退火炉热平衡计算与热处理工艺设置

退火炉热平衡计算与热处理工艺设置
退火炉热平衡计算与热处理工艺设置

退火炉热平衡计算与热处理工艺设置

东北特钢集团大连特殊钢丝公司徐效谦

内容摘要:通过热平衡计算,根据装炉量对电井炉升温工艺实行分段控制,能有效地改善退火钢丝加热过程的温差,显著提高退火后钢丝的力学性能均匀性。

关键词:退火炉热平衡计算均匀性

退火炉热处理均匀性是一项重要指示,一般认为热处理均匀取决于热处理炉的上、中、下或前、后各区的加热能力的分布状况,实际上加热能力的均匀分布只是一个基本要求,热量的传输效率才是决定热处理均匀性的关键因素。保证单位时间供给的热量与炉料吸收的热量基本平衡,是提高热处理均匀性唯一的控制要点,控制目标是单位时间热量的传输效率应大于95%。热处理均匀性与热量的传输效率成正比关系,传输效率越低,热处理均匀性越差。这个基本原理我们是通过长期实践才逐渐认识到的。

一Ⅲ型井式退火炉基本状况

钢丝Ⅲ型强对流气体保护井式退火炉原设计为自动升温,即控制仪表一段控制温度直接设置为工艺规定的退火温度,由仪表控制升温时间。第2和第3段同时设置温度和时间两项工艺参数。实际运行结果是:退火钢丝抗拉强度偏高,以针丝为例,企业标准Q/LD30-2004中GCr15Ⅰ组要求抗拉强度为Rm:560~680MPa,而在生产过程中测得实验结果为Rm:670~730MPa,同炉钢丝软硬不均,抗拉强度差大。为此需对退火炉进行热平衡计算,在升温阶段同时设定升温温度和升温时间,强化退火效果、改善钢丝抗拉强度均匀性。Ⅲ型退火炉主要技术参数如表1,装料架计算参数如表2。

表1周期炉主要技术参数

表2 装料架计算参数

二Ⅲa型井式退火炉工艺参数及热平衡计算

1.加热时间计算方法

(1)配置功率除以安全系数1.2,即为有效使用功率。有效使用功率中扣除N4~N6三项消耗功率,余数为加热功率,见第三节。

N有效=N总/1.2;

N 加热=N 有效-N 4-N 5-N 6;

(2)热量换算成单位时间的电耗—功率

N =

τ

860Q 则 Q 加热=860 N 加热τ τ= Q 加热/860N 加热。

式中:τ—钢丝加热到预定温度的时间,h 。

(3)加热能耗主要用于钢丝、料架和内胆等加热能耗,内胆、导流桶和炉盖的能耗只取决于退火温度,是固定不变的。料架与装炉量有对应关系,我公司料架重量平均为装炉量的15%,因此需要将钢丝加热能耗进一步分解成吨钢能耗W 与装炉量M 。

W=M

Q 1可以导出 Q 1=W 1M 、Q 2=W 2M

式中W —吨钢能耗,kcal/ t M —装炉量,t (4)N

加热

是用于加热钢丝、料架和内胆等的功率,要将炉中钢丝加热到预定温度,必须保证N

在τ内提供的热量能将钢丝、料架和内胆加热到预定温度,即:

Q 加热=Q 1 +Q 2 +Q 3= Q 1=W 1M+W 2M+ Q 3=860N 加热τ; 可以导出: 加热

N Q M W M W 8603

21++=

τ

2. 工艺参数

(1)Ⅲa 型井式退火炉配置功率240kW ;

(2)不锈钢内胆3.2t ,不锈钢导流桶1.8t ,炉盖1.2t ; (3)炉体外形尺寸:3125×3850mm ; (4)比热容计算取值(C p =kcal/kg·℃)如表3。

表3 比热容计算取值

三 热平衡计算 1. 钢丝加热所需热量

以700℃退火的碳素钢丝为例进行热平衡计算,查资料得知钢丝的C 25=0.113 kcal / kg .℃,C 700=0.144 kcal / kg .℃。

W 1= m(C 1t 1-C 0t 0)=1000×(700×0.144-25×0.113)=97975(kcal )

2. 装料架加热所需热量

钢丝装在料架上退火,装料架材质为321不锈钢,4*装料架平均单重187kg ,15个料架总重2800kg 。查资料得知321装料架的C 25=0.112 kcal / kg .℃,C 750=0.15 kcal / kg .℃。计算时装料架总重量2000kg 。

W 2=15%m(C 1t 1-C 0t 0)=150×(700×0.15-25×0.112)=15330(kcal )

3. 内胆及导流桶等加热所需热量

内胆、导流桶及炉盖总重量3.2+1.8+1.2=6.2t ,材质310,连续生产时,钢丝出炉后内胆等平均温度

能保持在200℃左右。查资料得知304内胆的C 200=0.12 kcal / kg ·℃、C 750=0.15kcal / kg ·℃。

Q 3=m(C 1t 1-C 0t 0)=6200×(700×0.15-200×0.12)=502200(kcal )

4. 冷却水消耗功率

电井炉强对流电机和炉盖密封胶垫使用中必须通水冷却,因此要消耗部分功率。冷却水用量6t/h ,660℃、680℃退火时,预计每小时温升3.5℃;700℃、720℃退火时,预计每小时温升4.0℃;750℃、780℃退火时,预计每小时温升4.5℃;800℃、820℃退火时,预计每小时温升5.0℃;850℃、880℃退火时,预计每小时温升5.5℃;。

Q 4=mC(t 1-t 0)=6000×(29-25)×1=24000(kcal/ h ) N 4=Q 4/860=24000÷860=27.9(kW )

5. 保护气体消耗功率

电井炉退火时选用高纯氮作为保护气体,防止钢丝氧化。保护气体平均用量15m 3/h ,查资料得知N 2的比热C 200=0.248 kcal / m 3.℃。

Q 5=mC(t 1-t 0)= 15×(700-25)×0.248=2511(kcal/ h ) N 5=Q 5/860=2511÷860=2.92(kW )

6. 炉体散热消耗的功率

电井炉外形尺寸为Φ3125×H3850m ,其外表面积F=53.41m 2。660℃、680℃退火时,冬季表面温度预计不超过50℃、q 取294;700℃→51℃、q 取306;720℃→52℃、q 取318;750℃→53℃、q 取330; 780℃→54℃、q 取342;800℃→55℃、q 取355;820℃→5 6℃、q 取367;850℃→57℃、q 取379;880℃退火时,冬季表面温度预计不超过58℃、q 取391。

Q 6=qF=306×53.41=16343.5(kcal/ h ) N 6=Q 6/860=16343.5÷860=19.0(kW )

表4 炉体外表面温度与散热系数(q)的关系

根据公式: 加热

N Q M W W M 8603

2++=

τ

加热

N Q M W W M 8603

2700++=

τ89.388.018.1508605022001533097975+=?++=M M

计算数值汇总如表5。

同理可以求出:τ(500℃时)=0.58M+2.30

τ(660℃时)=0.79M+3.49 τ(680℃时)=0.83M+3.64

τ(700℃时)=0.88M+3.89

τ(720℃时)=0.91 M+4.05 τ(750℃时)=0.97M+4.39 τ(780℃时)=1.02M+4.65 τ(800℃时)=1.08M+4.95

τ(820℃时)=1.11M+5.11

τ(850℃时)= 1.19M+5.55

τ(880℃时)= 1.24M+5.83

式中:τ—加热时间,h;

M—装炉量,t。

四升温速度分段设置的意义

从表3可以看出:钢铁材料的比热容随退火温度升高而增大,这就意味着在功率固定的退火炉中,钢丝在低温段升温快,在高温段升温速度要慢得多。如果按一段设置升温速度,自动控温仪表往往把升温速度均匀的分配到各时间段中,这样退火炉在低温区经常停电(或降压)控温,进入高温区后往往在预定时间内升不到预定温度。如果选用滿功率升温,因为退火炉内温度是从外圈向内圈传递的,靠近外圈钢丝的温度长时间高于内圈钢丝的温度,势必造成退火钢丝组织和力学性能严重不均。根据多年生产实践,我们摸索出退火炉分段设置控温模式:首先通过热平衡计算,算出不同装炉量钢丝,各温段所需升温时间,然后分成装炉~500℃和500℃~预定退火温度两段控制升温速度,彻底解决了上述两大控温难题,使强对流井式退火炉热处理后的钢丝抗拉强度偏差控制在30MPa以内。根据以上分析,Ⅲa型井式退火炉升温时间计算值如表6。因为升温过程是累计自动控制的,第一段未升到预定温度,自动调整到第二段开始计温时间中,通常可将第一段升温时间缩短一点,保证第二段有足够的升温时间,调整后的Ⅲa型井式退火炉升温时间设置如表7。

表5 Ⅲa型井式退火炉热平衡计算数据汇总表

表6 Ⅲa型井式退火炉升温时间计算值(单位:min)

5

表7 Ⅲa型井式退火炉升温时间设置(单位:min)

6

7

五 Ⅲb 型井式退火炉热平衡计算

同样以700℃退火的碳素钢丝为例,对Ⅲb 型井式退火炉进行热平衡计算,计算数值汇总如表8。以表8数值为准,按公式加热

N Q M W W M 8603

2++=τ计算不同

退火温度时装炉量与升温时间的对应关系如下:

τ(500℃时)=0.68M+2.74 τ(660℃时)=0.95M+4.47 τ(680℃时)=0.98M+4.66

τ(700℃时)=1.04M+5.31

τ(720℃时)=1.09 M+5.49 τ(750℃时)=1.17M+6.35 τ(780℃时)=1.23M+6.73 τ(800℃时)=1.32M+7.83 τ(820℃时)=1.37M+8.11 τ(850℃时)= 1.48M+9.44

τ(880℃时)= 1.61M+10.36 式中:τ—加热时间,h ;M —装炉量,t 。

按上式可以计算出Ⅲb 型井式退火炉不同装炉量、不同退火温度下理论升温时间如表9。因为升温过程是累计自动控制的,第一段未升到预定温度,自动调整到第二段开始计温时间中,通常可将第一段升温时间缩短一点,保证第二段有足够的升温时间,调整后的Ⅲb 型井式退火炉升温时间设置如表10。

表8 Ⅲb 型井式退火炉热平衡计算数据汇总表

表9 Ⅲb型井式退火炉升温时间计算值(单位:min)

表10 Ⅲb型井式退火炉升温时间设置(单位:min)

8

六、结论

Ⅲ型井式退火炉热处理工艺按热平衡计算结果调整后,钢丝抗拉强度降到正常水平,以GCr15钢丝为例,国际GB/T18579-2001规定,退火状态钢丝的抗拉强度(R m)应为590~760MPa。随意抽取50炉热处理后钢丝,对抗拉强度实测结果进行统计,抗拉强度(R m)均在650~690MPa之间,同炉抗拉强度差≤30MPa,达到预期效果。

公司是特殊钢丝生产厂,日常生产中钢丝牌号始终保持在40个以上。为适应多品种生产要求,周期热处理部分配置了各型号强对流气体保护井式退火炉6台,其中Ⅰ型退火炉装炉量最大(10~20t);强对流气体保护罩式炉2台,装炉量18~30t。按上述思路调整热处理工艺后,经井式退火炉热处理后的各类钢丝,同一炉回抗拉强度的均匀性,多年来稳定在≤30MPa水平;罩式炉同一炉回抗拉强度的均匀性,多年来稳定在≤50MPa水平。

要提高热处理均匀,可采用以下工艺措施:

(1)必须根据装炉量来确定热处理工艺。

(2)因为金属材料在不同温区的比热和导热系数不一致,加热过程中应分区设置热处理工艺,以保证各区段单位时间供给的热量与炉料吸收的热量基本平衡。

(3)在热处理炉固定条件下,可通过热平衡计算确定各温区的升温时间,确保热传输效率≥95%。

(4)对于变频调速的强对流气体保护炉,在保持强对流风机低温低速、高温高速原则下,分温区合理调整变频风机速度,提高热传输能力。其他类型热处理炉也应按尽可能提高热传输能力的原则进行调控。

参考文献

1. 徐效谦,《强对流气体保护退火炉》,百度文库。

2. 机械工业部第一设计院主编,《工业炉设计手册》,机械工业出版社,1981年10月第一版。

3. 《合金钢钢种手册,第四册耐热钢》,冶金工业出版社,1993年8月第一版。

2012年2月8日

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

光亮退火炉

不锈钢光亮退火 1 不锈钢光亮退火的工艺目的及对炉子的要求 1.1 消除加工硬化获取满意的金相组织 光亮退火炉主要用来进行不锈钢在保护气氛下的成品热处理。当使用性能要求不同时,对光亮退火后金相组织的要求就不同,光亮热处理的工艺也不同。 300系列奥氏体不锈钢典型的热处理工艺是固溶处理。 在升温过程中使碳化物溶入奥氏体,加热到1050~1150℃,适当保温一段短时间,使碳化物全部溶解于奥氏体,然后迅速冷却到350℃以下,得到过饱和固溶体即均匀的单向奥氏体组织。这一热处理工艺的关键是快速冷却,要求冷却速度达到55℃/s,快速通过碳化物固溶后的再析出温度区(550~850℃)。保温时间要尽量短,否则晶粒粗大,影响表面光洁度(见图1)。 图1 奥氏体不锈钢板光亮退火工艺示意(连续炉) 材料AISI304,钢带截面600mm×0.5mm 400系列铁素体不锈钢加热温度比较低(900℃左右),并较多采用缓冷获得退火软化组织。马氏体不锈钢采用退火方式,还可采用分段淬火再回火的方式处理。 从上述可知300系列与400系列不锈钢在热处理制度上差异很大,要想获得合格的金相组织,就要求光亮退火炉的冷却段设备有很大的调节余地。所以,现代先进的光亮退火炉,在其冷却段往往采用强对流冷却,设三个冷却段,可单独调节风量。沿带钢的宽度方向又分三个区段,通过风量导流调节带钢宽度方向的冷却速度,控制板型。 不锈钢冷轧带钢热处理的另一关键问题是要求整根带钢在宽度、长度上组织都很均匀。马弗式光亮退火炉采用大尺寸马弗管,从马弗管外部均匀地组织加热气流螺旋式环绕而过,使带钢均匀加热。而要确保带钢沿长度方向的组织均匀,就要保持带钢在加热炉中的线速度不变。所以,在现代立式光亮热处理炉前后都装有可精密调整的辊式张力调整装置。它不但要使带钢进出口速度满足热处理速度的要求,不受活套量空套或满套的影响,而且要根据带钢的板型情况建立并精密调整带钢小张力,满足板型的要求。 1.2 获得无氧化光亮的表面 保护气氛下对带钢进行热处理。要达到BA板的要求,必须非常严格地控制炉内光亮退火,是在H 2 保护气氛,尽量避免氧化。 保护气氛下氧化是怎样发生的呢? H 2 不锈钢带的主要合金成分有Fe、Cr、Ni、Mn、Ti、Si等。图2表示在退火温度范围内,保护气体露点的变化与各类元素氧化的关系。由图可以看出,在氢保护气氛中,Fe、Ni的氧化不是主要问题。H 2 但Cr、Mn、Si、Ti的氧化区间恰好在加热温度范围内。正是这些合金元素的氧化影响了带钢的表面光

金属材料与热处理

金属材料与热处理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

《金属材料与热处理》教学大纲 一、课程的性质和任务 本课程是一门专业技术基础课,实践性较强,必须经过生产实习增强感性认识,再通过理论学习才能理解和掌握常见金属材料性能、组织、结构和热处理方法的特点;了解非金属材料的基本知识。为学后续的专业课打下坚实的基础。 二、课程教学目标 1、掌握机械工程材料的基本知识,能够正确选择材料。 2、掌握常见的金属热处理的方法、特点及应用范围 3、了解非金属材料基础知识。 三、教学内容和要求 1、金属材料基础知识 常见金属材料及其性能、金属的结构及结晶、合金的结构和组 织、铁碳合金相图、碳钢及合金钢、铸铁、有色金属。 2、热处理基础知识 钢在冷却(加热)时的转变过程、钢的普通热处理工艺、钢的表 面热处理工艺、钢的化学热处理工艺。 3、非金属材料 非金属材料的种类、特点、性能及应用。 四、《工程材料》课程的主要要求 1、常用金属材料及热处理工艺的基础知识,为后续相关专业课打下坚实基础。

2、通过本课程的学习,使学生能根据合理的选择材料和热处理方法。 3、在教学过程中贯彻理论联系实际的原则,在讲授理论时要注重和生产实习相结合,增强学生对理论知识的理解。 4、本课程建议安排在学生学完机械制图及计算机制图、工程力学、机械设计基础、金工实习课程之后讲授。 五、《金属材料与热处理》课程质量标准与考核方式 课程质量标准是培养学生掌握金属材料及热处理原理和非金属的基础知识,重点培养学生运用所学知识解决实际问题的能力。成绩考核方式按照天津石油职业技术学院课程成绩考核评价管理制度执行,采用单独考查方式,平时考核占考核评价成绩30%,期末考试占考核评价成绩40%,实验占考核评价成绩30%,考查采用5级制。 六、课时分配表

(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案 第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。(×) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √) 13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √)

14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √) 31、晶体有规则的几何图形。( √) 32、非晶体没有规则的几何图形。( √)

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

金属材料与热处理技术-550101

高等职业教育金属材料与热处理技术专业 教学基本要求 专业名称金属材料与热处理技术 专业代码550101 招生对象 普通高中毕业生 学制与学历 三年制,专科 就业面向 本专业学生毕业后主要在热处理厂、机械制造厂或模具制造厂的热处理车间或表面处理车间;钢铁公司或轧钢厂的热处理车间;热处理设备制造厂;金属材料营销公司;热处理设备营销公司;车间生产管理或工艺管理等单位工作。典型的岗位有: 一、初始岗位 1.机械零件热处理的生产操作岗位 2.热处理车间的热处理工艺编制岗位 3.热处理设备、热工仪表的维护维修岗位 4.热处理厂的热处理产品质量检验岗位 5.发蓝发黑、磷化等金属表面处理生产操作岗位 6.钢铁公司、轧钢厂金属材料力学性能和金相检验等理化分析岗位 7.热处理设备制造厂组装、调试岗位 二、发展岗位 在工作2~3年后并学习相关的知识和技能后,可从事下列岗位: 1.表面处理工艺编制岗位 2.车间工艺技术管理岗位 3.各种金属材料营销岗位 4.热处理设备的营销岗位

5.热处理工艺编制岗位 6.热处理质量检验主管岗位 培养目标与规格 本专业培养德、智、体全面发展,掌握必要的文化基础知识和金属材料与热处理专业知识,具有金属材料和零部件常规热处理工艺编制、生产操作、热处理设备使用与维护、金属材料的选用与检验、热处理质量控制、生产组织管理以及经营销售等职业能力的高技能人才。 一、专业定位 本专业学生毕业后主要从事金属材料与热处理技术相关的生产操作岗位。可进行机械零件的退火、正火、淬火、回火、表面淬火、化学热处理等各种热处理工作,可操作箱式炉、井式炉、盐炉、真空炉、可控气氛炉、中高频感应加热等设备,可进行强度、硬度、塑性、韧性、疲劳等各项金属材料力学性能的检测工作,可进行金相分析、断口分析、失效分析等金属材料检测工作,可从事发蓝发黑、喷砂、抛丸、电镀等金属材料表面处理的工作,获得一定经验后还可从事车间工艺技术管理工作,此外,根据所学专业知识,还可从事与热处理设备、金属材料营销的工作。 二、职业能力 针对企业对热处理人才的要求,热处理人才应该具备的职业能力分析见一览表。 职业能力分析表

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

金属材料与热处理(含答案)

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的()

《金属材料与热处理》教学大纲.doc

《金属材料与热处理》教学大纲 一、说明 1、课程的性质和内容 金属材料与热处理是一门技术基础课。其主要内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 2、课程的任务和要求 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理 论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: (1)了解金属学的基本知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 3、教学中应注意的问题 (1)认真贯彻理论联系实际的原则,注重学生素质的全面提高。 (2)在组织教学时,应根据所学工种,结合实际生产,选择不同的学习内容,有“*”的为选学内容。 (3)加强实验和参观,增强感性认识和动手能力。 (4)有条件的可辅以电化教学,是教学直观而生动。 二、教学要求、内容、建议及学时分配。(总学时80课时,开课时间为:高 一上期) 绪论总学时1 教学要求 1、明确学习本课程的目的。 2、了解本课程的基本内容。 教学内容

1、学习金属材料与热处理的目的。 2、金属材料与热处理的基木内容。 3、金属材料与热处理的发展史。 4、金属材料在工农业生产中的应用。 教学建议 1、结合实际生产授课,以激发学生学习本课程的兴趣。 2、展望金属材料与热处理的发展前景。 第一章金属的结构与结晶总学时2 教学要求 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 教学内容 §1-1金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 § 1-2纯金属的结晶 一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的影响 四、金属晶体缺陷 § 1-3金属的同素异构转变 教学建议 1、晶体结构较抽象,可使用模型配合讲课。 2、讲透同素异构转变与结晶过程之间的异同点。

RJ系列预抽式真空井式光亮退火炉使用说明书

RJ系列 预抽式井式真空光亮 退火炉 使 用 说 明 书 苏州市科达炉业有限公司 地址:苏州市相城区北桥镇希望工业园友胜路

目录一、用途与优点 二、型号分类及规格系列 三、结构特征 四、安装,调试,烘炉 五、操作规程 六、维护保养及安全须知 七、成套配备 八、订货与供货

一、用途与优点 RJ型真空光亮退火炉是我厂1986年开发的新型退火设备。主要针对有色金属材料(如铜丝,铜带,铜管,铜包钢丝铜包铝丝)的中间延伸退火,成品光亮退火及黑色金属材料(如焊条,焊丝,低碳钢丝,马氏体不锈钢丝)的无氧退火、回火等热处理。 本设备的突出优点是节能、高效,并具有结构紧凑,操作方便,工艺质量稳定,劳动强度低等多项优点,是金属材料生产行业的理想配备设备。 二、型号分类及规格说明 1.型号分类说明: RJ─□─9─950℃中温 6─650℃低温 注:RJ为井式电阻炉系列代号 □为加热炉功率 2. 950℃中温井式真空光亮退火炉规格系列

3. 650℃低温正空光亮退火炉规格系列 注:本厂可根据客户工件尺寸,定制特殊规格的炉型,表列装料重量仅供参考,重量因不同的物料而不同。 三、结构特征: 成套RJ型真空井式光亮退火炉由加热炉体(以下简称炉体),炉罐、装料架或料筐(需另配)、控制柜、真空泵(外购)、冷却水源、保护气源(用户自备)组成。 1.炉体由炉壳、保温层、炉衬、加热元件及炉盖等组成: 炉壳用3~5mm钢板卷制,炉底用8~10mm锰钢板制作,底板下采用6~10#槽钢支撑,顶板用10~20mm钢板制成。 保温材料采用新型耐火纤维材料----硅酸铝针刺毡,紧贴炉壳用硅酸铝纤

金属材料与热处理

金属材料的性能(材料的性能一般分为使用性能和工艺性能两大类,使用性能主要包括力学性能、物理性能、化学性能)(选择题) 1.力学性能:强度(屈服强度、抗拉强度)、塑性、弹性与刚度、硬度(布氏 硬度,洛氏硬度,维氏硬度)、冲击韧性、疲劳强度 2.物理性能:密度、熔点、热膨胀性、导热性、导电性、 3.化学性能:耐蚀性、抗氧化性 常见金属的晶格类型—— 1.体心立方晶体具有这种晶格的金属有钨(W),钼(M),铬(Cr),钒(V), α-铁(α-Fe)等 2.面心立方晶格具有这种晶格的金属有金(Au),银(Ag),铝(Al),铜(Cu),镍 (Ni),γ-铁(γ-Fe)等 3.密排六方晶格具有这种晶格的金属有镁(Mg),锌(Zn),铍(Be),α- 钛(α-Ti) 根据晶体缺陷的几何特点,可分为 1.点缺陷点缺陷是指在晶体中长,宽,高尺寸都很小的一种缺陷,常见的有 晶格空位和间隙原子 2.线缺陷线缺陷是指在晶体中呈线状分布(在一维方向上的尺寸很大,而别 的方向则很小)原子排列不均衡的晶体缺陷,主要指各种类型的位错 3.面缺陷面缺陷是指在二维方向上吃醋很大,在第三个方向上的尺寸很小, 呈面状分布的缺陷 位错:位错是指晶格中一列或若干列原子发生了某种有规律的错排现象。 铁素体:铁素体是碳溶于α-Fe中形成的间隙固溶体,为体心立方晶格,用符号F(或α)表示 简化后的Fe-Fe3C相图,画图啊亲,三个学期的铁碳相图啊有木有,都是泪啊有木有!!!书P9 共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核,奥氏体晶核长大,剩余渗碳体溶解和奥氏体成分均匀化 影响奥氏体晶粒长大的因素: 1.加热温度和保温时间加热温度愈高,保温时间愈长,奥氏体晶粒愈粗大

《金属热处理原理与工艺》课程设计

2.1、什么是热处理 所谓钢的热处理,就是对于固态范围内的钢,给以不同的加热、保温和冷却,以改变它的性能的一种工艺。钢本身是一种铁炭合金,在固态范围内,随着加温和冷却速度的变化,不同含炭量的钢,其金相组织发生不同的变化。不同金相组织的钢具有不同的性能。因此利用不同的加热温度和冷却速度来控制和改变钢的组织结构,便可得到不同性能的钢。例如,含炭量百分之0.8的钢称为共析钢,在723摄氏度以上十时为奥氏体,如果将它以缓慢的速度冷却下来,它便转变成为珠光体。但如果用很快的速度把它冷却下来,则奥氏体转变成为马氏体。马氏体和珠光体在组织上决然不同,它们的性能差别悬殊,如马氏体具有比珠光体高的多的硬度和耐磨性。因此,钢的热处理在钢的使用和加工中,占有十分重要的地位。 2.2、热处理的作用 机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等用的大量零部件需要通过热处理工艺改善其性能。拒初步统计,在机床制造中,约60%~70%的零件要经过热处理,在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。总之,凡重要的零件都必须进行适当的热处理才能使用。 材料的热处理通常指的是将材料加热到相变温度以上发生相变,再施以冷却再发生相变的工艺过程。通过这个相变与再相变,材料的内部组织发生了变化,因而性能变化。例如碳素工具钢T8在市面上购回的经球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火加低温回火后的回火马氏体。同一种材料热处理工艺不一样其性能差别很大。热处理工艺(或制度)选择要根据材料的成份,材料内部组织的变化依赖于材料热处理及其它热加工工艺,材料性能的变化又取决于材料的内部组织变化,材料成份-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料加工的全过程之中。

热处理原理与工艺课程试题

热处理原理与工艺课程试题 热处理原理与工艺课程试题,一, 一、术语解释(每题4分,共20分) 1(分级淬火: 2(淬透性: 3(TTT曲线: 4(Ms温度: 5(调质处理: 二、填空(每空1分,共20分) 1(大多数热处理工艺都需要将钢件加热到相变临界点以上。 2((在钢的表面同时渗入碳和氮的化学热处理工艺称为,其中低温,最初主要用于中碳钢的耐磨性及疲劳强度的提高,因为硬度提高不多,故又称为。 3(奥氏体中的碳浓度差是奥氏体在铁素体和渗碳体相界面上形核的必然结果,也是相界面推移的驱动力。 4(钢中产生珠光体转变产物的热处理工艺称为退火或正火。 5(马氏体相变区别于其他相变最基本的两个特点是: 相变以切变共格方式进行和无扩散性。 6(贝氏体相变时随着钢中碳含量的增加,贝氏体相变速度减慢,等温转变C曲线向右移。 7(回火第一阶段发生马氏体的分解。 8(钢件退火工艺种类很多,按加热温度可分为两大类,一类是在临界温度(Ac1或AC3)以上的退火,又称相变重结晶退火。 9(有物态的淬火介质淬火冷却过程可分为三个阶段: 蒸气膜阶段、沸腾阶段和对流阶段。

10. 几乎所有的合金元素(除(Co )、(Al)以外),都使Ms和M点( 降低 )。 f11.随着合金含量的增加(Co等个别元素除外),钢的等温转变曲线右移,淬透性( 提高 ),比碳钢更容易获得( 马氏体 )。 三、选择题(每题2分,共20分) 1、下面对“奥氏体”的描述中正确的是: ( ) A(奥氏体是碳在α,Fe中的过饱和固溶体 B(奥氏体是碳溶于α,Fe形成的固溶体 C(奥氏体是碳溶于γ,Fe所形成的固溶体 D(奥氏体是碳溶于γ,Fe所形成的过饱和固溶体 2、45钢经下列处理后所得组织中,最接近于平衡组织的是:( ) A(750?保温10h后空冷 B(750?保温10h后炉冷 C(800?保温10h后炉冷 D(800?保温10h后空冷 3、对奥氏体实际晶粒度的描述中不正确的是:( ) A(某一热处理加热条件下所得到的晶粒尺寸 B(奥氏体实际晶粒度比起始晶粒度大 C(加热温度越高实际晶粒度也越大 D(奥氏体实际晶粒度与本质晶粒度无关 4、钢的淬硬性主要取决于() A(含碳量 B(含金元素含量 C(冷却速度 D(保温时间 5、防止或减小高温回火脆性的较为行之有效的方法是()

带钢连续光亮退火炉安全操作规程标准范本

操作规程编号:LX-FS-A63531 带钢连续光亮退火炉安全操作规程 标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

带钢连续光亮退火炉安全操作规程 标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 为保证设备的安全运行特制定此安全操作规程,操作者必须严格执行本规程: 一.操作者必须经过三级安全教育,并经考核后方可上岗。 二.开炉安全规程: 1.开炉前必须对电器、机械进行常规检查,电器与设备必须完好,接地牢靠; 2.将氨分解炉开正常。要保证气量的正常供给。 3.退火炉温达到200℃时,开始通冷却水;

4.炉温到600℃时通N2,并用N2清洗炉膛。 5.当炉温达到800℃时,炉内含氧量小于0。5%时,通氨分解气。 6.严格禁止倒钢带。 7.每次停炉后必须将H2、N2软管拆开。 8.工作厂地严禁烟火。 三.停炉安全规程 1.切断各加热区电源,停电降温(100℃/次)。各区温度均衡下降。 2.炉温降到800℃时,将氨分解气换成氮气。待前排空管火灭后,继续用小流量氮气清洗炉堂到600℃时停止充氮气。 3.炉温降到300℃时停风机。 4.炉温降到200℃时停水。 5.退火炉工作完毕,炉中应留有引带,准备下

金属材料与热处理

《金属材料与热处理》教学大纲 一、课程的性质和任务 本课程是一门专业技术基础课,实践性较强,必须经过生产实习增强感性认识,再通过理论学习才能理解和掌握常见金属材料性能、组织、结构和热处理方法的特点;了解非金属材料的基本知识。为学后续的专业课打下坚实的基础。 二、课程教学目标 1、掌握机械工程材料的基本知识,能够正确选择材料。 2、掌握常见的金属热处理的方法、特点及应用范围 3、了解非金属材料基础知识。 三、教学内容和要求 1、金属材料基础知识 常见金属材料及其性能、金属的结构及结晶、合金的结构和组织、铁碳合金相图、碳钢及合金钢、铸铁、有色金属。 2、热处理基础知识 钢在冷却(加热)时的转变过程、钢的普通热处理工艺、钢的表面热处理工艺、钢的化学热处理工艺。 3、非金属材料 非金属材料的种类、特点、性能及应用。 四、《工程材料》课程的主要要求 1、常用金属材料及热处理工艺的基础知识,为后续相关专业课打下坚实基础。 2、通过本课程的学习,使学生能根据合理的选择材料和热处理方法。

3、在教学过程中贯彻理论联系实际的原则,在讲授理论时要注重和生产实习相结合,增强学生对理论知识的理解。 4、本课程建议安排在学生学完机械制图及计算机制图、工程力学、机械设计基础、金工实习课程之后讲授。 五、《金属材料与热处理》课程质量标准与考核方式 课程质量标准是培养学生掌握金属材料及热处理原理和非金属的基础知识,重点培养学生运用所学知识解决实际问题的能力。成绩考核方式按照天津石油职业技术学院课程成绩考核评价管理制度执行,采用单独考查方式,平时考核占考核评价成绩30%,期末考试占考核评价成绩40%,实验占考核评价成绩30%,考查采用5级制。 六、课时分配表

金属材料及热处理试题和答案

金属材料与热处理试题及答案1 1、常见的金属晶格类型有体心立方晶格、面心立方晶和密排立方晶格。 2、金属的机械性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有强度硬度塑性疲劳强度_。衡量金属材料在交变载和冲击载荷作用下的指标有疲劳强度和冲击韧性_。 3、常用的回火方法有低温回火、中温回火和高温回火。 4、工程中常用的特殊性能钢有不锈钢、耐磨钢、耐热钢。 5、根据铝合金成分和工艺特点,可将铝合金分为变形吕合金和铸造铝合金两大类。 6、按冶炼浇注时脱氧剂与脱氧程度分,碳钢分为沸腾刚、镇静钢、连铸坯和半镇静钢。 7、钢在一定条件下淬火后,获得一定深度的淬透层的能力,称为钢的淬透性。淬透层通常以工件表面到半马氏体层的深度来表示。 8、冷塑性变形的内应力,按作用范围,可分为宏观(第一类)内应力、晶间(第二类)内应力晶格畸变(第三类)内应力。 9、铸铁中碳以石墨形式析出的过程称为石墨化,影响石墨化的主要因素有冷却速度和化学成分。 10、根据共析钢的“C”曲线,过冷奥氏体在A1温度以下等

温转变的组织产物可分为三大类,即珠光体型组织、贝氏体型组织和马氏体型组织等。 二、选择题(30分,每题2分) 1、拉伸试验时.试样拉断前能承受的最大标拉应力称为材料的(B)。 A 屈服点 B 抗拉强度 C 弹性极限 D 刚度 2、金属的(D )越好,其锻造性能就越好。 A 硬度 B 塑性 C 弹性 D 强度 3、根据金属铝的密度,它属于(C)。 A 贵金属 B 重金属 C 轻金属 D 稀有金属 4、位错是一种(A)。 A 线缺陷 B 点缺陷 C 面缺陷 D 不确定 5、晶体中原子一定规则排列的空间几何图形称(B)。 A 晶粒 B 晶格 C 晶界 D 晶相 6、实际生产中,金属冷却时(C)。 A 理论结晶温度总是低于实际结晶温度 B 理论结晶温度总是等于实际结晶温度 C 理论结晶温度总是大于实际结晶温度 D 实际结晶温度和理论结晶温度没有关系 7、零件渗碳后,一般需经过(A)才能达到表面硬度高而且耐磨的目的。 A 淬火+低温回火 B 正火 C 调质 D 淬火+高温回火

奥氏体不锈钢的光亮热处理工艺

奥氏体不锈钢的光亮热处理工艺 1 光亮热处理工艺的原理 (1)固溶处理:奥氏体不锈钢是一种包含多种合金元素的特殊钢,在冷加工过后,原来均一的奥氏体结构遭到破坏,硬化性明显。为了恢复到原来的晶粒结构,将冷加工后的奥氏体不锈钢加热至高温单相区恒温保持,使各种合金成份包括杂质相互溶解,同时冷加工过程中大量发生错位变形的金属晶粒开始涨大,最后通过急冷稳定固溶体析出均一晶粒,回复到奥氏体组织结构。 (2)光亮处理:奥氏体不锈钢在加热保温的过程中,如果空气进入表面就会出现黑色氧化皮。为了保证基体的光亮度,在热处理炉管或炉膛中通以由氨气分解的氮气和氢气作为保护气氛,氮气是中性气体,在高温下保护工件不氧化、不脱碳而保持光亮,而氢气除保护光亮外,还有较强的还原作用,使工件更光亮并呈银白色,提高基体的光洁度。 2 光亮热处理的常用设备 (1)氨气分解炉:包括分解炉和分子筛净化器两部分。 液氨经过减压后进入蒸发器转变为氨气,再通入分解炉,在炉内触媒剂铁氧体、Cr-Ni电炉丝等催化下,氨气迅速分解。在300℃以上,氨已接近完全分解了。分解炉常采用850℃,在这样高的温度下,氨气不稳定极易按下述反应进行分解:2NH3— N2 +3H2,1kg液氨经蒸发后大约挥发成1.4m3的氨气,如果接近完全分解,可分解成2.78m3分解气,其中氢气占75%,氮气占25%。 氨分解气后不能直接通入光亮热处理炉,特别对光亮度要求高的产品更是如此。因此,氨分解气要经过净化装置去除其中的水蒸气、剩余氨气和其他有害杂质。净化由两组分子筛容器组成,内装分子筛M-3A、4A、5A等,另有电加热器和热电藕。氨分解气经其中一个分子筛时,分子筛将吸附水蒸气、未分解氨气和有害物,只允许氢气、氮气通过,达到光亮热处理的目的。当一组分子筛使用24~48h后,其中吸附物质接近饱和而失去作用,应进行再生处理,改用另一组分子筛。再生处理是接通加热器进行加热,350℃保温5~6h,而后自然冷却。在保温时,为了加速吸附物的排出,可接通专用接管,将氢气、氮气经再

金属材料与热处理工艺

金属材料与热处理工艺关系的探讨 函数站株洲331函授站 专业机电一体化 班级 姓名朱雪峰 指导教师 二○一一年三月

目录 1、前言………………………………………………………………… 2、金属材料结构及基本组织…………………………………………. 3、金属材料的切削性能与热处理预热的关系……………………… 3.1金属材料的切削性能与热处理预热的关系………………………. 3.2金属材料的切边横量与热处理温度的关系……………………… 3.3金属材料的断裂韧性与热处理温度的关系……………………… 3.4 金属材料抗应力腐蚀开裂与热处理应力的关系………………… 4、零件材料结构及特点分析…………………………… 4.1零件的材料特点…………………………………………. 4.2零件的结构特点………………………………………… 5、轴承盖真空热处理工艺路线……………………………… 6、产品质量与《经济法》的关系…………………………… 7、结论……………………………………………………………… 8、主要参考文献…………………………………………………

第一章前言 工业生产中,许多金属材料为最大限度地发挥材料潜力,需要提高其机械性能。在设计工作中,正确制定热处理工艺可以改变某些金属材料的机械性能。而不合理的热处理条件,不仅不会提高材料的机械性能,反而会破坏材料原有的性能。因此,设计人员在根据金属材料成分及组织确定热处理的工艺要求时,应准确分析金属材料与热处理工艺的关系,合理安排工艺流程,才能得到理想的效果。 第二章金属材料结构及基本组织 在工业生产中,广泛使用的金属有铁、铝、铜、铅、锌、镍、铬、锰等。但用得更多的是它们的合金。金属和合金的内部结构包含两个方面:其一是金属原子之间的结合方式;其二是原子在空间的排列方式。金属的性能和原子在空间的排列配置情况有密切的关系,原子排列方式不同,金属的性能就出现差异。金属材料热处理过程是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来改变其性能的一种工艺。因此,对某些金属或合金来说,可以用热处理工艺来改变它的原子排列,进而改变其组织结构,控制其机械性能,以满足工程技术的需要。不同的热处理条件

相关文档
最新文档