七年级数学解二元一次方程组PPT教学课件
合集下载
(完整版)二元一次方程组优秀课件PPT
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
3.5 认识二元一次方程组 课件(共21张PPT) 湘教版七年级数学上册
(2) 方程的左右两边都是整式.
典例精析
例1 判断下列方程是否为二元一次方程:
(1) 4 y 3z z 6 ; 是
(2)2 y 5 x; 3
(3) x2 2 y 0;
不是
(4) x 3 1; y
不是 不是
(5)2 x2 2 x y 2 x2;是
(6)4 xy 1. 不是
总结 判断要点:
B. x = 3,
y=6
D. x = 4,
y=2
一般地,二元一次方程有无数个解,而二元一次方 程组只有一个解.
典例精析
例4 小玲在文具店买了 3 本练习本,2 支圆珠笔, 共花去 17 元,其中购买练习本比圆珠笔多花 1 元. (1) 设练习本的单价是 x 元,圆珠笔的单价是 y 元, 试列出相应的二元一次方程组. (2) xy==34,是列出的二元一次方程组的一个解吗?
x+y=35,① 4x+2y=94. ②
x=12, y=23.
典例精析
例3 若
x y
= =
-2,是关于 3
x、y
的方程
x-ky
=
1
的解,
则 k 的值为 -1 .
练一练
2. 二元一次方程组 x = 4,
A. y=3
C. x = 2, y=4
总结
x + 2y = 10,
y = 2x
的解是 ( C )
能否设两个未知数解决?
1 二元一次方程组
探究:有若干只鸡兔同在一个笼子里,从上面数有 35 个头,从下面数有 94 只脚. 问笼中各有多少只鸡和兔?
(1) 找出,上述趣题中的等量关系: (1) 兔的只数+鸡的只数=35; (2) 兔的脚数+鸡的脚数=94.
8.2解二元一次方程组-人教版七年级数学下册课件(共32张PPT)
特殊方法:可将x+y,x-y分别作为一 个整体,用换元法解.
解法一(代入法):方程组化简,得
5x y 36 x 5y 28
由①,得y=5x-36.③
把③代入②,得x+5(5x-36)=28,解得
x=8.
把x=8代入③,得y=4.
所以原方程组的解为 x 8
y4
解法二(加减法): 方程组化简,得 5x y 36
y 1
请用此方法解方程组:22xx
3y 3y
2 2
0 2
y
9
7
2x 3y 2 0
①
解:
2x 3y 2 2y 9 ②
7
由①,得2x-3y=2.③ 把③代入②,得1+2y=9,解得y=4. 把y=4代入③,得x=7.
x7 所以原方程组的解为 y 4
例9:解方程组:
x
6
y
x y 10
注意:检验方程组的解
1.为什么能替换? 观察上面的方程和方程组,你能发现二者之 间的代联表系了吗同?一请个你量尝试代求入得方程组的解。
2.(代先入试前着后独的立方完程成组,发然生后了与怎你样的的同变伴化交?流做 (法代)入的作用)
消元 二元一次方程组
一元一次方程
化归思想
练一练:解方程组
2x 3y 4 ①
y2
例11:解方程组:8359 x 1641 y 28359 ①
1641 x 8359 y 21641 ②
解:①+②,得10 000x-10 000y=50 000,即x-y=5.③ ①-②,得6 718x+6 718y=6 718,即x+y=1.④ ③+④,得2x=6,解得x=3; ③-④,得-2y=4,解得y=-2.
3
5(x y) 3(x y) 30
解法一(代入法):方程组化简,得
5x y 36 x 5y 28
由①,得y=5x-36.③
把③代入②,得x+5(5x-36)=28,解得
x=8.
把x=8代入③,得y=4.
所以原方程组的解为 x 8
y4
解法二(加减法): 方程组化简,得 5x y 36
y 1
请用此方法解方程组:22xx
3y 3y
2 2
0 2
y
9
7
2x 3y 2 0
①
解:
2x 3y 2 2y 9 ②
7
由①,得2x-3y=2.③ 把③代入②,得1+2y=9,解得y=4. 把y=4代入③,得x=7.
x7 所以原方程组的解为 y 4
例9:解方程组:
x
6
y
x y 10
注意:检验方程组的解
1.为什么能替换? 观察上面的方程和方程组,你能发现二者之 间的代联表系了吗同?一请个你量尝试代求入得方程组的解。
2.(代先入试前着后独的立方完程成组,发然生后了与怎你样的的同变伴化交?流做 (法代)入的作用)
消元 二元一次方程组
一元一次方程
化归思想
练一练:解方程组
2x 3y 4 ①
y2
例11:解方程组:8359 x 1641 y 28359 ①
1641 x 8359 y 21641 ②
解:①+②,得10 000x-10 000y=50 000,即x-y=5.③ ①-②,得6 718x+6 718y=6 718,即x+y=1.④ ③+④,得2x=6,解得x=3; ③-④,得-2y=4,解得y=-2.
3
5(x y) 3(x y) 30
(完整版)二元一次方程组优秀课件PPT
答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题
[伟大的数学课]7.2二元一次方程组的解法课件(共19张PPT)
第五组 第六组
7.怎样用加减法解:
第七组
口头 口头
口头 书面 书面
第六组 第五组
第四组 第三组 第二组
展示要求:
书面展示:书写迅速,字迹工整、答题规范、内 容简练。 口头展示:声音洪亮,条理清晰,语言简练。 评价要求:1.声音洪亮,条理清晰,突出重点, 语言简练。
2.点评解题方法及思路。 3.恰当指出展示成果的优缺点 , 并 打分(100分)。 4.补充或阐述不同观点。
3.方程组32xx
3y 5y
k k
中,x与y的和12,
2
求k的值.
解:解这个方程组得:
x 2k 6
y
4
k
∵ x+y=12
∴ (2k-6) +(4-k)=12
解得:
K=14
布置作业. 1.课本P46页,复习第2题
由学科班长惠春政对本节课进行总 结:
1.可以对本节课的知识掌握、内容理解、深 刻感悟等方面来总结。
③ + ④得:
解得:
9x=114 解得:
y=5 把y=5代入③得:
x=6 把x=6代入②得:
x=5+1=6
∴ x 6
y
5
30+6y=42
解得: y=2
∴ x 6
y
2
质疑再探
同学们,在复习的过程中,你又产 生了哪些新疑惑或又有了什么新的 发现,请大胆的提出来,大家共同 来解决。
运用拓展
——画龙在于点睛,学习在于运用
答案展示:
1.只有两个未知数,并且所含未知数的项的次数都是1,系数都不是0的整式方程,叫做二元 一次方程. 由两个一次方程组成,共有两个未知数的方程组,叫做二元一次方程组.
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
沪科版数学七年级上册二元一次方程组及其解法课件
有相同的解,求a和b的值.
解:由① ④得
5x 2 y 24 2x 5 y 18
解得
x y
4 2
把
x y
4 2
代入②
③得
4a 2b 14 4a 2b 10
解得
a b
3 1
【触类旁通】
方程组
3x 5y 2x 3y
m2 m
① ②
的解也是方
程 x y 8 的解,求m的值.
解:①×2 得:6x 10y 2m 4 ③
x y 60 5x y 100
① ②
② ① 得 4x 40 x 10
把 x 10 代入 ① 得 y 50
x 10
y
50
【练习】
5x y 2x y 125 ①
0.1
0.2
解方程组: x y 4
23 3
②
分析:方程②容易变形,本题的难点在于方程①如何化
简,方程①带有分母,而且分母还是小数,如何正确地 去分母呢?
15× x 2 + 15×2y 3 =2×15
3
5
5(x 2)+ (3 2y 3)=30
3x 9 2y 10 42
5x 10 6y 9 30
3x 2y 23 ③
5x 6y 49 ④
x
x
2
3 2
y5 7 3
2y 3 2
① ②
3
5
3x 2y 23 ③
5x 6y 49 ④
1.甲、乙两地相距4km,以各自的速度同时出发.如果 同向而行,甲2h追上乙;如果相向而行,两人0.5h后 相遇.试问两人的速度各是多少? 2.甲、乙两人都从A地到B地,甲步行,乙骑自行车, 如果甲先走6千米乙再动身,则乙走34小时后恰好与 甲同时到达B地;如果甲先走1小时,那么乙用12小时 可追上甲,求两人的速度及A,B两地间的距离.
二元一次方程组的应用PPT课件
解得
x=50 y=300
答:火车的速度为50 m/s,长度为300m.
知识要点
CONTENTS
3
知识要点
1.(2019·自贡)某活动小组购买了4个篮球和5个 足球,一共花费
了466元,其中篮球的单价比足球 的单价多4元,求篮球的单
价和足球的单价.设篮 球的单价为x元,足球的单价为y元,依
题意,可列方程组为
七年级数学下册冀教版
第六章 二元一次方程组
6.3 二元一次方程组的应用
知识要点
1
知识要点
CONTENTS
1
知识要点
想一想:
前面所学的解二元一次方程组的基本思路及常见方法是什么呢?
基本思路:
加减消元法
消元: 二元
一元
代入消元法
1.代入法:求表示式 代入消元 解一元一次方程 回代求解
2.加减法 :变换系数 加减消元 解一元一次方程 回代求解
(2)如果设大马驮货x包,小马驮货y包,请列出二元一次方程组. (3)请你试着解出2中所列的二元一次方程组,并和同学们进行交流.
知识要点
利用二元一次方程组解决实际问题
根据题意,得 x1 y1, x+1=2( y1).
整理,得 x y2, ① x2 y3. ② ①-②, 得 y=5. 把y=5代入①,得 x=7. 所以,方程组的解为 x7, y 5. 答:大马驮物7包,小马驮物5包.
x y 4, 4x 5y
466.
.
知识要点
2.如图,周长为68 cm的长方形ABCD被分成7个相同的小长方 形,设小长方形的长为x cm,宽为y cm,
( 3x y) 2 68,
则可以列出的方程组为 2x=5y.
二元一次方程组解法ppt课件
x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7
①
2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组
⑴
y=2x x=4 x+y=12 y=8
x=y—2-5
⑵
x=5 y=15
4x+3y=65
x+y=11
3x-2y=9
⑶
x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是
.
7.已知关于x,y方程组
2x 3x
3y 5y
人教初中数学七下 8.2.1 代入法解二元一次方程组课件 【经典初中数学课件】
1
02
一
元
知一
次
识不
等
点式
二
的 解
法
三、研读课文
(2) 2 x ≥ 2 x 1
2
3
解:去分母,得: 3(2+x)≥2(2x-1) .
去括号,得: 6+3x≥ 4x - 2 .
3x-4x≥ -2 - 6
移项,得:
.
-x≥ - 8
合并同类项,得:
.
系数化为1,得:
x≤ 8
.
这个不等式的解集在数轴上的表示:
三、研读课文
练一练 用加减法解下列方程组:
2x +5y = 8 ①
(2)
练
3x +2y=5 ②
一
练
三、研读课文
练一练 用加减法解下列方程组:
(2) 2x +5y = 8 ①
练
3x +2y=5 ②
一
解: ① ×3 得6X+15y=24 ③
练
② ×2 得6x+4y=10 ④ ③ —④ 得 11y=14
这个不等式的解集在数轴上的表示 :
-16 0
一
知
元 一
识
次 不
等
点式 的
三
解 法
及
练
习
三、研读课文
(2 2(x5)3 (x5)
解:)去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25
这个不等式的解集在数轴上的表示:
一
7
次
解得 y=
方
02
一
元
知一
次
识不
等
点式
二
的 解
法
三、研读课文
(2) 2 x ≥ 2 x 1
2
3
解:去分母,得: 3(2+x)≥2(2x-1) .
去括号,得: 6+3x≥ 4x - 2 .
3x-4x≥ -2 - 6
移项,得:
.
-x≥ - 8
合并同类项,得:
.
系数化为1,得:
x≤ 8
.
这个不等式的解集在数轴上的表示:
三、研读课文
练一练 用加减法解下列方程组:
2x +5y = 8 ①
(2)
练
3x +2y=5 ②
一
练
三、研读课文
练一练 用加减法解下列方程组:
(2) 2x +5y = 8 ①
练
3x +2y=5 ②
一
解: ① ×3 得6X+15y=24 ③
练
② ×2 得6x+4y=10 ④ ③ —④ 得 11y=14
这个不等式的解集在数轴上的表示 :
-16 0
一
知
元 一
识
次 不
等
点式 的
三
解 法
及
练
习
三、研读课文
(2 2(x5)3 (x5)
解:)去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25
这个不等式的解集在数轴上的表示:
一
7
次
解得 y=
方
消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,
①
x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全
人教版七年级数学下册第八章二元一次方程组优秀精ppt课件
练一练
课堂练习题 练习题:解下列二元一次方程组
练一练
想一想
请同学们思考一下从上面的学习中体会到解二元一 次方程组的基本思路是什么呢?主要步骤有哪些?
第一步:先将二元一次方程组中的一个方程变形整理,使 得一个未知数能用含有另一个未知数的代数式表示.
第二步:用第一步得出的这个代数式代入另一个方程中替 换掉相应的未知数,得到一个新的一元一次方程,化简整理 求出一个未知数的值. 第三步:把上一步求出的这个未知数的值代入原方程组中 的任意一个方程或第一步构造出的代数式,都可以求出另 一个未知数的值.
最后:写出该二元一次方程组的解.
课堂自我检测 1、解下列二元一次方程组
6
1
课堂总结
1、 这节课我们学了用代入消元法解二 元一次方程组的解题思想是“消元”.即 把“二元”化为“一元”,化二元一次 方程组为一元一次方程.
2、把求出的结果带入原二元一次方程组 可以检验所求解的正确性.
8.2二元一次方程组
课前回顾
1、什么叫二元一次方程?
二元一次方程的定义:含有两个未知数, 并且所含未知数的项的次数都是1的 方程叫做二元一次方程.
2、什么叫二元一次方程组?
二元一次方程组的定义:含有两个未 知数的两个一次方程组成的方程组.
例题讲练
例1、判断下列各方程(或方程组)是否为 二元一次方程(或方程组):
√
×
× √
√ ×
例题讲练
√
×
×
√
×
×
解二元一次方程组
解:因为方程组中相同的字母表示同一个未 知数,将(1)中的y换成x-120,这样就有:
2x-120=90 (3) 解得到的一元一次方程(3) ,就得x=105 再把x=105代入方程(2), 可得y=-15
《二元一次方程组》PPT优质课件下载
x + y =10
2x+ y =16
1.这两个方程是一元一次方程吗?为什么?
2.这两个方程有什么共同特点?
① 含有两个未知数;
② 含有未知数的项的次数都是1.
二元一次方程
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.
3.二元一次方程与一元一次方程有什么相同和不同之处?
C
B.
3. 解为 的方程组是 ( )
D
A.
B.
C.
D.
4.小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x张,2元的贺卡y张,那么可列方程组( ) A. B. C. D.
(是)
(是)
(不是)
(不是)
(是)
(不是)
通过上面问题,你认为二元一次方程组有哪些特点?
请你说说二元一次方程组有哪些特点?①方程组中共有2个不同未知数;②方程组有2个一次方程;③一般用大括号把2个方程连起来.
在方程组 的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个
利用二元一次方程组的解求字母的值
若 是方程x-ky=1的解,则k的值为 .
-1
{
x=-2,y=3
对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解. 加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
B
解:设该队胜了x场,负了y场,根据题意可得方程:
x + y = 16
像这样,把具有相同未知数的两个二元一次方程合在一起就组成了一个二元一次方程组.
2x+ y =16
1.这两个方程是一元一次方程吗?为什么?
2.这两个方程有什么共同特点?
① 含有两个未知数;
② 含有未知数的项的次数都是1.
二元一次方程
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.
3.二元一次方程与一元一次方程有什么相同和不同之处?
C
B.
3. 解为 的方程组是 ( )
D
A.
B.
C.
D.
4.小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x张,2元的贺卡y张,那么可列方程组( ) A. B. C. D.
(是)
(是)
(不是)
(不是)
(是)
(不是)
通过上面问题,你认为二元一次方程组有哪些特点?
请你说说二元一次方程组有哪些特点?①方程组中共有2个不同未知数;②方程组有2个一次方程;③一般用大括号把2个方程连起来.
在方程组 的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个
利用二元一次方程组的解求字母的值
若 是方程x-ky=1的解,则k的值为 .
-1
{
x=-2,y=3
对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解. 加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?
B
解:设该队胜了x场,负了y场,根据题意可得方程:
x + y = 16
像这样,把具有相同未知数的两个二元一次方程合在一起就组成了一个二元一次方程组.
解二元一次方程组-第1课时(课件)七年级数学下册(苏科版)
苏科版七年级下册第10章二元一次方程组
10.3 解二元一次方程组(上)
Solve a system of linear equation with two unknowns
教学目标
01
02
03
理解消元的思想以及消元法对于解二元一次方程组的重要性
理解代入消元法,掌握代入消元法解二元一次方程组的一般步骤
解得:x=2,
将x=2代入①得:2+2y=2,
解得:y=0,
=
∴原方程组的解为
.
=
02
知识精讲
+ = − ⋯ ⋯ ①
方程组
能否通过直接把两个方程相加/减的方
+ = − ⋯ ⋯ ②
式去解呢?
两个方程中y的系数并没有互为相反数或相等,
无法直接相加/减
①×3,②×4之后,两个方程中y的系数就相等了,
能把二元一次方程组转化为我们熟悉的一元一次方程.
2、这种将未知数的个数由多化少、逐一解决的思想,叫做消元.使用
消元法减少未知数的个数,使多元方程组最终转化为一元方程,再逐步
解出未知数的值.
02
知识精讲
代入消元法
【代入消元法】
将方程组的一个方程中的某个未知数用含有另一个未知数的代数式表示,
并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为
【代入消元法解二元一次方程组的一般步骤】
(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数
(例如y),用含另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形
式;
(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x一元一次方程;
10.3 解二元一次方程组(上)
Solve a system of linear equation with two unknowns
教学目标
01
02
03
理解消元的思想以及消元法对于解二元一次方程组的重要性
理解代入消元法,掌握代入消元法解二元一次方程组的一般步骤
解得:x=2,
将x=2代入①得:2+2y=2,
解得:y=0,
=
∴原方程组的解为
.
=
02
知识精讲
+ = − ⋯ ⋯ ①
方程组
能否通过直接把两个方程相加/减的方
+ = − ⋯ ⋯ ②
式去解呢?
两个方程中y的系数并没有互为相反数或相等,
无法直接相加/减
①×3,②×4之后,两个方程中y的系数就相等了,
能把二元一次方程组转化为我们熟悉的一元一次方程.
2、这种将未知数的个数由多化少、逐一解决的思想,叫做消元.使用
消元法减少未知数的个数,使多元方程组最终转化为一元方程,再逐步
解出未知数的值.
02
知识精讲
代入消元法
【代入消元法】
将方程组的一个方程中的某个未知数用含有另一个未知数的代数式表示,
并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为
【代入消元法解二元一次方程组的一般步骤】
(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数
(例如y),用含另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形
式;
(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x一元一次方程;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲,乙两人同时解方程组m mxxnnyy58②①
由于甲看错了①中的m,解得
x y
4 2
,乙看错
了②中的n,解得
x y
2,试求m,n的正确值. 5
相信你能行
ax+2by=4
1. 已知关于x,y的方程组
与
x-y=3
x+y=1
的解相同,求a,b的值.
bx+(a-1)y=3
3x+2y=a+2
2. 已知关于x,y的方程组的解
(3)你能想办法消去未知数y吗?
将两个方程相加,直接消去y
解例:1①+解②方,程得组4x=3x6x22yy1通5过① ②加或减,让 所以解将原这方x个程方23 代组程入,的①x得解,是y23得xy23==14232y1解求“元一出1二”总的元y元的结 解一”值, 。次化。写方成出程“方,一程组
4 一加减,二消元,三求解,四代入,五总结
练一练:解下列方程组
2x y 32 (1)2x y 0
7x 3y 11 (2)2x 3y 7
例2:解方程组
2xy6 5x2y4 (1)x2y2 (2)2x3y5
试一试 方程组(2)能否通过消去x解这个方程组?
练一练:1.解下列方程组
(1)3xx32yy95
(2)36xx45zz
25 20
(3)42xx93yy81(4)33ts24st
2X-3y=4
x y 2 (2) 3 4
3X-4y=-7
xy3xy8 (3) 2 3
X-2y=-1
m n 13 23
(4) m n 3
34
拓展提高
1.解方程组
(x1)(y1)5 (x1)(y1)1
2.已知二元一次方程 axby4的两
x 1 x 2
个解为
y
1
和
y
,
3
求 a, b 的值。
1.代入法解二元一次方程组的步骤:
一变,二代,三消,四解,五再代,六总结
2.用代入法解方程组
2x3y 4 0 (1)x y 5
(2)
1
x
y
2
3 x 2 y
1 2 5
x2y 1 3x2y 5
(1)除了用代入消元法求解以外,观察方程 组的特点,还能有其他方法求解吗?
(2)方程组的系数有什么特殊的地方吗? y的系数互为相反数
7 1
1.代入法解二元一次方程组的步骤: 一、变;二、代;三、消 四、解;五、代;六、结。
2.加减法解二元一次方程组的步骤:
一、变形;二、加减;三、消元;四、 求解;五、代入;六、总结。
例3.解方程组:
(1)52m n33mn1800
(2)
x
y
3y 2
3x 3
2 4
练一练
0.6x-0.5y=0.4 ⑴
课堂小结
1.加减消元法 将方程组的两个方程(或先作适当变形)相 加或相减,消去一个未知数,把解二元一次 方程组转化为解一元一次方程。这种解方程 组的方法称为加减消元法,简称为加减法。
2பைடு நூலகம்加减法的基本思想:消元。 3.加减法解二元一次方程组主要步骤:
一变形,二加减,三消元,四求解, 五代入,六总结
拓展提升:
满足x+y=4,求a的值.
2x+3y=2a