杰发明了氨制冷机。

1876年甲醚被用于制冷剂用来从阿根廷到法国运输肉类

19世纪末随着机械制冷技术不断成熟,产生大量可应用的制冷剂如氨水、二氧化碳、二氧化硫、氯甲烷以及烃类。

20世纪初Start制冷技术开始进入工业化应用,而当时已经开发的制冷剂工作压力较高且大多数均具有毒性和可燃性。

1928年一种新型的制冷剂(二氯二氟甲烷)在美国合成成功,它不可燃,且具有低的毒性,工作压力低,属于人们期望的理想的制冷剂。

1931年杜邦公司开始大规模工业化生产这种新合成的制冷剂,氟利昂家族从此诞生了。

1930-1950年制冷剂家族以及大型商用空调获得了飞速的发展。

1988年蒙特利尔协议,缔约国就限制使用对大气臭氧层具有破坏作用的制冷剂达成了协议并规定了具体的行动时间表。

二、制冷剂状态变化

1、水也是制冷剂的一种,制冷循环极热或放热利用的正是物质相态转变时需要吸收或放出的巨大的热量,因为谁在正常压力下饱和温度较高,不能吸收通常温度下室内的热量,所以不常用。

2、而R22在正常压力(70PSIG),其蒸发温度为(4.5℃),且单位溶剂制冷能力较强,对于人类理想的舒适温度21-27℃来说,是非常理想的冷源。

3、与谁的性质类似,对于R22来说,在(70PSIG)压力下,饱和温度为(4.5℃),故此在此压力下蒸发过程制冷剂温度,恒定为(4.5℃),蒸发过程首先是饱和液体状态。在(70PSIG)压力下,如果R22的温度低于4.5℃,其一定处于也太,且温度低于饱和点,我们称其为过冷液体。如果R22的温度高于4.5℃,其一定处于气态,且温度高于饱和点,我们称其为过热气体。

4、为实现制冷剂在温度相对较高的冷凝器一侧的冷凝散热,唯有通过升高制冷剂的压力来提高其饱和温度,使其高于室外环境温度从而实现散热冷凝过程。

三、臭氧层

1、臭氧层是大气中具有微腥臭的浅蓝色气体,主要集中在距地面20-25KM的平流层内,它是地球的保护伞,阻挡了99%的紫外线辐射,使地球生物免受紫外线的伤害。

臭氧层浓度每降低1%,紫外线的辐射量就增加2%,皮肤癌患者就增加7%,白内障的患者增加0.6%,紫外线还会破坏职务的光合作用和授粉能力,最终降低农业产量。

氟利昂在太阳紫外线的照射下会分解出氯原子,氯原子会夺取臭氧分子而是臭氧变成普通氧。

温湿效应:温室气体主要指大气中的CO2、CH4、Ar、O3等也包括制冷剂中CFC,它可以让短波太阳光几乎不受阻挡的通过,而把地球表面反射出来的长波辐射挡住,使地球表面保持了一定温度,但是过量的温室气体排入大气中,会增强地球表面的温室效应,影响了气温和降雨量,导致气候变暖,海平面升高。

四、制冷量及制冷循环

1、冷量无法制造,其本质是热量的迁移。制冷循环就是实现将热量从空调房间移到另外一个能够容纳并稀释此部分热量的空间的过程。实现此部分循环的同时要消耗一定量的功,并且这种热量传递过程是在一个闭式系统内周期性的重复进行。

吸热和放热过程是利用流体在不同的压力对应的不同的饱和温度下相态变化过程对应的吸热和放热特性(流体的焓发生改变,相态改变过程热量传递相对于仅仅温度改变来说是巨大的)。

相关文档
最新文档