平行线的判定和性质测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的判定和性质测试题
一、选择题
1.下列命题中,不正确的是____ ( )
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如图,可以得到DE∥BC的条件是______ ( )
A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180° D.∠ACB=∠BAD
(2题)(3题)(5题)
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2, (2)∠3=∠6, (3)∠4+∠7=180°, (4)∠5+∠8=180°,
其中能判定a∥b的条件是_________( )
A.(1)(3) B.(2)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________( )
A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°
5.如图,如果∠1=∠2,那么下面结论正确的是_________.( )
A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C
6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等 B.两直线平行,内错角相等
C.同位角相等,两直线平行 D.内错角相等,两直线平行
(6题) (8题) (9题)(10题)
7.同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则直线c 、d 的位置关系为( ) A .互相垂直 B .互相平行 C .相交 D .无法确定 8.如图,AB ∥CD ,那么( )
A .∠1=∠4
B .∠1=∠3
C .∠2=∠3
D .∠1=∠5 9.如图,在平行四边形ABCD 中,下列各式不一定正确的是( )
A .∠1+∠2=180°
B .∠2+∠3=180°
C .∠3+∠4=180°
D .∠2+∠4=180° 10.如图,AD ∥BC ,∠B=30°,DB 平分∠AD
E ,则∠DEC 的度数为( )
A .30°
B .60°
C .90°
D .120°
11如果一个角的两边与另一个角的两边分别平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.无法确定 12下列说法正确的有〔 〕
①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行;③过一点有且只有一条直线与已知直线平行;④若a ∥b ,b ∥c ,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个
二、填空题.
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .
3.如图3所示
(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.
(3)若∠A +∠ = 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .
5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. 图1 2 4 3 1 A B C D E 1 2 A
B D
C E F 图2 1 2 3 4 5 A B C D
F E 图3 1 2 A B C D E F
图4 图5
1 A B C D
E F G H 图6 1 2 D A C B l 1
l 2 图8 1 A B F C D E G 图7 C D F E B A
9如果两条直线被第三条直线所截,一组同旁内角的度数之比为
3∶2,差为36°,那么这两条直线的位置关系是________.
10如图10,将三角板的直角顶点放在两条平行线a 、b 上, 若∠1=55°,则∠2= °.
11.如图8,推理填空:
(1)∵∠A =∠ (已知),
∴AC∥ED( ); (2)∵∠2 =∠ (已知),
∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 三、解答题
1.已知:如图,∠1=∠2,且BD 平分∠ABC .求证:AB ∥CD.
2如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
3已知:如图,∠1=∠2,∠3=100°,∠B =80°.求证:EF ∥C D .
4.已知:如图,FA ⊥AC ,EB ⊥AC ,垂足分别为A 、B ,且∠BED +∠D =180°. 求证:AF ∥C D .
1 2 3
A
F
C D B
E 图8 F
2
A B C
D
Q E 1 P M
N 图11