第二章 连续时间系统的时域分析

合集下载

连续时间系统的时域分析

连续时间系统的时域分析

连续时间系统的时域分析时域分析是对连续时间系统进行分析和研究的一种方法。

通过时域分析,可以了解系统的时间响应特性、稳定性以及系统的动态行为。

本文将从连续时间系统的时域分析方法、常用的时域参数以及时域分析在系统设计中的应用等方面进行详细介绍。

一、连续时间系统的时域分析方法连续时间系统的时域分析方法主要有两种:解析法和数值法。

1. 解析法:通过解析方法可以得到系统的解析表达式,从而分析系统的时间响应特性。

常用的解析方法包括微分方程法、拉普拉斯变换法和傅里叶变换法等。

- 微分方程法:对于线性时不变系统,可以通过设立系统输入和输出之间的微分方程,然后求解微分方程来得到系统的时间响应。

- 拉普拉斯变换法:通过对系统进行拉普拉斯变换,将微分方程转化为代数方程,从而得到系统的传递函数,进而分析系统的时间响应。

- 傅里叶变换法:通过对系统输入和输出进行傅里叶变换,将时域信号转化为频域信号,从而分析系统的频率响应。

2. 数值法:当系统的解析表达式难以获得或无法求解时,可以通过数值方法进行时域分析。

常用的数值方法包括欧拉法、中点法和四阶龙格-库塔法等。

- 欧拉法:通过差分近似,将微分方程转化为差分方程,然后通过计算差分方程的递推关系来得到系统的时间响应。

- 中点法:在欧拉法的基础上,在每个时间步长内,通过计算两个相邻时间点上的导数平均值来改进估计值,从而提高精度。

- 四阶龙格-库塔法:在中点法的基础上,通过对导数进行多次计算和加权平均,从而进一步提高精度。

二、常用的时域参数时域分析除了对系统的时间响应进行分析外,还可以提取一些常用的时域参数来描述系统的性能和特性。

1. 零点:系统的零点是指系统传递函数中使得输出为零的输入值。

2. 极点:系统的极点是指系统传递函数中使得输出无穷大的输入值。

3. 零极点图:零极点图是用来描述系统传递函数中的零点和极点分布情况的图形。

4. 频率响应:频率响应是指系统对不同频率的输入信号的响应。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

《信号与系统》第2章1

《信号与系统》第2章1

信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )


信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R

第2章连续系统的时域分析

第2章连续系统的时域分析

信号与线性系统 令 t 0 ,可得
2.2 LTI连续系统的响应
1 uC (0 ) uC (0 ) C


0
0
iC ( )d 0
如果 iC ( t ) 为有限值,则

此时
0 0
iC ( )d 0
uC (0 ) uC (0 )
如果 iC ( t ) ( t ) ,则
y( t ) 2e
2 t
e
3 t
2 cos( t

4
),
t 0
瞬态响应
2-13
稳态响应
信号与线性系统
二、初始条件的确定
(1) t = 0+与t = 0-的概念
认为换路在 t=0时刻进行
x(0 ) x(0 )
x(t)
0- 0+
:换路前一瞬间 :换路后一瞬间
x(0 ) x(0 )
2-18
信号与线性系统
2.2 LTI连续系统的响应
(3)初始条件的确定
这里我们介绍用冲激函数匹配法来确定 0 状态的
值,它的基本原理根据 t 0 时刻微分方程左右两端
的 ( t ) 及其各阶导数应该平衡相等。
2-19
信号与线性系统
2.2 LTI连续系统的响应
例2-2:如果描述系统的微分方程为 y ( t ) 3 y ( t ) 3 ( t ) ,给 定 0 状态起始值为 y(0 ) ,确定它 0 的状态 y(0 ) 。
2-4
激励及其各 阶导数(最 高阶为m次)
信号与线性系统 (1)齐次解是齐次微分方程
2.2 LTI连续系统的响应 的解。
y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0

考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解

考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解

第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。

解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。

讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。

τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。

解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。

第二章_连续时间系统的时域分析

第二章_连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1 引言 2.2 微分方程式的建立与求解 2.3 起始点的跳变—从0-到0+状态的转换 2.4 零输入响应和零状态响应 2.5 冲激响应与阶跃响应 2.6 卷积 2.7 卷积的性质
1
重点和难点
重点: 连续时间系统的零输入响应和零状态响应的含义和求解; 理解冲激响应、阶跃响应的意义,掌握其求解方法;
R1i ( t ) v C ( t ) e ( t ), t 0
4 6 5 14 5 A
e (0 ) v C (0 )
1 d d i (0 ) e (0 ) v C (0 ) dt R1 d t dt d
1/C iC(0+)
10 B 4 4 B 8 5
12
(4)
完全响应
i ( t ) A1 e
2 t
A2 e
5t
8/5
d dt i(0 )
(5)
确定换路后的 i ( 0 ) 和
13
§2.3 起始点的跳变—从0-到0+状态的转换 一、初始条件的求解——根据电路求
激励e(t)在t=0时刻加入,系统的响应区间为 0 t

d dt
n 1
n 1
r ( 0 )]

求解方法:根据系统的起始状态、激励信号情况以及元 件约束和网络拓扑约束求。
14
求初始条件
(1)首先求出vC(0-)和iL(0-),即电容上的起始电压和 电感中的起始电流。 (2)根据能量连续性原理: a)当没有冲激电流(或阶跃电压)作用于电容C 有
v C (0 ) v C (0 )
6
a) 求齐次解rh(t):系统固有的响应

第2章_时域分析

第2章_时域分析

1 1 2t 3 3 i(t ) e c1 cos t c2 sin t 2 2 2
e
1 t 2
3 3 3 3 c1 sin t c2 cos t 2 2 2 2
24
第二章 连续时间系统的时域分析
零状态响应求解
12
第二章 连续时间系统的时域分析
• 性质4 微分和积分的运算次序不能任意颠倒, 两种运算也不一定能抵消。
13
第二章 连续时间系统的时域分析
(三)转移算子 H ( p)
n阶线性微分方程为: d nr d n1r dr d me d m1e de an1 n1 a1 a0 r bm m bm1 m1 b1 b0 e n dt dt dt dt dt dt
– 受迫响应(强迫响应)
• 有输入激励时系统的响应。 • 对应于特解(只含外加激励频率项) 。
• 形式由微分方程的自由项或外加激励信号决定。
7
零输入响应与零状态响应
第二章 连续时间系统的时域分析
• 一个连续系统的完全响应,可以根据引起响应的不同原因, 将它分解为零输入响应和零状态响应两部分。
– 零输入响应
p n r an1 p n1r a1 pr a0 r bm p m e bm1 p m1e b1 pe b0 e
( p n an1 p n1 a1 p a0 )r (bm p m bm1 p m1 b1 p b0 )e 即
14
第二章 连续时间系统的时域分析

D( p) p n an1 p n1 a1 p a0
N ( p) bm p m bm1 p m1 b1 p b0

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

连续时间系统的时域分析

连续时间系统的时域分析

四.求解系统微分方程旳经典法
分析系统旳措施:列写方程,求解方程。
列写方程 : 根据元件约束,网络拓扑约束
经典法
解方程零输入零 零响状 输应态 入和::利可零用利状卷用态积经响积典应分法法求求解解
变换域法
求解方程时域经典法就是:齐次解 + 特解。
经典法
齐次解:由特征方程→求出特征根→写出齐次解形式
a ic
vt
b
代入上面元件伏安关系,并化简有
C
d2 vt
dt2
1 R
d vt
dt
1 L
vt
d iS t
dt
这是一种代表RLC并联电路系统旳二阶微分方程。
三.n 阶线性时不变系统旳描述
一种线性系统,其鼓励信号 e(与t) 响应信号 之r(t间) 旳 关系,能够用下列形式旳微分方程式来描述
一.物理系统旳模型
•许多实际系统能够用线性系统来模拟。 •若系统旳参数不随时间而变化,则该系统能够用 线性常系数微分方程来描述。
二.微分方程旳列写
•根据实际系统旳物理特征列写系统旳微分方程。 •对于电路系统,主要是根据元件特征约束和网络拓扑 约束列写系统旳微分方程。
元件特征约束:表征元件特征旳关系式。例如二端元 件电阻、电容、电感各自旳电压与电流旳关系以及四 端元件互感旳初、次级电压与电流旳关系等等。
第二章 连续时间系统旳时域分析 §2.1 引言
系统数学模型旳时域表达
时域分析措施:不涉及任何变换,直接求解系统旳 微分、积分方程式,这种措施比较直观,物理概念比 较清楚,是学习多种变换域措施旳基础。
输入输出描述 : 一元 N 阶微分方程 状态变量描述 : N 元一阶微分方程
本课程中我们主要讨论输入、输出描述法。

郑君里信号与系统习题解答第二章

郑君里信号与系统习题解答第二章

第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。

状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。

解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。

方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。

本题也可以用卷积积分求系统的零状态响应。

方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。

第二章 连续时间系统的时域分析 重要公式

第二章 连续时间系统的时域分析 重要公式
k 等。初始条件 r k 0 与起始状态 r k 0 之差,称为跳变量,记为 rzs (0 ) 。跳变
量由原方程根据冲激函数匹配法求得。 三、系统微分方程的解 1、全响应 r t =零输入响应 rzi t +零状态响应 rzs t 注意:在求解系统的完全响应 r t 时,要用到有关的三个量是: r k 0 :起始状态,它决定零输入响应;
特别地
f t f1 t f 2 t f1 t f 2
1
1
t
f1 1 t f 21 t
f t t f t f t t t1 f t t1 f t t1 t t2 f t t2 t t1 f t t1 t2 f1 t t1 f 2 t t2 f1 t t2 f 2 t t1 f t t1 t2
方法二:卷积积分法 步骤: (1)先求冲激响应 ht ; (2)再利用 rzs t ht et 求零状态响应。 五、冲激响应 h t 和阶跃响应 g t
1、冲激响应 h t 的定义
定义: 系统在单位冲激信号 t 的激励下产生的零状态响应, 称为冲激响应。 冲激响应 h t 满足的微分方程为:
2、初始条件 r k (0 ) 系统在 t 0 时刻的一组状态称为系统的初始条件,简称 0 状态或“导出的 起始状态” 。
d d n 1 r (0 ) r 0 , r 0 , , n 1 r 0 dt dt
k
dn d n 1 d h t a ht a1 ht a 0 ht n 1 n n 1 dt dt dt

第二章连续时间系统的时域分析

第二章连续时间系统的时域分析

O
t
2u (t ) + 2 (一般式)
e(t )在t 0处有跳变 2 4相对跳变为2 即 r (0 + ) r (0 - ) + 2 = 故t 0时,有e(t ) 2u (t )
(2)
方程右端的冲激函数项最高阶次是 ,因而有
d u (t ) (t ) + Ku (t ) u (t )的积分为零 dt
给 定 如 图 所 示 电 路 , 0开 关S处 于 的 位 置 而 且 已 经 t 1 达 到 稳 态 。 当 0时S由1转 向2。 建 立 电 流(t )的 微 分 t i 方 程 并 求 解(t )在t 0时 的 变 化 。 i
把t<0电路看作起始状态,分别求t >0时的零输入响应和零 状态响应。 2 S R1 1 i L (t ) iC (t ) 1 i (t ) 1 L H C 1F e (t ) 4 V 4 3 e (t ) 2 V R2 2
可见,零输入响应是齐解中的一部分 分自由响应) 次 (部 零输入响应

k 1
n
Azik e k t
由于没有外界激励作用因而系统的状态不会生变化, , 发 即r (k ) (0 + )=r (k ) (0 - ), 所 以 zi (t )中 的 常 数 zik 可 以 由 (k ) (0 - )确 定 。 r A r
k
m
这是一个代表机械位移系统的二阶微分方程。教材P43-44
Fs
两个不同性质的系统具有相同的数学模型(二阶微分方 程),都是线性常系数微分方程,只是系数不同。对于复杂 系统,则可以用高阶微分方程表示。
三.n 阶线性时不变系统的描述

连续时间系统的时域分析

连续时间系统的时域分析
对于具体电路0状态就是系统中储能元件的储能情况一般情况下先求出电容上的起始电压和电感中的起始电流阶跃电流作用于电感则换路期间电容两端电压和流过电感中的电流不会发生突变即vc0二vc然后根据元件特性约束和网络拓扑约束求得0
第二章连续时间系统的时域分析
学习目标
1.理解0_和0+时刻系统状态的含义,并掌握冲激函数匹配法
故方程 (5)
令 代入(5)式得
故系统的完全解为
(6)
c.确定待定系数
由于无冲激电压,故电容电压不能突变


d.求 在 时的完全响应
将 代入(6)式得
当系统已经用微分方程表示时,系统的0-状态到0+状态有无跳变,取决定于微分方程在右端自由项中是否包含(t)及其各阶导数.若包含有(t)及其各阶导数,说明相应的变量从0-到0+状态发生了跳变,即 此时为确定 等,可以用冲激函数匹配法。其原理根据t=0时刻微分方程左右两端的(t)及其各阶导数应该平衡相等。
的解h1(t)
再利用 求出h(t)
解:由
当t>0时,上方程为
将h1(t)代入方程(2)得
由对比系数法得:
方法4:
分析:由于方程等号右端含 ,故
对上方程两端同时由 进行积分得
由于 ,
由于 , 将初始化条件代入

得:
系统的阶跃响应g(t)微分方程
及起始状态 ,可以看出方程右端的自由项含有 及其各阶导数,同时还包含阶跃函数u(t),因而阶跃响应中,除含齐次解形式之外,还应增加特解项。
例:如图所示

将(2)式代入(1)式子得
令 则代入方程得

的电压不能突变,故
将 代入
,得

2第二章、连续时间系统的时域分析

2第二章、连续时间系统的时域分析

1 4p
2
H2(
p)
2
p3
1 3p2
4
p
2
H1(
p)
2
2 p2 p3 3p2
p
1 4p
2
H2(
p)
2 p3
1 3p2
4
p
2
讨论:
1、在电路中有三个独立的储能元件,为一个三阶系 统,特征方程应为三次方程,即H(p)的分母多项式 的最高次数应为三次。
2、所以这类题目也可直接求解,最后通过核对电路 的阶数来确定是否能消去分子分母中的公共因子。
1 C1 r(0)
n
C2
r(0)
n2 C3 r(0)
nn1 Cn r(n1) (0)
C1 1
C2
1
C3 12
Cn 1n1
1
2 2 2
n1 2
1
3 32
n1 3
1
1
r(0)
n
r(0)
n2 r(0)
nn1 r(n1) (0)
一、特征根为异(实)根 算子方程写为: ( p 1)( p 2 ) ( p n )r 0
由前面的讨论可写出解的一般形式:
r(t) C1e1t C2e2t Cnent
若给定系统的n个初始条件:r(0), r(0), r(n1) (0)
我们就可以确定其中的待定常数C1,C2,…Cn。
)i1
1 p
i2
e
1 p
i1
(2 p
1
1 p
)i2
0
( p2
p
1)
1 p
i1
1 p
i2
e
1 p
i1

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的时域分析)

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的时域分析)
故系统零输入响应为: 系统的自然频率为 0,-1 和-2。
8 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
2.6 已知电路如图 2-5 所示,电路未加激励的初始条件为:
(1) i10 2A,i'1 0 1A s ;(2) i10 1A,i'2 0 2A 。 求上述两种情况下电流 i1t及 i2t的零输入响应。
由②式可得:

由①式可得:

将式③代入式④可得:
用微分算子表示为: 即 (2)同理,将式①代入式③可得:
整理得: 用微分算子表示为:
1 / 43
圣才电子书


十万种考研考证电子书、题库视频学习平


2.2 H(p)。
写出图 2-2 中输入 e t 和输出 i1 t 之间关系的线性微分方程,并求转移算子
圣才电子书
十万种考研考证电子书、题库视频学习平


第 2 章 连续时间系统的时域分析
2.1 写出图 2-1 中输入 it 和输出 u1t 及 u2 t 之间关系的线性微分方程,并求转移
算子。
图 2-1 答:(1)利用节点法来分析电路,可得
对于节点 1:

对于节点 2:

(1)
d3 dt 3
r(t)
2
d2 dt 2
r(t)
d dt
r(t)
3
d dt
e(t)
e(t) ,
r0
r0
0,r0
1;
(2)
d3 dt 3
r(t)
3
d2 dt 2
r(t)
2
d dt
r(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19
2.3 起始点的跳变(初始条件的确定)
分析 激励加入:t=0时刻
响应区间:t≥0+
0
0
0
t
起始状态(0-状态):激励加入之前瞬间的状态。
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
9
n阶线性时不变系统的模型

一个线性系统,其激励信号 e(t ) 与响应信号 r (t ) 之间的关 系,可以用下列形式的微分方程式来描述
d n r (t ) d n 1 r (t ) d r (t ) C0 C1 Cn 1 Cn r (t ) n n 1 dt dt dt d m e(t ) d m 1 e(t ) d e(t ) E0 E1 Em 1 Em e(t ) m m 1 dt dt dt
dt
21
[ 例 ] 如 图 所 示 , 已 知 R1=1Ω, R2=3/2Ω, e2(t)=4V,
e1(t)=2V, L=1/4H, C=1F, t<0时开关S处于1的位置而 且电路已经达到稳态;当t=0时,S由1转向2。
建立i(t)的微分方程并求解i(t)在t>0时的变化。
解 : (1) 由 元 件 的 约
k
初始条件(0+状态/导出的起始状态):
k
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
由于用经典法求解微分方程时,是考虑了激励作用以 (k ) 后的解, 时间范围是 0 t 所以要利用r (0 ) 确定系 数Ai,而不是利用 r ( k ) (0 ) 。 20
13
一、经典时域分析方法
常用激励信号对应的特解形式P46表2-2
输入信号 E Kt Ke (特征根 sa) Keat(特征根 s=a) Ksin0t 或 Kcos0t Keatsin0t 或 Keatcos0t
at
特解 B A+Bt Aeat Aeat +Bteat Asin0t+ Bcos0t Aeatsin0t+ Beatcos0t

dt
这是一个代表RCL并联电路系统的二阶微分方程。
8
说明——不同的物理系统可能有相同的数学模型

如图示机械系统,
m
f
Fs
机械位移系统,其质量为m的刚体一端由弹簧牵引,弹簧 的另一端固定在壁上。刚体与地面间的摩擦系数为f,外 加牵引力为 FS t ,其外加牵引力FS t 与刚体运动速度 vt 间的关系可以推导出为
初始条件y(0)=1, y '(0)=2, 输入信号x(t)=et u(t), 求系统的完全响应y(t)。
解:
(2) 求非齐次方程y''(t)+6y'(t)+8y(t) = x(t)的特解yp(t)
由输入x(t)的形式,设方程的特解为 yp(t) = Cet t>0
将特解带入原微分方程即可求得常数C=1/3。
5
电网络的两个约束特性:
(1)元件端口的电压与电流约束关系
i R (t ) R

vR (t )

iC (t )
C

vC (t )

i L (t )
L

vR (t ) RiR (t )
vR (t ) iR (t ) R
1 t diL (t ) vC (t ) iC ( )d vL (t ) L C dt 1 t dvC (t ) iL (t ) vL ( )d iC (t ) C L dt
C
iR i s t R L
iL C
ic

a
v t

b
根据KCL,得到 iR t iL t iC t iS t 代入上面元件伏安关系,并化简有
d iS t d 2 vt 1 d vt 1 C v t t>0时的变化。
解: (2)求齐次解:特征方程: a2+7a+10=0 齐次解 ih t A1e 2t A2e 5t 程得: B=8/5
2t
→特征根: a1=-2, a1=-5
t 0
(3)求特解: t>0时, e2(t)=4V, 设rp(t) = B代入方
17
1) 若初始条件不变,输入信号x(t) = sin t u(t),则 系统的完全响应 y(t) = ? 2) 若输入信号不变,初始条件 y(0) = 0, y '(0) = 1, 则系统的完全响应 y(t) = ?
18
经典法不足之处
若微分方程右边激励项较复杂,则难以处理。 若激励信号发生变化,则须全部重新求解。 若初始条件发生变化,则须全部重新求解。 这种方法是一种纯数学方法,无法突出系统响 应的物理概念。
2 t
A2e
4 t
1 y (0) A1 A2 1 5 11 3 解得 A1 A2 1 2 6 y ' (0) 2 A1 4 A2 2 3
5 2t 11 4t 1 t y(t ) e e e , t 0 2 6 3
1 t e 3
it A1e (4)完全响应: A2e
5t
8 5
t 0
23
2
S
R1 1
14
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) x(t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号x(t)=et u(t), 求系统的完全响应y(t)。
解:
(1) 求齐次方程y''(t)+6y'(t)+8y(t) = 0的齐次解yh(t)
束 及互 联 的约 束 ,得 方程组:
d vC t L iL t iL t R2 dt d it C vC t iL t dt
2 S + e2(t) 1 e1(t) i(t)
R1 iC(t) C iL(t) R2
R1it vc t et
y(t ) yzi (t ) yzs (t ) yzi (t ) e(t ) * h(t )
求解齐次微分方程得到零输入响应
利用卷积积分可求出零状态响应
11
一、经典时域分析方法
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
y (t ) y h (t ) y p (t ) r t Ai e t rp t
vL (t )

(2) 各电路的电流、电压约束关系(即电路定律 KVL、 KCL)
6
例题——列写系统方程

求下图所示并联电路的端电压 vt 与激励 is t 间的关系。
a
iR i s t R L
iL C
ic
v t

b
7
解答:
1 电阻 iR t vt R 电感 i t 1 t v d L L 电容 i t C d vt
第二章 连续时间系统 的时域分析
1
2
2.1 引言
连续时间系统数学模型建立:线性时不变系统的数学模型, 即n阶常系数线性微分方程,后面对线性时不变系统的讨 论就是从此方程入手。 系统分析:求响应——常系数线性微分方程的求解方法, 并从产生响应的激励的角度将系统响应划分为零状态响应 和零输入响应。 “信号与系统”中求解的响应主要是零状态响应。基于输 入-输出系统分析法,系统的零状态响应求解是通过建立 激励信号与典型信号的关系,对于线性时不变系统这种关 系在相应的响应中也是存在的,因而只需对典型信号的响 应应用这种关系即可求得所求信号的响应。 基于第一章信号的脉冲分解,将单位冲激信号作为典型信 号,所得响应称为冲激响应。任意激励信号与冲激响应的 卷积即为系统的零状态响应。
d 2i (t ) di ( t ) d 2e( t ) de( t ) 7 10i ( t ) 6 4e( t ) 2 2 dt dt dt dt
22
[ 例 ] 如 图 所 示 , 已 知 R1=1Ω, R2=3/2Ω, e2(t)=4V,
e1(t)=2V, L=1/4H, C=1F, t<0时开关S处于1的位置而 且电路已经达到稳态;当t=0时,S由1转向2。
16
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) x(t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号x(t)=et u(t), 求系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) A1e
起始点的跳变
换路定律: iL(0-)= iL(0+) , vc(0-)= vc(0+)
原理:利用系统内部储能的连续性,即电容上
电荷的连续性和电感中磁链的连续性。
条件:电路中无冲激电流(或阶跃电压)强迫 d vt 作用于电容 i t C
C
dt
电路中无冲激电压(或阶跃电流)强迫 作用于电感 vL (t ) L diL (t )
3
连续时间系统的时域分析
时域分析方法:不涉及任何变换,直接求解系统的微分、积 分方程式,这种方法比较直观,物理概念比较清楚,是学 习各种变换域方法的基础。 系统数学模型的时域表示
相关文档
最新文档