结构力学第5章静定拱的内力计算
结构力学静定平面桁架
精品课件
5.6 组合结构 是指只承受轴力的二力杆和承受弯矩、剪力、轴 力的梁式杆组合而成的结构。如屋架等
钢筋混凝土
钢筋混凝土
型钢
E D C
A
B
E E
精品课件
型钢
例 计算图示组合结构的内力。
8kN
解:1)求支反力
AD
C
FAy F
E
B
MB 0 得
FBy G
2m
FAy=5kN
FBy=3kN
2.5 1.125 0.75
1.125
剪力与轴力
FS FYcosFHsin
M图( kN.m)
FN FYsinFHcos
精品s 课件 in 0 .083c5 o s0 .99
FS FY
FN
15 A
FH
2.5 1.74
剪力与轴力
FS FYcosFHsin FN FYsinFHcos
sin 0 .083c5 o s0 .99
FN
l
ly
FN
=
FX lx
= FY ly
3)、结点上两杆均为斜杆的杆件内力计算:
F1x B b
F1
F 如图,若仍用水平和竖向投影来求F1 F2, A 则需解联立方程,要避免解联立方程可用
h
F2
力矩平衡方程求解。
a
如以C为矩心,F1沿1杆在B点处分解为F1x,
C
F2x
d
则由
MC 0得: F1x=Fhd
由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴 力后,即可依次按结点法求出所有杆的轴力。
精品课件
取截面II—II下为隔离体,见图(d)
静定结构的内力计算图文
30 30
4m
4m
4m
4m
12kN
12kN 12kN
M 图(kN·m)
9kN
9kN
2kN/m
7kN
5kN
9kN
4.5kN
7.5kN
39
第40页/共76页
作业
习题3-5、3-6、3-9 习题3-10、3-12
40
第41页/共76页
§3-3 三铰拱
41
第42页/共76页
一、 概述
1、定义:
通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
AC段受力图:
q
MC
t
C
FNC
FQC
n
x
FAY
FAYSinα
(2)求内力方程:
MC = 0 Ft = 0 Fn= 0
M = 1 qlx 1 qx2 (0 x l) 22
FN
=
q(1 l 2
x) sin
(0 x l)
FQ
=
q(1 2
l
x) cos
(0 x l)
FAYcosα
FAY
M中 =162 / 8 6.23/ 2 =1.385kN.m(下拉)
弯矩图见下图。
1kN/m
6.23 D
C 1.385
6.23 E
1.385kN A
4.5kN
M 图(kN.m)
B 1.385kN
1. 5kN
38
第39页/共76页
例:主从刚架弯矩图。
12kN
2kN/m
36 36
6m
12 42 30
F
F
曲梁
拱
f / l : 高跨比(1~1/10)
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构位移计算虚力法)【圣才出品】
第5章静定结构位移计算的虚力法
5.1 复习笔记
本章重点介绍了虚力法的原理以及如何运用虚力法对不同结构在各种荷载作用下的指定位移进行求解。
遵循“化整为零、积零为整”的思想,对结构的局部位移公式进行了分项讨论,在虚力法的指导下叠加组成了结构的整体变形公式,随后将虚力法升华到了对广义单位荷载的设定以及对广义位移的求解;通过引入图乘法,结构的弯矩变形公式的求解变得更加快捷且精确;最后介绍了温度影响下结构的位移求解并归纳了线性变形体系的四个互等定理。
一、虚力法求刚体体系的位移(见表5-1-1)
表5-1-1 虚力法求刚体体系的位移
图5-1-1
二、虚力法求静定结构的位移(见表5-1-2)
表5-1-2 虚力法求静定结构的位移
表5-1-3 广义位移分类
三、两个对偶解法——虚力法求位移、虚位移法求内力(见表5-1-4)
表5-1-4 两个对偶解法——虚力法求位移、虚位移法求内力
四、荷载作用时静定结构的弹性位移计算(见表5-1-5)
表5-1-5 荷载作用时静定结构的弹性位移计算
五、图乘法(见表5-1-6)
表5-1-6 图乘法
图5-1-2 六、温度改变时静定结构位移计算(见表5-1-7)。
05静定平面桁架内力计算
2
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7
下弦杆
基本概念 ۞桁架的特性 直杆铰接、结点受荷 杆件只有轴力,没有弯矩和剪力
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 3
结点法
基本概念
结点法 截面法 联合法
۞结点法
B D
A
4m
60 E 20 40 15 30 3m 15 25 -50 C -20 F -20 G 15 kN 15 kN 15 kN 4m 4m
解:(3)取E结点为隔离体分析 E 20 YNGE 30 kN FNED 15 4 拱式桁架 X NGF YNGE XNEC F NEC 3 15 25 扩展内容 YNEC 40 kN FNEC=-50
2L
L
L
2L
对称结构在反对称荷载作用下,内力和反 力都反对称
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 26
۞简化问题 对称性的利用
反对称荷载:荷载的大小、作用点关 于一个轴对称,对应位置的荷载方向相反
FP
FP
2L
L
L
2L
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
2018/11/7 20
解:(4)取D结点为隔离体分析 (5)取C结点为隔离体分析 (6)取B、A结点为隔离体分析 (7)取整体作为隔离体,求支反力,核实 结果。
结点法
基本概念
结点法 截面法 联合法 拱式桁架 扩展内容
结构力学二3-静定结构的内力计算
以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线
⊕
⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线
→
↑
利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓
结构力学静定结构的内力计算图文
dM
q(x)
(1)微分关系 dx FQ
dx
dFQ q dx
q
FQ
M+d M
M d x FQ+d FQ
MA FQA
d 2M
q
Fy
dx2
FQ
m0 M
dx
M+ M
(2)增量关系
FQ+F Q
FQ Fy M m0
(3)积分关系 由dFQ = – q·d x
qy
FQB FQA
xB xA
q
y
dx
ቤተ መጻሕፍቲ ባይዱMB
静定结构内力计算过程中需注意的几点问题: (1)弯矩图习惯画在杆件受拉边、不用标注正负号,轴力图和剪力图可画 在杆件任一边,需要标注正负号。 (2)内力图要写清名称、单位、控制截面处纵坐标的大小,各纵坐标的长 度应成比例。 (3)截面法求内力所列平衡方程正负与内力正负是完全不同的两套符号系 统,不可混淆。
四、 分段叠加法作弯矩图
MA
q
MB
P
M
MA
M
MA
M
+
M
M M M
A
MA
MB
FNA
FyA MA
MB
Fy0A
MA
q q q
M M
B MB
FNB FyB
MB
Fy0B
MB
例:4kN·m
4kN
3m
3m
(1)集中荷载作用下
6kN·m
(2)集中力偶作用下
4kN·m 2kN·m
(3)叠加得弯矩图
4kN·m
4kN·m
§3-2 静定梁
❖ 静定梁分为静定单跨梁和静定多跨梁。单跨梁的结构形式有水平梁、斜
静定结构的内力计算 教程
拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图 (1)无荷载分布段(q=0), FQ图为水平线,M图为斜直线。 (2)均布荷载段(q=常数), FQ图为斜直线,M图为抛物线,且凸向与荷 载指向相同。 (3)集中力作用处,FQ图有突变,且突变量等于力值; M图有尖点,且指 向与荷载相同。 (4)集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化。
工程力学
第十四章
静定结构的内力计算
b、求D点的内力 先求计算参数:
xD 3m
dy 4 f 4 4 tg D 2 ( L 2 x) 2 (12 2 3) 0.667 dx L 12 MD D 3342' Cos D 0.832
4 4 yD 2 (12 3) 3 3m 12
工程力学
第十四章
静定结构的内力计算
3、杆端内力的计算 先求出刚架的支座反力,再利用截面法求出各杆杆端内力 (1)在待求内力的截面截开,取任一部分为隔离体。 (2)画隔离体的受力图。 (3)利用隔离体的平衡条件,求出截面上的剪力、轴力和弯矩。 (4)利用结点的平衡条件校核刚结点杆端内力值。 4、刚架弯矩图的绘制
i i
与右图简支梁的支座反力:
Pb l Pa l
F
0 AY
i i
F
0 BY
i i
FAY F
0 AY
0 FBY FBY
工程力学
第十四章
静定结构的内力计算
分析推力H 式:
FAY l1 P 1 (l1 a1 ) H f
上式中的分子
FAY l1 P 1 (l1 a1 )
MEC=0kN•m CE杆上为均布荷载,弯矩图为抛物线 。 利用叠加法求出中点截面弯矩MCE中=30+60=90kN•m
结构力学第五章 力法
超静定结构与静定结构 在计算方面的主要区别
• 静定结构的内力只要根据静力平衡条件即 可求出,而不必考虑其它条件,即:内力是 静定的。 • 超静定结构的内力则不能单由静力平衡
条件求出,而必须同时考虑变形协调条件,即: 内力是超静定的。
求解超静定结构的计算方法
• • 从方法上讲基本有两种:力法和位移法。 从历史上讲分传统方法和现代方法。
M1 M1 M 12 l 3 (图形自乘) • EI dx EI dx 3EI 11
•
1P
4 M1MP ql dx EI 8EI
• 代入变形条件, 得: • X1= - ⊿1P/δ11= 3ql/8 (↑) • 最后弯矩图可用叠加原理(也可将X1作用在基
•⊿2P=[(ql2/2×l)×l] =ql4/2EI
(3)、解方程 (求解未知量)
• 力法方程:(可消去 l3/EI) • 4/3 X 1 -X 2 - 5ql/8 = 0 • -X1+4/3X2+ ql/2 = 0 • 解出: • X 1 =3ql/7 • X2 = - 3ql/56
1nXn+
… … nnXn+ ⊿nP = 0
• (n次超静定结构在荷载作用下的力法典型方程) • 基本未知量:n个多余未知力X1 、X2、… Xn; • 基本体系:从原结构中去掉相应的n个多余约 束后所得的静定结构; • 基本方程:n个多余约束处的n个变形条件。
力法典型方程的讨论:
• (1)、可写成矩阵形式: 11 12 1n X 1 1P 0 • 22 2 n X 2 2 P 0 21 n1 n 2 nn X N nP 0 • [δ ]{X} + {⊿P } = {0} • [δ ]——系数矩阵、柔度矩阵 • (2)、力法方程主系数: δ ii≠0,恒为正 . • 因为δ ii是Xi=1作用在自身方向上,所产 生的位移系数,所以不为零,恒为正。
结构力学之拱结构
B
=0
A
H 6m FVA 6m
B
H FVB
FVA × 12 2 × 6 × 9 8 × 3 = 0 FVA = 11kN
∑M
A
=0
A
C
B
FVB × 12 2 × 6 × 3 8 × 9 = 0 FVA = 9kN
M C = 11× 6 2 × 6 × 3 = 30
FHA = FHB
MC = = 7.5kN f
FQ 2 = FQ02 cos 2 H sin 2 = (11 2 × 3)× 0.832 7.5 × 0.555 ≈ 0.003kN
FN 2 = FQ02 sin 2 H cos 2 = (11 2 × 3)× 0.555 7.5 × 0.832 = 9.015kN
11
(3)绘制内力图
0 Q 0 = YA P K 1
Qk = Qk0 cos H sin
0 8 N K = QK sin H cos
三铰拱的受力特点 三铰拱的受力特点 由于推力的存在,拱的弯矩比相应简支梁的弯矩要小. 由于推力的存在,拱的弯矩比相应简支梁的弯矩要小. 三铰拱在竖向荷载作用下轴向受压. 三铰拱在竖向荷载作用下轴向受压. 三铰拱的内力不但与荷载及三个铰的位置有关, 三铰拱的内力不但与荷载及三个铰的位置有关,而且与 拱轴线的形状有关. 拱轴线的形状有关.
M ( x) =
q x(l x ) 2
拱的推力为:
拱的合理轴线方程为:
MC ql 2 H= = f 8f q 8f 4f y( x ) = x( l x ) × 2 = 2 x( l x ) 2 ql l
15
�
0
y
13.300 10.958 9.015 7.749 7.500 7.433 6.796 11.235 11.665 11.700 1.421 3.325 3.331 1.060 0.600 0.472 1.000 0.003 0.354
《结构力学》静定结构内力计算
只承受竖向荷载和弯矩
FP1 A
FP2
B
C
基本部分:能独立承受外载。 附属部分:不能独立承受外载。
FP
A
B
C
■作用在两部分交接处的集 中力,由基本部分来承担。
FP1
FP2
A B
■基本部分上的荷载不影响附 属部分受力。
■附属部分上的荷载影响基本 部分受力。
先算附属部分, 后算基本部分。
例 确定x值,使支座B处弯矩与AB跨中弯矩相等,画弯矩图
ql ql/2
FQ图 ql
7ql/4 ql
5ql/4 ql/2
3ql/4
ql/2
练习
10kNm 20kN 10kN
10kN/m
1m 1m 1m 1m
1m 1m 10kN/m
10kNm
20kN 10kN 0
0
30kN
10kNm
20kN 10kNm
10kNm
10kNm
20kN 10kN 0
0
30kN
2m 2m
解 (1)求支反力
q=20kN/m FP=40kN
70kN
50kN
(2)取隔离体,求截面内力
MC C FQC
FP=40kN
B 50kN
(2)叠加法作弯矩图
120kNm
+
40kNm
40kNm
=
120kNm
40kNm
40kNm M图
例 试绘制梁的弯矩图。
40kNm
FP=40kN q=20kN/m
26
26
8 FQ图(kN)
6
12
M图(kNm)
24 12
例
解 (1)求支反力
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(中册)-第五章【圣才出品】
第5章静定结构位移计算的虚力法
5.1复习笔记
本章重点介绍了虚力法的原理以及如何运用虚力法对不同结构在各种荷载作用下的指定位移进行求解。
遵循“化整为零、积零为整”的思想,对结构的局部位移公式进行了分项讨论,在虚力法的指导下叠加组成了结构的整体变形公式,随后将虚力法升华到了对广义单位荷载的设定以及对广义位移的求解;通过引入图乘法,结构的弯矩变形公式的求解变得更加快捷且精确;最后介绍了温度影响下结构的位移求解并归纳了线性变形体系的四个互等定理。
一、虚力法求刚体体系的位移(见表5-1-1)
表5-1-1虚力法求刚体体系的位移
二、虚力法求静定结构的位移(见表5-1-2)
表5-1-2虚力法求静定结构的位移
表5-1-3广义位移分类
三、两个对偶解法——虚力法求位移、虚位移法求内力(见表5-1-4)
表5-1-4两个对偶解法——虚力法求位移、虚位移法求内力
四、荷载作用时静定结构的弹性位移计算(见表5-1-5)
表5-1-5荷载作用时静定结构的弹性位移计算。
结构力学静定拱内力的矩阵化求解方法
| 发展与创新 | Development and Innovation·252·2020年第20期结构力学静定拱内力的矩阵化求解方法袁良健1,王 子2(1.中铁第四勘察设计院集团有限公司,湖北 武汉 430063;2.东南大学 土木工程学院,江苏 南京 210096)摘 要:类似于结构力学课程中矩阵位移法的解题思路,通过对静定三铰拱某截面的内力分析,采用线性代数矩阵的表达形式,推导出静定拱截面内力计算的内力矩阵方程,定义了坐标矩阵、内力列向量和综合外荷载列向量,提出了静定拱结构内力的矩阵化求解方法,并给出了具体的计算方法和步骤,便于实现参数化分析和计算机编程求解,简化静定拱内力计算的过程,通过实例验证该方法在手算求解时的便捷性,并希望引入到结构力学的教学中。
关键词:静定三铰拱;内力计算;矩阵化方法;参数化分析中图分类号:TU311 文献标志码:A 文章编号:2096-2789(2020)20-0252-02作者简介:袁良健,男,硕士,助理工程师,研究方向:大跨度空间结构分析和设计。
1 概述静定拱结构通常可分为三铰拱和带拉杆的拱,根据铰的位置不同亦可分为平拱和斜拱,如图1所示。
三铰拱在实际工程运用中通常作为承压构件,其受力特点为在竖向荷载作用下,拱趾将产生水平推力。
与相同跨度的简支梁相比,由于水平推力的存在,拱各截面的弯矩通常较小,而截面的轴力值较大,因而能跨越更大的跨度,曲线优美,采用砖、砌块、混凝土等材料建成的拱结构通常能更好地发挥材料的特性。
此外,拱的矢跨比(矢高与跨度的比值)对其受力有重大影响,实际工程中拱的矢跨比通常为1/10~1。
欲求截面K 的内力值,截取AK 部分为隔离体,如图2(b )所示,假设F NK 与x 轴的夹角为α(此处规定x 轴沿着逆时针转动到与F NK 重合时所转过的角度为α,故左半拱0°≤α≤90°,右半拱的90°≤α≤180°),则F SK 与y 轴的夹角为α,对该部分隔离体分别由∑F x =0、∑F y =0和∑M K =0得:-F NK ×cos α+F SK ×sin α+F Ax =0 (1)-F NK ×sin α+F SK ×cos α+F Ay -10×3=0 (2)M K +10×32/2+F Ax ×y K -F Ay ×x K =0 (3)将式(1)~式(3)写成矩阵形式:(4)简写成:[T][F i ]+[Fp ]=[0] (5)式(4)和式(5)称为拱的内力矩阵方程,其中:称为坐标矩阵,是正交矩阵,且T;sin α和cos α可由轴线方程在待求截面处的导数(即tan α)和sin 2α+cos 2α=1联立确定。
结构力学-第五章-力法4
§5-7 最后内力图的校核
例: 试校核图示刚架的弯矩图其是否有误。
M C B
2M /5 C 3M /5 M /5
A
l
B
M
1
3M /5
B X1 = 1
EI= 常数
A l/ 2
M
2M /5
A
M1 图
解:(1)平衡条件校核。 取刚结点C 为隔离体,满足平衡条件。 (2)校核位移条件。 检验C 结点两个端面间的相对转角位移 Δ C 是否为零, 任取一基本结构作图M 1 ,令 M 1 与M 相图乘得: 2m m 1 1 l 3m 2 1 ml ml 5 5 Δ C [ 1 l 1] [ ]0 EI 2 2 5 3 2 EI 10 10
小 结
小
结
力法是求解超静定结构最基本的方法。力法的基本原 理是将原超静定结构中的多余约束解除,代之以相应的未 知约束反力。原结构就变成了在荷载及多余未知力作用下 的静定结构。这个静定结构称为原结构的基本体系 , 多余 未知力称为原结构的基本未知数。根据基本体系中多余未 知力作用点的位移应与原结构一致的条件,即多余约束处 的位移谐调条件,建立位移协调方程。这就是力法典型方 程。方程中的基本未知数是体系的多余未知力。这种以未 知力为基本未知数的求解超静定结构的方法就称为力法。 由于基本体系满足位移谐调条件 , 因此基本体系的内力 与变形便与原超静定结构完全一致。利用位移约束条件解 出多余未知力是力法的关键 , 求出多余未知力后便将超静 定问题转化为静定问题了。以后的计算便与静定结构的求 解完全一样。
§5-7 最后内力图的校核
结论:亦满足给定位移条件,原弯矩图是正确的。
X1 = 1
C B
A
也可取图悬臂刚架作基本结构,计算B点水平位 移△xB 是否为零。
结构力学:第5章 静定结构位移计算3(图乘法)
2. 若 与 yc 在杆件的同侧,yc取正值;
反之,取负值。
3. 如图形较复杂,可分解为简单图形.
(1) 曲-折组合
例如
Mi MKdx 1 y1 2 y2 3 y3 j y j
(2) 梯-梯同侧组合
1
2
Mi MKdx 1 y1 2 y2
y1
(2c 3
FP
A
C
l
l
2
2
a
B
解:作荷载内力图和单位荷载内力图
FNP
FP 2
D
A C FP
l
l
2
2
a
B
FN
1 2
D
1 AC
a
B
l
l
2
2
l
MP
FP l
4
Cy
0l
MM P EI
ds
0a
FN FNP EA
ds
M请对计算结4 果 C进y 行4F适8PEl当3I (讨1 论1l!23aAI )
2 [(1 l FPl ) 2 l ] 1 1 FP a FPl 3 FPa
1 EI
yc
必须注意 适用条件
图乘法是Vereshagin于1925年提出的,他 当时为莫斯科铁路运输学院的学生。
二、几种常见图形的面积和形心位置的 确定方法
顶点指曲 线切线与 杆轴重合 或平行
hl
n1
(n 1)l n2
h
C
l n2
三、注意事项:
1. 图乘法的应用条件: (1)等截面直杆,EI为常数; (2)两个M图中应有一个是直线;
q A
MP 图
1 ql 2 8
结构力学之三铰拱
FS
I l/2
FVB
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。 解: (1) 计算支座反力
q
0 VB
FH 0, FV A F , F V B F
0 VA
y FH FVA
A
C
x
f
B FVB
0 MC (2)计算拉杆内力: S F f
(3)计算拱身内力
钢拉杆(拉力FS) l/2 l/2 l
(2) 由于推力的存在(前两式右边第二项),拱与相应简 支梁相比:其截面上的弯矩和剪力将减小。弯矩的降低, 使拱能更充分地发挥材料的作用。
(3) 在竖向荷载作用下,梁的截面内没有轴力,而拱的截
面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压 力为负)
三铰拱的内力图
1.画三铰拱内力图的方法 描点法。 2.画三铰拱内力图的步骤 1)计算支座反力 2)计算拱圈截面的内力(可以每隔一定水平距离取 一截面,也可以沿拱轴每隔一定长度取一截面)。 3)按各截面内力的大小和正负绘制内力图。 注: 1)仍有Q=dM/ds 即剪力等零处弯矩达极值; 2)M、Q、N图均不再为直线; 3)集中力作用处Q 图将发生突变; 4)集中力偶作用处M 图将发生突变。
0 FVA
l/2
FCx
I
FCy
C
FP3
F B I
FS
0 MC
FS
l/2
f
FVB
(3)计算拱身内力
在无拉杆三铰拱的内力计算式中,只须用FS去取代FH, 即可得出有水平拉杆拱身内力计算式为
M M FS y
0
I
FCy
C
FCx
FP3
F B
《结构力学》静定结构的内力分析(上)
解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17 kN
RB 7kN
M D 17 2 81 26 kN m
M F 7 2 16 30 kN m
取GB部分为隔离体, 可计算得:
MGr 71 7 kN m
M
l G
7 1 16
23kN m
M m
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x) dx
xA
由d M = Q·d x
QA
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
一、截面上内力符号的规定
轴力:截面上应力沿杆轴切线方
向的合力,使杆产生伸长变形为
N
N 正,画轴力图要注明正负号;
剪力:截面上应力沿杆轴法线
结论:截面上内力求解简单方法
1、轴力等于该截面任一侧所有外力沿该截面轴线方向投影的 代数和。外力背离截面投影取正,指向该截面投影为负。
2、剪力等于该截面任一侧所有外力沿该截面切线方向投影的 代数和。如外力使隔离体对该截面有顺时针转动趋势,其投影取 正,反之为负。
3、弯矩等于该截面任一侧所有外力对该截面形心之矩代数和。 如外力矩产生的弯矩标在拉伸变形侧。
05-3结构力学 第五章 超静定结构的内力和位移计算(5.2节 位移法)ok
如: 1 2
3
1 2
1
3
这样即可使12、13杆 成为单跨超静定梁
2、附加链杆支座约束:为使杆件两端相对线位移被约束而在结点上附加的约 束阻止结点移动的装置。
如:1
3
用“
” 表示
2 1 3
结构变形时,显然13杆可沿水平方向移动, 同时刚结点1也可能发生转角,要使各杆独立成为 单跨超静定梁。 需在1结点上附加刚臂约束 同时还需加附加链杆支座以阻止13杆的水平线 位移。
r11Z 1+ r12Z 2+ · · · · + r1nZ n+R1P=0
位移法 – 刚度法
ri j=rj i
反力互等定理
位移法典型方程,简称为位移法方程 – 结构的刚度方程
主系数,rii>0 r12 ...... r1n Z1 R1P r11 r Z R r ...... r 2P 22 2n 2 21 ri j=rj i 反力互等定理 0 ...... ...... ...... ...... rn 2 ...... rnn Z n RnP rij=rji,Rip,>0,=0,<0 rn1
F M AB ql 2 / 12 F M BA ql 2 / 12
F A l/2 l/2 B
Fl/8 A
Fl/8
F M AB Fl / 8
B
F M BA Fl / 8
q
ql2/8 B A B
F M AB ql 2 / 8
A
F A l/2 l/2 B
3Fl/16 A B
EI=
Z1 Z2
EI=
《结构力学》第5章:力法
03
对边界条件敏感
力法对边界条件的处理较为敏感, 边界条件的微小变化可能导致计 算结果的显著不同。
适用范围讨论
适用于线弹性结构
01
力法适用于线弹性结构,即结构在荷载作用下发生的
变形与荷载成正比,且卸载后能够完全恢复。
适用于静定和超静定结构
02 力法既适用于静定结构,也适用于超静定结构,但超
静定结构需要引入多余未知力和变形协调条件。
在传动系统的力学分析中,采用力法计算各部件的受力情况,
确保传动系统的正常运转。
案例分析与启示
力法应用广泛性
力法计算精确性
通过以上案例可以看出,力法在桥梁、建 筑和机械工程等领域具有广泛的应用价值 。
力法作为一种精确的计算方法,在解决超 静定问题方面具有显著优势。
力法在工程实践中的局限性
对未来研究的启示
《结构力学》第 力法典型方程及应用 • 力法计算过程与实例分析 • 力法优缺点及适用范围 • 力法在工程实践中应用 • 力法学习建议与拓展资源
01 力法基本概念与原理
力法定义及作用
力法是一种求解超静定结构的方法, 通过引入多余未知力,将超静定问题 转化为静定问题进行求解。
桁架结构应用
桁架结构由杆件组成,通过力法可以求解桁架结构中的多余未知力,进而分析 桁架的稳定性和承载能力。
组合结构应用
组合结构由不同材料或不同形式的构件组成,通过力法可以分析组合结构的内 力和变形,为结构设计提供优化建议。
复杂结构简化与力法应用
复杂结构简化
对于复杂结构,可以通过合理简化为静定结构或简单超静定结构,进而应用力法求解。
适用于简单和规则结构
03
对于简单和规则结构,力法能够较为方便地求解出结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
FA
图5-3-2(a)
同理,截取隔离体如图5-3-2(b)
FP G FN2 e2 2` D2 FQ2 A
F2
FA
图5-3-2(b)
容易看出:
图5-3-2两隔离体上截面1、2上 合力F1、F2与各自的三个内力分量 的等效关系。
AG和GB(注意GB过C铰)直线分别 是拱AD和DB段上合内力的作用线,又 叫压力线。
例5-3-1试设计一个三铰拱的轴线。
其拱上作用荷载与拱的三个铰相对位 置已定,如图(a)示
(a)
2 m 2 m 4 m
2m
2m
解
1)求支座反力
因拱的两个底铰不在一条直线上,须 先建立关于同一个铰的两个约束力的 平衡方程,联立求解,即:
先考虑支座B的约束力。以A点为 矩心,建立拱整体的力矩平衡方 程:
(a)
解 1)求支座反力
竖向反力
0 1 R FBy [q R FP ( R R cos )] 11.33kN () 2R 2
A
M
M
FAy
B
0
1 R [q R FP ( R R cos )] 1.33kN () 2R 2
结构力学
结构力学教研室
青岛理工大学工管系
第五章 静定拱的内力分析
§5.1
概 述
什么叫拱?
一般指杆的轴线为曲线形状,并且 在竖向荷载作用下会产生水平支座 反力的结构。
静定拱分类:
三铰拱 带拉杆三铰拱
静定拱的各部名称见图5-1-1。
拱 轴
( 底 铰 )
f(拱 高)
(a)三铰拱
(b)带拉杆三铰拱
K2截面以右——取K2R以右部分:
(隔离体上无集中力所用)
FNK 2 R 11.33cos 2.67sin 11.15kN
FQK 2 R 11.33sin 2.67cos 3.35kN
M K 2 R 11.33x2 2.67y2 0.73
(c)
在轴力和剪力的两个正交方向上建 立投影方程,并建立关于截面形心 的力矩方程,即得:
FN ( FAy FP1 ) sin FH cos
FQ ( FAy FP1 ) cos FH sin
(a)
M FAy x FP1 ( x a1 ) FH y
(b)
F B y
2)求K1截面内力
取截面K1左侧,见图(c)。
Mk1 FNK1 FQK1
4m
5.33kN 1.33kN
(c)
建立截面上轴力、剪力方向上 的投影方程及截面形心为矩心 的力矩方程
FNK1 1.33sin (5.33 q y1 ) cos 0.72kN
FQK 1 1.33cos (5.33 q y1 ) sin 1.95kN
水平支座反力
M
FAx
CL
0
1 R ( FAy R q R ) 5.33kN () R 2
CR
M
FBx
0
1 ( FBy R q R cos ) 2.67 kN () R
支座反力图
F= P1 0 k
R = 4 m
F A x F A y
M
A
0
8FBy 2FH 2FP q 4 6 0
再取铰C以右部分为隔离体,写 C端弯矩为零的方程:
MC 0
4FBy 2FH q 4 2 0
联立以上两式,解得:
FBy 30kN()
FH 20kN ()
(a)
(b)
Y
F 由拱整体的平衡方程:
由式5-2-2可知,在竖向荷载作用下 静定拱内力与相应简支梁内力及拱 水平反力有关。其中拱水平反力对 应确定的荷载是一常数。此外,拱 轴力和剪力还与所计算截面外法线 与x轴的夹角a有关。
例5-2-1 图(a)所示三铰拱的拱轴为
半圆形。计算截面K1、K2的内力。
F P = 1 0 k N
R = 4 m
拱的内力计算
1)基本方法—截面法
注: 拱的内力正负号的规定:弯矩
以使拱的内侧纤维受拉为正; 剪力以绕隔离体顺时针转动为 正;轴力以压力为正。
以图5-2-1(a) 三铰拱为例说明 拱的内力计算的一般方法。
FH
图5-2-1-(a)
解析
截开指定截面K,取左侧为隔 离体,见图(c),截面上待求 的内力均按规定的正方向示 出 。
图5-1-1
§5.2 三铰拱的内力计算 三铰拱的支座反力
当三铰拱的两个底铰在一条水平线 上,且只有竖向荷载作用时,三铰 拱的竖向支座反力与相应简支梁的 竖向支座反力相等;拱自身的两个 水平支座反力互等。
求解图5-2-1(a) 三铰拱支座反力
FH
FAy
图5-2-1-(a)
FBy
支座反力图
0
F B
可以看出,拱的内力计算的基本 方法与前述相同。拱的内力计算 的特点是: 随着界面位置的变化,截面的 法向不断的有相应的变换。
现在考虑相应简支梁的K截面上 的内力, 0 由(d)容易得出:
FQ0 FA FP1 FAy FP1
M 0 FA x FP1 ( x a1 ) FAy FP1 ( x a1 )
总结
拱的内力图特征有以下3个:
不管是在均布荷载下还是 在集中荷载下,拱的三个内力 图都是曲线图形。
在有竖向集中力作用点两侧截 面,轴力图和剪力图都有突变,突 变值等于相应简支梁的剪力分别在 拱的轴力和剪力方向上的投影。 有集中力偶作用点两侧截面, 弯矩图有突变,突变值仍等于所 作用的集中力偶。
M 0 F Q 0
(d)
将以上两式代入(a)得 :
FN FQ0 sin FH cos
FQ FQ0 cos FH sin
M M 0 FH y
(5-2-2)
公式法
概念:
上式即为用相应简支梁的内力表 示的拱的内力式。当将上式用作 拱的内力计算公式时,可以叫做 公式法。
(b)
分析
FAY FA FBY FB
M C0 1 FH [ FBy l2 FP 3 (l 2 b3)] f f
式中: M C 0 —相应简支梁在对应于 拱顶铰位置处的弯矩值
结论 FAY FA
FBY FB
M C0 FH f
三铰拱的支座反力只与荷载及 三个铰的相对位置有关,与拱轴形 FH 与f成反比,f越小,越平 状无关。 坦,推力越大。f/l称为高跨比。
纯受压状态的合力拱轴是一种理想状 态。因为这一状态只可能对应一种确 定不变化的荷载(恒载或静力荷载) 才做得到。实际设计中,合理拱轴是 针对主要荷载,并使在各类荷载的不 利组合下拱的弯矩最小。
下面通过一个简单的例子,见图 5-3-1,说明关于合理拱轴的一 些概念。
F P e 1 A 1 G e 2 D 2 B C
取拱整体:
M B 0
FAy
a1 FP L
取截面I—I左侧:
M
C
0
FNAB
1 1 a1 ( FAy a FAx f ) ( FP )a f f L
小 结
带拉杆三铰拱在竖向荷载作用 下水平反力为零。其拱结构由支座 提供的在拱铰处的水平力,被结构 内部的拉杆的拉力替代。因曲杆的 受力与前述三铰拱完全相同,因此 称其为带拉杆的三铰拱。
只有竖向荷载作用时,其合理拱轴 可由数解方法确定。 由式(5-2-2)第三式 M M 0 FH y
令其等于零,得:
M0 y FH
(5-2-3)
小结
合理拱轴的纵坐标与相应简支梁 的弯矩纵坐标成正比。也可以说,合 理拱轴的形状应与相应简支梁的弯矩 图形状相似。由此推出,拱在均布荷 载作用下的合理拱轴是抛物线形状; 在集中荷载作用下的合理拱轴是折线 图形。
K2截面以左——取K2L以右部分:
(隔离体上有集中力所用)
FNK 2 L FNK 2 R FP cos 2.49kN
FQK 2 L FQK 2 R FP sin 1.65kN
M K 2L M K 2R
式中 x2 R(1 cos )
y2 R sin
例5-2-2 分析图(a)所示三铰拱拉杆
AB中的轴力的计算方法并计算之。
I F P
f F A x I a (a) FA y L b F B y
分析:
带拉杆三铰拱与大地两个刚片 联系,可由拱上部整体的平衡条件 求得全部支座反力。欲求拉杆AB中 的拉力,只须用截面将铰C与拉杆截 断,取任一侧为隔离体,以较C为矩 心建立力矩方程即可。计算如下:
30 x 20( x 2) 1 y2 x2 20 2
30x 20( x 2) 10( x 4) 2 / 2 1 2 5 y3 x x2 20 4 2
由各段的拱轴方程,可绘出该拱 的合理拱轴。
拱的内力图制作分3步:
沿拱的跨度方向将拱轴分为若干 等分; 计算各等分点截面上的内力值及截 面内力有突变的内力值;
将已得各截面内力值用曲线光滑 连接,即得拱的内力图。
公式法 计算拱的内力用于内力
图制作时较有利。
§5.3 合理拱轴
1.概念
拱的所有截面上都处于无弯矩 状态时的拱轴线叫合理拱轴。换句 话说,即,具有合理拱轴的拱的所 有截面上都只有轴向压力。
F A
图5-3-1(a)
F B
解 析:
图5-3-1(a)所示在一个集中荷载 作用下的三铰拱。根据三力平衡 原理及铰C处弯矩为零的条件,显 然有图(a)所示的两个支座反力作 用线,并与荷载交于G点。