2020年重庆市高考数学试卷(理科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年重庆市高考数学试卷(理科)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.

1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()

A.{1,3,4}B.{3,4}C.{3}D.{4}

2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()

A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0

C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0

3.(5分)(﹣6≤a≤3)的最大值为()

A.9 B.C.3 D.

4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()

A.2,5 B.5,5 C.5,8 D.8,8

5.(5分)某几何体的三视图如图所示,则该几何体的体积为()

A. B. C.200 D.240

6.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x ﹣c)(x﹣a)的两个零点分别位于区间()

A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内

7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.

8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()

A.k≤6 B.k≤7 C.k≤8 D.k≤9

9.(5分)4cos50°﹣tan40°=()

A.B.C.D.2﹣1

10.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()

A.(0,]B.(,]C.(,]D.(,]

二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.

11.(5分)已知复数z=(i是虚数单位),则|z|=.

12.(5分)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=.

13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).

14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:

14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.

16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.

17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f (1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级摸出红、蓝球个数获奖金额

一等奖3红1蓝200元

二等奖3红0蓝50元

三等奖2红1蓝10元

其余情况无奖且每次摸奖最多只能获得一个奖级.

(1)求一次摸奖恰好摸到1个红球的概率;

(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).

19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.

(1)求PA的长;

(2)求二面角B﹣AF﹣D的正弦值.

20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;

(2)设cosAcosB=,=,求tanα的值.

21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;

(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.

2013年重庆市高考数学试卷(理科)

参考答案与试题解析

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.

1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()

A.{1,3,4}B.{3,4}C.{3}D.{4}

【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.

【解答】解:∵A={1,2},B={2,3},

∴A∪B={1,2,3},

∵全集U={1,2,3,4},

∴∁U(A∪B)={4}.

故选:D.

【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()

A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0

C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0

【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,

所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.

故选:D.

【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.

3.(5分)(﹣6≤a≤3)的最大值为()

A.9 B.C.3 D.

【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次

相关文档
最新文档