浮法玻璃熔窑热耗计算
玻璃熔窑烟道热工计算
![玻璃熔窑烟道热工计算](https://img.taocdn.com/s3/m/c17761541611cc7931b765ce05087632311274df.png)
玻璃熔窑烟道热工计算张凯赵亮(秦皇岛玻璃工业研究设计院有限公司秦皇岛066001)摘要以1000询平板玻璃熔窑为例,提岀了运用”水力最优断面”的概念来计算烟道断面尺寸的方法,并给岀了计算步骤;计算了烟道阻力;并对烟道采用不同保温层情况下的隔热性和经济性两方面进行了比较计算。
关键词玻璃熔窑;烟道断面;烟道阻力;保温层中图分类号:TQ171文献标识码:A文章编号:1003-1987(2021)06-0022-06Thermal Calculation of Flue in the Glass Melting FurnaceZHANG Kai,ZHAO Liang(Qinhuangdao Glass Industry Research and Design Institute Company Limited,Qinhuangdao066001,China)Abstract:Taking a1000t/d flat glass furnace as an example,puts forward a method to calculate the section size of the flue by using the concept of“hydraulic optimal section”,gives the calculation steps;calculates the resistance of the flue;and compares the heat insulation and economy of the flue with different insulation layers. Key Words:glass furnace,the cross section size of flue,flue resistance,insulation layer0引言当今,节约能源和环境保护依然是玻璃行业乃至整个工业领域重点关注的两大课题,玻璃熔窑生产过程中产生的高温烟气经过蓄热室格子体的回收后,在进入烟道时依然有较高的温度,对于大型熔窑来说,进入烟道内的烟气温度可以达到550甚至更高,最大限度地利用此部分烟气的余热正日益引起人们的重视。
窑体散热的相关热工公式
![窑体散热的相关热工公式](https://img.taocdn.com/s3/m/bf3f0910650e52ea5518988b.png)
㈠窑体散热的相关热工公式依据《JC488-92玻璃池窑热平衡测定和计算方法》,对连续操作的玻璃熔窑,通过窑体向外散失的热量,属于稳定热流,按传热学原理,这种散热可用下列公式进行计算: =wfqTT [千卡∕米²·小时] ———⑴其中q——每平方米窑壁散热损失[千卡∕米²·小时]wT——窑壁外表面温度(℃) fT——周围空气的温度(℃)——炉窑外壁与周围空气之间的对流辐射换热系数[千卡∕米²·℃·小时] 当周围空气为自由运动时,值可以用下列公式计算:4442732731001004fwwwfwfTTATTTT———⑵其中wA——散热面位置系数:碹顶取2.8,胸墙取2.2;㈡窑炉表面散热计算碹顶总面积307.16m2,胸墙总面积601.82 m2。
1、强化保温前:现场实测计算碹顶的平均外表面温度129.4℃,胸墙平均外表面温度103℃,周围环境平均温度50℃。
①根据公式⑵得出:碹顶1=16.08千卡∕米²·℃·小时胸墙2=12.81千卡∕米²·℃·小时②根据公式⑴:碹顶1q=1(129.4-50)=1276.75千卡∕米²·小时胸墙2q=2(103-50)=678.93千卡∕米²·小时每天窑体散热损失1Q=(1q×307.16+2q×601.82)×24=19218259.12千卡2、预计强化保温后:碹顶的平均外表面温度60℃,胸墙的平均外表面温度50℃,室内环境平均温度30℃。
①据公式⑵得出:碹顶1=11.71千卡∕米²·℃·小时胸墙2=9.56千卡∕米²·℃·小时②根据公式⑴:碹顶1q=1(60-30)=351.3千卡∕米²·小时胸墙2q=2(50-30)=191.2千卡∕米²·小时每天窑体散热损失2Q=(1q×307.16+2q×601.82)×24=5351359千卡㈢保温节能量及价值估算①保温前每天窑体散热损失合标准煤(7000000千卡/吨) 2.745吨,全年(按365天)损失约1001.925吨标煤。
玻璃熔窑使用不同燃料的能耗计算
![玻璃熔窑使用不同燃料的能耗计算](https://img.taocdn.com/s3/m/80586cf5534de518964bcf84b9d528ea81c72fc8.png)
玻璃熔窑使用不同燃料的能耗计算维普资讯 ////0>.全国性建材科技期刊??《玻璃》第期总第期玻璃熔窑使用不同燃料的能耗计算唐福恒秦皇岛玻璃工业研究设计院秦皇岛市摘要国内浮法玻璃熔窑多数是以重油为燃料的,少数以天然气、焦炉煤气、发生炉热煤气为燃料。
每种燃料的热值不同,对应的理论燃烧温度、实际燃烧温度、能够达到的炉壁热点温度也都不相同。
从而各种燃料玻璃熔窑的单位能耗指标、熔窑热效率也不同。
本文给?了使用不同燃料的玻璃熔窑计算单位能耗指标的经验公式。
关键词浮法玻璃熔窑燃料中图分类号: 文献标识码: 文章编号: ?? ?一玻璃工厂是耗能大户,玻璃熔窑又是玻璃生产不同空气过剩系数时的单位空气耗量,线中耗能最大的热工设备,生产优质浮法玻璃时,/ 。
熔窑内热点的温度需要达到以上。
国内外传要计算某种燃料的理论燃烧温度,只要把上式统的玻璃熔窑一般都采用重油热值≥中右侧分子和分母的全部代号的数据都通过查表找/、天然气热值≥ / ’等高热值的、或通过计算得出,这种燃料的理论燃烧温度就燃料,少数是以焦炉煤气、发生炉热煤气为燃料。
很容易计算出来了。
. 燃料的实际燃烧温度火焰温度燃料的理论燃烧温度、实际燃烧温度和燃料在燃烧中实际上总有一部分热量损失掉,玻璃熔窑内壁温度并凡燃烧也经常不能完全,所以实际的燃烧温度总是以矿物燃料为能源的玻璃熔窑内的温度取决于低于理论燃烧温度。
通常人们所说的某种燃料的“火燃料的燃烧温度,燃料的燃烧温度分为理论燃烧温焰温度”就是指这种燃料能够达到的实际燃烧温度。
度和实际燃烧温度。
各种窑炉可以达到的最高实际燃烧温度即火. 燃料的理论燃烧温度焰温度 ,可从表所列的各种窑炉高温系数又当燃料在燃烧反应时所放出的全部热量都用于称为燃烧热效率求得。
加热燃烧产物时,能够达到的温度称为燃料的理论表各种窑炉的高温系数燃烧温度。
窑炉名称高温系数窑炉名称高温系数燃料的理论燃烧温度是从能量守衡定律得出的。
连续式玻璃窑 . ~ . 隧道窑 . ? .坩埚窑 . ~ . 窑 . ? .公式为:间隙式作业窑~ 旋窑 . ? .目前的大型玻璃熔窑都属于连续式的,计算实际燃烧温度时的高温系数可按 . 取。
浮法玻璃熔窑热耗计算
![浮法玻璃熔窑热耗计算](https://img.taocdn.com/s3/m/1e91acf0941ea76e58fa0475.png)
思考题:
• 1、无拉引量时,窑炉应如何设定各小 炉燃料分配? • 2、依热耗表达式,怎样采取有效措施, 提高窑炉热效率?
窑炉单耗表达式
窑炉单耗,Kcal/Kg Glass =(耗热当量/周拉引量+28.0)* 25.2*[1+(20% - 碎玻璃占全部 玻璃的比例)*1/2]
推算耗热当量(无功系数)
表达式说明 常数:28,单位:Therm
(英制热量,1 Therm=25.2 kcal)
钠钙平板玻璃形成耗热:705 kcal/kg,合28 therm *与成份、碎玻璃量、澄清温度相 关
推算公式资料
1. 2010年12月各线窑炉玻璃单耗
(NG C.V.=8400 Kcal/NM3) 一线:186.31NM3/MT = 1565 Kcal/kg glass 二线:188.22NM3/MT = 1581 Kcal/kg glass 三线:162.40NM3/MT = 1364 Kcal/kg glass
cullet每增加或减少2相当于load拉引量降低或升高1推算耗热当量无功系数推算步骤窑龄增加量周拉引量耗能当量实指窑炉窑体散热玻璃回流重复加热出蓄热室烟气稀释风冷却水带走热量系数
窑炉能耗公式推算
目的
• 合理利用燃料之热能,并使其与 窑炉负载(拉引量)相匹配。
• 使炉内热工过程、参数得到有效 控制。 • 针对特殊工况,合理燃料分配。 • 节约能源,降低生产成本。 • 减少环境污染。
*二线热耗计算: • =(159687/Load + 28)*25.2*(1+(20%-Cullet ratio%)/2)
*三线热耗计算: • =(186476/Load + 28)*25.2*(1+(20%-Cullet ratio%)/2)
浮法玻璃耗能计算公式
![浮法玻璃耗能计算公式](https://img.taocdn.com/s3/m/3015efbaf80f76c66137ee06eff9aef8951e4858.png)
浮法玻璃耗能计算公式浮法玻璃是一种常见的建筑材料,广泛应用于建筑、家具、汽车等领域。
然而,生产浮法玻璃需要大量的能源,因此对其耗能进行计算和控制至关重要。
本文将介绍浮法玻璃的耗能计算公式,并探讨如何降低生产过程中的能源消耗。
浮法玻璃的生产过程主要包括原料准备、熔制、成型、淬火和切割等环节。
其中,熔制环节是耗能最大的部分,因为需要将原料加热至高温进行熔化。
因此,我们首先来介绍浮法玻璃熔制过程的能耗计算公式。
浮法玻璃熔制过程的能耗计算公式可以表示为:E = Q ×η。
其中,E表示能耗,单位为千瓦时(kWh);Q表示熔炉的燃料消耗量,单位为标准煤(t)或天然气(m³);η表示燃料的热值,单位为千焦耳/千克(kJ/kg)或千焦耳/立方米(kJ/m³)。
在实际应用中,我们可以根据燃料的种类和熔炉的规格来确定Q和η的数值,从而计算出熔制过程的能耗。
例如,如果熔炉每天消耗100吨标准煤,而标准煤的热值为7000千焦耳/千克,则能耗为100 × 7000 = 700000千焦耳,换算成kWh即为700000 ÷ 3600 = 194.44kWh。
除了熔制过程,浮法玻璃的成型、淬火和切割等环节也会消耗大量的能源。
这些环节的能耗计算公式与熔制过程类似,都可以通过燃料消耗量和燃料热值来进行计算。
因此,我们可以将整个生产过程的能耗表示为:E = E1 + E2 + E3 + ... + En。
其中,E1、E2、E3分别表示熔制、成型、淬火等环节的能耗,En表示其他可能的能耗环节。
通过对每个环节的能耗进行计算,我们可以得到整个生产过程的能耗总量。
在实际生产中,降低浮法玻璃的能耗是一个重要的课题。
为了降低能耗,我们可以从以下几个方面进行改进:1. 提高设备效率,更新熔炉、成型机等设备,提高其能效,减少能源的浪费。
2. 优化生产工艺,通过优化原料配比、控制熔炉温度等手段,降低生产过程中的能耗。
浮法玻璃炉窑蓄热室格子体设计
![浮法玻璃炉窑蓄热室格子体设计](https://img.taocdn.com/s3/m/d46bd589680203d8ce2f2489.png)
神雾500t/d浮法玻璃炉窑蓄热室格子体设计(一)一、基本参数及蓄热室结构1.基本参数:●生产能力:P=500t / d;●燃料:热值为Q=1400kcal / Nm3的发生炉煤气;●单耗:r=1600 kcal / kg;●空气过剩系数:α=1.1;●换向周期:f=20分钟;●高温段格孔尺寸:150×150mm。
2.蓄热室结构高低温两段格子体结构,煤气和助燃空气独立预热。
流过格子体的烟气、助燃空气和煤气温度变化情况如下图所示:二、高温段蓄热室热平衡计算(一)高温段蓄热室气体温度及其热容量(二)全窑基础数据计算1.单位煤气所需理论空气量L0=(0.85Q / 1000)+Δ=(0.85×1400 / 1000)+0.03=1.22(Nm3 / Nm3)2.单位煤气所需实际空气量L a=α·L0=1.1×1.22=1.342(Nm3 / Nm3)3.全窑单位时间(秒)耗热量R s=(P×1000×r)÷(24×3600)=(500×1000×1600)÷(24×3600)=9260(kcal/ s)4.单位时间(秒)煤气消耗量MQ=R s / Q=9260 / 1400=6.614(Nm3 / s)5.单位时间(秒)实际助燃空气消耗量KQ a=L a·MQ=1.342×6.614=8.876(Nm3 / s)6.单位时间(秒)产生的烟气量YQ=[L a +0.98-(0.13×Q/1000)]·MQ=[1.342 +0.98-(0.13×1400/1000)]×6.614=14.154(Nm3 / s)(三)空气蓄热室与煤气蓄热室的烟气分配1.单位时间(秒)空气预热所需热量Q KQ=KQ a·(C KQ1350·1350℃-C KQ500·500℃)=8.876×(0.355×1350-0.326×500)=8.876×(479.25-163)=2807(kcal / s)2.单位时间(秒)煤气预热所需热量Q MQ=MQ·(C MQ1350·1350℃-C MQ500·500℃)=6.614×(0.361×1350-0.330×500)=6.614×(487.35-165)=2132(kcal / s)3.单位时间(秒)空气、煤气预热所需热量之和Q q=Q KQ+Q MQ=2807+2132=4939(kcal / s)4.单位时间(秒)空气蓄热室所需要的烟气量Y KQ=Q KQ / Q q·YQ=2807/4939×14.154=8.044(Nm3 / s)――――――――――――――――――――57%5.单位时间(秒)煤气蓄热室所需要的烟气量Y MQ=Q MQ / Q q·YQ=2132/4939×14.154=6.110(Nm3 / s)――――――――――――――――――――43%(四)高温段空气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J1=Y KQ·C YQ1450·t YJ=8.044×0.391×1450=4560(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C1=Y KQ·C YQ600·t YC=8.044×0.358×600=1728(kcal / s)――――――――――――――――――――37.89%3.单位时间(秒)空气预热所需热量Q KQ=2807(kcal / s)――――――――――――――――――61.56%4.单位时间(秒)空气蓄热室结构散热Q KQSR=Q J1-Q C1-Q KQ=4560-1728-2807=25(kcal / s)――――――――――――――――――――0.55%(五)高温段煤气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J2=Y MQ·C YQ1450·t YJ=6.110×0.391×1450=3464(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C2=Y MQ·C YQ600·t YC=6.110×0.358×600=1312(kcal / s)――――――――――――――――――――37.87%3.单位时间(秒)煤气预热所需热量Q MQ=2132(kcal / s)――――――――――――――――――61.55%4.单位时间(秒)煤气蓄热室结构散热Q MQSR=Q J2-Q C2-Q MQ=3464-1312-2132=20(kcal / s)――――――――――――――――――――0.58%(六)整个高温段蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=Q J1+Q J2=4560+3464=8024(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=Q C1+Q C2=1728+1312=3040(kcal / s)――――――――――――――――――――37.89%3.单位时间(秒)空气、煤气预热所需总热量Q q=Q KQ+Q MQ=2807+2132=4939(kcal / s)――――――――――――――――――――61.55%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=Q KQSR+Q MQSR=25+20=45(kcal / s)――――――――――――――――――――0.56%三、低温段蓄热室热平衡计算(一)低温段蓄热室气体温度及其热容量(二)低温段空气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J1=Y KQ·C YQ600·t YJ=8.044×0.358×600=1728(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C1=Y KQ·C YQ200·t YC=8.044×0.337×150=407(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)空气预热所需热量Q KQ=KQ a·(C KQ500·500℃-C KQ50·50℃)=8.876×(0.326×500-0.316×50)=8.876×(163-15.8)=1306(kcal / s)――――――――――――――――――75.58%4.单位时间(秒)空气蓄热室结构散热Q KQSR=Q J1-Q C1-Q KQ=1728-407-1306=15(kcal / s)――――――――――――――――――――0.87%(三)低温段煤气蓄热室热平衡1.单位时间(秒)烟气带入热量Q J2=Y MQ·C YQ600·t YJ=6.110×0.358×600=1312(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出热量Q C2=Y MQ·C YQ150·t YC=6.110×0.337×150=309(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)煤气预热所需热量Q MQ=MQ·(C MQ500·500℃-C MQ50·50℃)=6.614×(0.330×500-0.317×50)=6.614×(165-15.85)=986(kcal / s)――――――――――――――――――――75.15%4.单位时间(秒)煤气蓄热室结构散热Q MQSR=Q J2-Q C2-Q MQ=1312-309-986=17(kcal / s)――――――――――――――――――――1.30%(四)整个低温段蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=Q J1+Q J2=1728+1312=3040(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=Q C1+Q C2=407+309=716(kcal / s)――――――――――――――――――――23.55%3.单位时间(秒)空气、煤气预热所需总热量Q q=Q KQ+Q MQ=1306+986=2292(kcal / s)――――――――――――――――――――75.39%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=Q KQSR+Q MQSR=15+17=32(kcal / s)――――――――――――――――――――1.06%四、全窑蓄热室热平衡1.单位时间(秒)烟气带入总热量Q J=8024(kcal / s)――――――――――――――――――――100%2.单位时间(秒)烟气带出总热量Q C=716(kcal / s)――――――――――――――――――――8.92%3.单位时间(秒)空气、煤气预热所需总热量Q q=4939+2292=7231(kcal / s)―――――――――――――90.12%4.单位时间(秒)空气、煤气蓄热室结构总散热Q ZSR=45+32=77(kcal / s)―――――――――――――――0.96%五、高温段蓄热室格子体设计(一)高温段空气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位助燃空气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.助燃空气耗量:KQ a=8.876Nm3 / s3.每侧所需要的格子体换热面积:A g=KQ a·A kk=8.876×800=7101m24.每侧所需要的格子体体积:V g=A g/A gk=7101÷17.4=408m35.初步设格子体高度、长度尺寸:H=8m,L=18m6.求得格子体宽度:B=V g/(H·L)=408 /(8×18)=2.83(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1612.每侧腔道格孔总流通面积:0.022×14×16×7=34.5m213.格子体中空气标态流速:8.876÷34.5=0.257Nm / s14.格子体中烟气标态流速:8.044÷34.5=0.233Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[16×7×(0.15+δ)]×H=(14×0.18)×(16×7×0.18)×8=406.42m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=406.42×17.4=7072(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=406.42×0.32=130.05m3G gz=130.05×2.8=364.15t(二)高温段煤气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位煤气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.煤气耗量:MQ=6.614Nm3 / s3.每侧所需要的格子体换热面积:A g=MQ·A kk=6.614×800=5291m24.每侧所需要的格子体体积:V g=A g/A gk=5291÷17.4=304m35.初步设格子体高度、长度尺寸:H=6m,L=18m6.求得格子体宽度:B=V g/(H·L)=304 /(6×18)=2.81(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1412.每侧腔道格孔总流通面积:0.022×14×14×7=30.2m213.格子体中煤气标态流速:6.614÷30.2=0.219Nm / s14.格子体中烟气标态流速:6.110÷30.2=0.202Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[14×7×(0.15+δ)]×H=(14×0.18)×(14×7×0.18)×6=266.72m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=266.72×17.4=4641(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=266.72×0.32=85.35m3G gz=85.35×3.4=290.19t(三)整个高温段蓄热室格子体数据汇总1.空气蓄热室单侧格子孔数量:14×16×7=15682.煤气蓄热室单侧格子孔数量:14×14×7=13723.单侧空气蓄热室格子体总换热面积:7072(m2)4.单侧煤气蓄热室格子体总换热面积:4641(m2)5.单侧空气蓄热室格子体总体积:406.42m36.单侧煤气蓄热室格子体总体积:266.72 m37.单侧空气蓄热室格子砖的总重量为:364.15t8.单侧煤气蓄热室格子砖的总重量为:290.19t9.全窑高温段蓄热室格子砖总重量:1308.68t六、低温段蓄热室格子体设计(一)低温段空气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=770m2 / m3(6)格子体单位体积砖体积:V gk=0.423m3 / m3(7)单位助燃空气单位时间(秒)所需要的格子体换热面积:A kk=416m2 / Nm3·s 2.助燃空气耗量:KQ a=8.876Nm3 / s3.每侧所需要的格子体换热面积:A g=KQ a·A kk=8.876×416=3692m24.每侧所需要的格子体体积:V g=A g/A gk=3692÷770=4.79m35.初步设格子体高度、长度尺寸:H=8m,L=18m6.求得格子体宽度:B=V g/(H·L)=408 /(8×18)=2.83(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1612.每侧腔道格孔总流通面积:0.022×14×16×7=34.5m213.格子体中空气标态流速:8.876÷34.5=0.257Nm / s14.格子体中烟气标态流速:8.044÷34.5=0.233Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[16×7×(0.15+δ)]×H=(14×0.18)×(16×7×0.18)×8=406.42m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=406.42×17.4=7072(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=406.42×0.32=130.05m318.单侧蓄热室格子体格子砖的总重量为:G gz=130.05×2.8=364.15t(二)低温段煤气蓄热室格子体1.采用以碱性砖为主的筒型砖格子体,格子体参数如下:(1)格孔尺寸:d g=150mm×150mm(2)筒型砖格子体壁厚:δ=30mm(3)格孔当量直径:d e=156mm(4)格孔断面积:A d=0.022m2(5)格子体单位体积换热面积(平均值)/比表面积:A gk=17.4m2 / m3(6)格子体单位体积砖体积:V gk=0.32m3 / m3(7)单位煤气单位时间(秒)所需要的格子体换热面积:A kk=800m2 / Nm3·s 2.煤气耗量:MQ=6.614Nm3 / s3.每侧所需要的格子体换热面积:A g=MQ·A kk=6.614×800=5291m24.每侧所需要的格子体体积:V g=A g/A gk=5291÷17.4=304m35.初步设格子体高度、长度尺寸:H=6m,L=18m6.求得格子体宽度:B=V g/(H·L)=304 /(6×18)=2.81(m)7.蓄热室每侧腔道数(小炉数):n=78.腔道纵向尺寸:小炉中心线间距-分隔墙厚=3.1-0.462=2.638(m)9.蓄热室纵向腔道总长:2.638m×7=18.466m10.腔道纵向格孔数:n1=1411.腔道横向格孔数:n2=1412.每侧腔道格孔总流通面积:0.022×14×14×7=30.2m213.格子体中煤气标态流速:6.614÷30.2=0.219Nm / s14.格子体中烟气标态流速:6.110÷30.2=0.202Nm / s15.单侧蓄热室格子体总体积为:V t=[n1×(0.15+δ)]×[14×7×(0.15+δ)]×H=(14×0.18)×(14×7×0.18)×6=266.72m316.单侧蓄热室格子体总换热面积为:A=V t·A gk=266.72×17.4=4641(m2)17.单侧蓄热室格子体格子砖的总体积为:V=V t·V gk=266.72×0.32=85.35m318.单侧蓄热室格子体格子砖的总重量为:G gz=85.35×2.8=238.98t(三)整个低温段蓄热室格子体数据汇总1.空气蓄热室单侧格子孔数量:14×16×7=15682.煤气蓄热室单侧格子孔数量:14×14×7=13723.单侧空气蓄热室格子体总换热面积:7072(m2)4.单侧煤气蓄热室格子体总换热面积:4641(m2)5.单侧空气蓄热室格子体总体积:406.42m36.单侧煤气蓄热室格子体总体积:266.72 m37.单侧空气蓄热室格子砖的总重量为:364.15t8.单侧煤气蓄热室格子砖的总重量为:238.98t9.全窑高温段蓄热室格子砖总重量:1202.26t11。
玻璃熔窑设计第四章热工计算
![玻璃熔窑设计第四章热工计算](https://img.taocdn.com/s3/m/c7169a59376baf1ffd4fad3e.png)
玻璃熔窑设计第四章热工计算IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第4章总工艺计算耗热量的计算已求得的数据①原料组成见表4-1表4-1原料组成单位:质量分数(%)②碎玻璃用量占配合料的20%。
③配合料(不包含碎玻璃)水分:4%。
④玻璃熔化温度1465℃湿粉料中形成氧化物的数量见表3-2表4-2形成玻璃液的各氧化物的量单位:质量分数(%)湿粉料逸出气体组成见表4-3表4-3逸出气体组成配合料用量的计算碎玻璃量粉料量=2080(4-1)即:碎玻璃量=2080×粉料量即1㎏粉料中需要加入㎏碎玻璃,可以得到玻璃液:%×1+=因此,熔制成为1㎏玻璃液需要粉料量:G粉=1=0.9530G粉=0.251.0493=0.2383熔化成1㎏玻璃液需要的配合料量为:+=生成硅酸盐耗热量(以1㎏湿粉料进行计算,单位kJ/kg)由CaCO3生产CaSiO3时反应耗热量q1:q1==×(++)/100=由MgCO3生成MgSiO3时反应耗热量q2:q2==×++/100=由CaMg(CO3)2生成CaMg(SiO3)2时反应耗热量q3:q3==×(+)/100=由NaCO3生成NaSiO3时耗热量q4:q4==×100=由Na2SO4生成NaSO3时耗热量q5:q5=×100=1㎏湿粉料生成硅酸盐耗热量:q0=q1+q2+q3+q4+q5=++++=(kJ)玻璃形成过程的热量平衡(以生成1㎏玻璃液计,单位是kJ/kg,从0℃算起)①支出热量a.生成硅酸盐耗热量:qⅠ=q0G粉=×=b.形成玻璃耗热量:qⅡ=347G粉(1-气)kJ=347××(1-×)=c.加热玻璃液到1465℃耗热量:qⅢ=C玻t玻C玻=+×10-4t玻=+×10-4×1465=qⅢ=C玻t玻=×1465=d.加热逸出气体到1465℃耗热量:qⅣ=气G粉C气t熔式中V气=粉=熔=1465℃C气=C CO2(CO2%+SO2%)+C H2O H2O% =×(+)%+×%=qⅣ=气G粉C气t熔=××××1645=e.蒸发水分耗热量:qⅤ=2491G粉G水qⅤ=2491G粉G水=2491××4%=共计支出热量:q支=qⅠ+qⅡ+qⅢ+qⅣ+qⅤ=++++=②收入热量(设配合料入窑温度为36℃)a.由碎玻璃入窑带入的热量:qⅥ=C碎玻璃G碎玻璃t碎玻璃C碎玻璃=+×10-4×36=qⅥ=C碎玻璃G碎玻璃t碎玻璃=××36=b.由粉料入窑带入的热量:qⅦ=C粉G粉t粉qⅦ=C粉G粉t粉=××36=共计支出热量:q收=qⅥ+qⅦ=+=③熔化1㎏玻璃液在玻璃形成过程中的耗热量:q=q支-q收=-=燃烧计算烟气组成计算[5]1.重油成分见下表4-4表4-4重油成分单位:质量分数(%)2.计算基准:100g重油;条件:重油完全燃烧;窑内气体或火焰按其化学组成成分以及具有的氧化或还原能力分为氧化气氛、中性气氛、还原气氛三种。
二代浮法新型节能技术在玻璃熔窑应用实例
![二代浮法新型节能技术在玻璃熔窑应用实例](https://img.taocdn.com/s3/m/74ce35460640be1e650e52ea551810a6f424c842.png)
我国是玻璃生产大国,截至2021年9月中旬,我国浮法玻璃熔窑共计305座,在产265座,日熔化量174925吨,占全世界浮法玻璃在产产能58%;超白压延玻璃熔窑66座,日熔化量40210吨,占全世界超白压延玻璃在产产能90%。
而玻璃企业是能耗大户,燃料成本占玻璃生产总成本的40%。
在3060碳达峰、碳中和“双碳战略”以及“十四五”能耗总量控制、能耗强度控制“双控目标”国家政策的高压态势下,玻璃行业迫切需要节能新材料和节能新技术,来进一步降低燃料消耗并减少污染排放,同时降低运行成本、提高玻璃企业的产品竞争力。
中建材蚌埠玻璃工业设计研究院(以下简称“中建材蚌埠院”)在熔窑节能领域做了大量研发工作,并取得了卓有成效的创新成果。
其中,玻璃熔窑用红外高辐射节能涂料(以下简称“红外节能涂料”)与二代新型保温节能技术,作为玻璃熔窑节能新材料和节能新技术,被评为“二代浮法玻璃技术与装备优秀创新成果”,成为二代浮法玻璃熔窑标志性节能创新成果和设计标配。
01节能原理1.1 红外高辐射节能涂料的节能原理随着玻璃生产工艺的改进和节能技术水平的提升,我国普白玻璃单耗大约在1300~1550 Kcal/kg玻璃液,熔窑热吸收效率在42%~50%,平均热效率在46%左右。
这与国外工业炉的平均热效率均在50%以上存在一定的差距[1]。
那么,如何才能提高窑炉的热效率呢?众所周知,高温环境下炉膛内部的热量传递以辐射为主,辐射传热所传递的能量占总能量的80%以上。
而一般耐火材料(如优质硅砖)高温下的发射率只有0.4左右[2](如图1所示)。
因此,提高炉膛内表面的发射率,就可以提高熔窑的热吸收效率。
图1 玻璃熔窑内部耐火材料传热示意图中建材蚌埠院研发的“玻璃熔窑用红外高辐射节能涂料”,正是这样一种高发射率的功能性涂料。
将它涂覆在玻璃熔窑内表面,可以将高温下(1600℃)熔窑内表面的发射率从0.4提高到0.9以上。
也就是说,可以将窑炉内表面辐射传热效率提高一倍以上。
浮法玻璃生产过程中的节能途径
![浮法玻璃生产过程中的节能途径](https://img.taocdn.com/s3/m/fa975d21a31614791711cc7931b765ce05087a8d.png)
浮法玻璃生产过程中的节能途径顽近下景匕玻璃行业是一个高能耗行业,玻璃熔窑是玻璃生产线能耗最多的设备,在玻璃成本中燃料成本约占35%〜50%.我国自行设计的大部分浮法玻璃熔窑玻璃液单耗可以达到6500kJ/kg〜7500kJ/kg玻璃液,国外大的浮法玻璃企业只有5800kJ/kg玻璃液,我们与国际先进水平有一定差距。
发达国家玻璃熔窑的热效率一般在30%〜40%,我国玻璃熔窑的热效率平均只有25%〜35%.熔窑结构设计和保温措施不合理,使用的耐火材料质量档次低是存在这种差距的重要原因之一。
其次,国内浮法玻璃工艺操作技术落后、管理不够完善等也是造成能耗高、熔化质量差、窑炉寿命短的原因。
到目前我国已拥有浮法玻璃生产线140余条,玻璃产能增加较快,市场竞争逐步白热化。
做为玻璃主要燃料的重油,价格持续走高,在玻璃成本中所占比例越来越大。
因此,降低玻璃能耗,对降低生产成本,提高企业的市场竞争力,减少环境污染,缓解能源短缺等都具有巨大意义。
玻璃企业的节能是一个长期任务,国内外技术人员积极进行研究,如优化窑炉结构设计、富氧燃烧、全氧燃烧电助熔、重油乳化技术等。
目前很多企业已开始在生产过程中实施节能措施,并对玻璃生产过程控制等方面的节能措施进行探索。
配合料水分、温度与油耗众所周知,水分在配合料中的状态与配合料的温度密切相关。
配合料温度大于35°C时,绝大多数水分以游离态附着在难熔的砂粒表面,从而可以粘附较多的纯碱加强助熔效果。
当配合料温度小于35°C时,配合料中的水分会与纯碱形成Na2CO310H2O或Na2CO37H2O,与芒硝形成Na2SO410H2O结晶水化合物,使砂粒表面失去水分显得干燥,使助熔作用减弱。
北方地区在冬季由于气温较低,配合料温度一般低于35C,有些地区甚至仅有20C左右。
为了保持配合料外观湿润,通常采取增加配合料水分的办法,虽然起到一定作用,但也会带来较多弊端,如料仓壁结块现象加重、油耗增加等。
浮法玻璃熔窑的合理设计(连载一)
![浮法玻璃熔窑的合理设计(连载一)](https://img.taocdn.com/s3/m/c78be8d3900ef12d2af90242a8956bec0975a566.png)
浮法玻璃熔窑的合理设计(连载-)唐福恒(北京长城工业炉技术中心北京102208)摘要对浮法玻璃熔窑的熔化率设计,熔化区的长宽比例设计,熔化区、小炉、蓄热室系统的基本热平衡计算,窑体结构散热量与窑体砖结构重量的关系,熔化率与单位能耗指标之间的关系,以及个别浮法玻璃熔窑存在的不达产、多烧的燃料热量随排岀废气跑掉了等问题进行了分析验证。
提岀了浮法玻璃熔窑合理设计的10个要点。
关键词浮法;玻璃;熔窑;设计中图分类号:TQ171文献标识码:A文章编号:1003-1987(2021)01-0007-14Reasonable Design of Float Glass Melting FurnaceTANG Fuheng(Technology Center ofBeijing Great Wall industrial Furnace,Beijing10220&China) Abstract:Design for melting rate of float glass furnace,length-width ratio design of melting area,the basic heat balance calculation of melting area,pot,regenerator system,the relationship between heat loss of kiln body structure and the mass of bricks,the relationship between the melting rate and unit energy consumption indicators,as well as the production yield is not up to standard and more fuel is combusted, heat energy ran away with the discharged waste gas,ten key points of reasonable design of float glass melting furnace are put forward.Key Words:float glass,furnace,design1概述1.1近50年国内玻璃熔窑概况在1980年以前,国内玻璃熔窑的基本情况是:熔窑吨位小、最大吨位300t/d(九机窑),最大熔化部池宽只有9m左右,蓄热室格子体高度一般为5~6m;燃料以发生炉煤气为主,单位能耗高,普遍超过2000kcal/kg披霜(1kcal=4.1868 kJ);砌筑玻璃熔窑所用的耐火材料质量差,耐高温、耐冲刷、抗侵蚀性能都比较弱;窑龄短,一般不超过3年。
浮法玻璃熔窑的合理设计(连载二)
![浮法玻璃熔窑的合理设计(连载二)](https://img.taocdn.com/s3/m/15d784c5b9f67c1cfad6195f312b3169a451ea3b.png)
浮法玻璃熔窑的合理设计(连载二)唐福恒(北京长城工业炉技术中心北京102208)摘要对浮法玻璃熔窑的熔化率设计,熔化区的长宽比例设计,熔化区、小炉、蓄热室系统的基本热平衡计算,窑体结构散热量与窑体砖结构重量的关系,熔化率与单位能耗指标之间的关系,以及个别浮法玻璃熔窑存在的不达产、多烧的燃料热量随排岀废气跑掉了等问题进行了分析验证。
提岀了浮法玻璃熔窑合理设计的10个要点。
关键词浮法;玻璃;熔窑;设计中图分类号:TQ171文献标识码:A文章编号:1003-1987(2021)02-0001-13Reasonable Design of Float Glass Melting FurnaceTANG Fuheng(Technology Center ofBeijing Great Wall industrial Furnace,Beijing10220&China) Abstract:Design for melting rate of float glass furnace,length-width ratio design of melting area,the basic heat balance calculation of melting area,pot,regenerator system,the relationship between heat loss of kiln body structure and the mass of bricks,the relationship between the melting rate and unit energy consumption indicators,as well as the production yield is not up to standard and more fuel is combusted, heat energy ran away with the discharged waste gas,ten key points of reasonable design of float glass melting furnace are put forward.Key Words:float glass,furnace,design7国内浮法玻璃熔窑存在的一些问题7.1浮法玻璃熔窑的小炉对数过去在大確硅砖质量较差时形成了一种观念:认为玻璃熔窑的池宽不能太大,以确保大確的安全。
1200t熔窑技术参数(08-02-20)
![1200t熔窑技术参数(08-02-20)](https://img.taocdn.com/s3/m/6a605d86b9d528ea81c7792b.png)
1200t/d浮法玻璃熔窑方案说明一、主要技术指标二、熔窑主要结构尺寸三、主要技术特点1. 采用宽熔化池,并设全等宽投料池结构。
2. 前脸采用45°L型吊墙。
3.熔化部池深采用较深的深池结构,确保熔化池内玻璃液的热容,促进玻璃液的对流和配合料的熔化。
4. 熔窑蓄热室采用“两两分隔”的方式(即2-2-1-2-1),蓄热室的格子砖全选用筒型格子砖。
5. 优化设计1#小炉中心线至前脸的距离,可充分发挥1#小炉的潜力,进一步促进配合料的熔化。
6.设置0#氧枪,促进配合料的熔化。
7.熔化区池底预留辅助电加热装置。
8.在熔窑玻璃液的热点处附近池底设置鼓泡装置。
9.窑池池底采用台阶式结构形式,即在卡脖入口开始池底上抬200mm,既利于促进熔化、澄清又利于节能降耗。
10. 合理设计熔窑的澄清带的长度,使深层微气泡有足够的时间溢出。
11.采用窄长卡脖结构形式,在该处设深层冷却水包,通过调节深层水包的深度,以控制玻璃液的回流量和温降。
窄长卡脖结构,可适当拉长深层水包与水平搅拌器之间的间距,改善玻璃液的质量。
12. 熔化部后山墙设J型吊墙,卡脖顶部设吊平碹结构形式,以最大限度地分隔熔化部火焰空间对冷却部的影响。
13.采用新型高效保温材料,对窑体进行全保温。
四、熔窑耐火材料配置➢熔化部➢卡脖➢冷却部➢蓄热室➢小炉➢烟道1200t/d浮法玻璃退火窑方案说明一、主要技术指标二、退火窑尺寸➢总长: 192.75m➢内宽: 5800mm➢保温段长: 102.45m➢非保温段长: 90.30m具体尺寸见下表a)退火窑结构退火窑壳体采用全钢全电结构,由若干节组成,根据退火曲线纵向划分为若干个区,各区内根据玻璃板温度采用不同的加热冷却系统,以便完成良好的退火和合理的降温。
A、B和C区分别为退火窑的退火前区、退火区和退火后区,是退火窑的关键区,直接影响到玻璃的退火质量。
这三区壳体采用隔热保温的形式,在窑内配置合理的加热冷却系统,进行横向分区控制,有效地控制玻璃板的冷却速度和横向温差。
浮法玻璃大功率电熔化工艺的应用分析赵会杰1王长军2孙飞虎3
![浮法玻璃大功率电熔化工艺的应用分析赵会杰1王长军2孙飞虎3](https://img.taocdn.com/s3/m/f7e873fa970590c69ec3d5bbfd0a79563d1ed45c.png)
浮法玻璃大功率电熔化工艺的应用分析赵会杰1 王长军 2 孙飞虎3发布时间:2023-07-04T04:29:37.315Z 来源:《科技新时代》2023年8期作者:赵会杰1 王长军 2 孙飞虎3[导读] 文章分析大型浮法玻璃溶窑大功率复合熔化技术的使用可行性,主要论述浮法玻璃电熔化工艺上存在的问题,论述该工艺在当前的使用。
当前浮法玻璃复合熔化技术并没有普及,仅仅有少部分在生产线使用,技术突破对行业发展十分重要。
河北视窗玻璃有限公司河北省廊坊市 065000摘要:文章分析大型浮法玻璃溶窑大功率复合熔化技术的使用可行性,主要论述浮法玻璃电熔化工艺上存在的问题,论述该工艺在当前的使用。
当前浮法玻璃复合熔化技术并没有普及,仅仅有少部分在生产线使用,技术突破对行业发展十分重要。
关键词:浮法玻璃;电熔化;技术;行业;效益近现代社会发展不断变革,国家发改委与工信部、生态环境部门联合发布《高耗能行业重点领域节能降碳改造升级实施指南(2022年版)》,对玻璃行业的节能降碳改造升级提出相关意见,指出行业发展速度快,为顺应时代发展的潮流,要进一步提升玻璃行业的生产效率,保障行业的节能效果,增强绿色低碳节能。
玻璃熔制是在高温状态下进行的,反应比较复杂,因此技术研发也存在诸多难度。
1.浮法玻璃大功率电熔化工艺发展现状1.1 生产现状在玻璃生产制造中,大功率电熔化技术就是指将电能转化成为热能融化玻璃的技术,技术的关键就是电熔能力在总熔能力的占比,如果占比超过50%,则可以称为是电主熔技术,相反如低于50%,则是助熔技术。
国外的浮法玻璃复合熔化技术已经成熟,但是国内的总熔化能力只有10%。
在浮法玻璃电熔化应用中,某集团曾经在熔化量700t/d溶窑中安装助熔系统,安装为6750KW,该系统的最大能力仅占总熔化能力只有25%,这是该领域内所记录的浮法玻璃溶窑复合熔化技术中的最大电熔功率。
现阶段玻璃纤维行业内,溶窑可采用的复合熔化技术能力达到400t/d,电熔能力方面,国外技术可占熔化能力的45%,国内技术为25%。
浅谈浮法玻璃熔窑余热发电技术的应用
![浅谈浮法玻璃熔窑余热发电技术的应用](https://img.taocdn.com/s3/m/b50b5e40336c1eb91a375d7e.png)
Page 2
玻璃制造业的能源利用
燃料的利用率通常在40~45%之间,会有大量的余能产生, 30%余能 燃料的利用率通常在40~45%之间,会有大量的余能产生,约30%余能 40 之间 以废气余热的形式存在。 以废气余热的形式存在。
30%
20~25%
40~45%
Page 3
玻璃制造业的能源利用
以燃油的500t/d浮法玻璃线为例: 以燃油的500t/d浮法玻璃线为例: 500t/d浮法玻璃线为例 融化能耗为6900 kJ/kg玻璃液 玻璃液, 融化能耗为6900 kJ/kg玻璃液,即 144GJ/ 144GJ/h。 其中加热原料并熔制玻璃液消耗 58GJ/ kJ/kg玻璃液 玻璃液, 40%; 58GJ/h,即2800 kJ/kg玻璃液,占40%; 窑体散热、孔口溢流、 窑体散热、孔口溢流、冷却水等带 走的热量为37GJ 37GJ/ 26%; 走的热量为37GJ/h,占26%; 烟气约76000Nm 450℃ 烟气约76000Nm3/h,450℃离开蓄 热室带走的热量为49 GJ/ 34% 热室带走的热量为49 GJ/h,占34%
• 全面推广实施余热发电已势在必行。 全面推广实施余热发电已势在必行。 • 近10家余热发电证明,全面推广余热发电完全 家余热发电证明, 家余热发电证明
可行,其经济效益和社会效益十分巨大。 可行,其经济效益和社会效益十分巨大。
• 余热发电是我国平板玻璃行业发展的主导方向
,它将推动我国玻璃工业良性发展。 它将推动我国玻璃工业良性发展。
浅谈浮法玻璃熔窑烟气余热发电 技术的应用
成都南玻玻璃有限公司
二○一○年九月
Page 1
玻璃制造业的能源利用
玻璃制造业是一个高耗能产业, 玻璃制造业是一个高耗能产业,能源费用的 支出在其生产成本中占有很大的比重( 支出在其生产成本中占有很大的比重(约 36~43%) 能源消耗以燃料(重油、 36~43%) 。能源消耗以燃料(重油、天然 气、煤气等)和电力为主。 煤气等)和电力为主。 热量消耗:平均13.87 kg标煤/t玻璃 标煤/t玻璃。 热量消耗:平均13.87 kg标煤/t玻璃。 电力消耗:平均130 kw.h/t玻璃 玻璃。 电力消耗:平均130 kw.h/t玻璃。
探究浮法玻璃熔窑的有效节能途径
![探究浮法玻璃熔窑的有效节能途径](https://img.taocdn.com/s3/m/d04a48de84254b35eefd3456.png)
探究浮法玻璃熔窑的有效节能途径摘要:为了提高玻璃的质量,并且有助于我国赢得在国际上玻璃生产的竞争力量,本文对浮法玻璃熔窑的节能途径进行了深度剖析,提出了实施全保温技术、安装超级烟道、使用重油节油剂、改善投料池设计、电助熔技术、富氧燃烧技术、合理控制蓄热室温度的七大节能路径,以期有利于浮法玻璃熔窑的有效节能。
关键词:浮法玻璃;熔窑;节能;能源;玻璃当前我国的浮法玻璃市场竞争越来越激烈,虽然中低档浮法玻璃产品似乎饱和或略有盈余,但是高档浮法玻璃产品仍然供不应求。
面对世界能源价格持续上涨的局势,玻璃厂减少成本的核心所在是节能降耗。
相对一个600吨/天的燃油浮法玻璃熔窑而言,热损失了当前国际良好水平一般不超过,我们国内的热耗量普遍为6500?6900千焦/千克的玻璃液,相比而言,国际上较好水平的热耗量一般不会高于5900千焦/千克的玻璃液,由此可见,单单热耗这一个指标就与发达国家相差甚远,而熔化质量问题,比如微气泡、玻璃均匀性等,这些同样也是对我国浮法玻璃的质量提高有着较大影响的因素。
故而言之,开发出新型优质节能型浮法玻璃熔窑并且构建与之相适应的熔化工艺规范是摆在我们面前急需解决的问题。
优化现有自身技术、提高玻璃质量及降低能耗才是中国浮法玻璃工厂提高自身核心竞争力的必由路径。
1 实施全保温技术虽然说中小型的玻璃熔窑全保温技术已经实现,但是浮法玻璃熔窑是一个大窑,大窑全保温技术是否可以实现,我国仍然处于初期阶段。
能否实现大窑全保温的突破,就必须对科学依据开展仔细的论证分析。
大型窑炉全保温技术是否得以成功实施,核心所在是以下五个关键环节能否得以顺利实施:(1)对耐火材料的选择必须要合理;(2)窑炉的施工质量要严要求、高标准;(3)务必一定要保证烤炉的质量;(4)温度的分布曲线必须科学及合理的工艺操作;(5)提高窑炉的管理,对其精心维护。
2 安装超级烟道、对蓄热室实施分割式结构如果把分隔式结构设置了,那么它既可以让助燃风分支烟道换向,又可促使燃料跟助燃风按照比例进行调节,与此同时还可参考现代熔炉工艺制度的要求,对各小炉的风火比进行灵活的调节。
玻璃熔窑设计第四章热工计算
![玻璃熔窑设计第四章热工计算](https://img.taocdn.com/s3/m/9c767194453610661fd9f40a.png)
第 4 章总工艺计算耗热量的计算已求得的数据①原料组成见表4-1②碎玻璃用量占配合料的20%。
③配合料(不包含碎玻璃)水分:4%。
④玻璃熔化温度1465C湿粉料中形成氧化物的数量见表3-2表4-2形成玻璃液的各氧化物的量单位:质量分数(%)湿粉料逸出气体组成见表4-3表4-3逸出气体组成配合料用量的计算 碎玻璃量 20 ( 4 1、 粉料量 =80 (4-1、即:碎玻璃量=20 X 粉料量80即1 kg 粉料中需要加入kg 碎玻璃,可以得到玻璃液:%Xl + =因此,熔制成为1 kk 玻璃液需要粉料量:1G 粉==09粉 1.0493熔化成1 kg 玻璃液需要的配合料量为:+ =生成硅酸盐耗热量(以1 kg 湿粉料进行计算,单位kJ/kg ) 由CaCO 3生产CaSiO 3时反应耗热量q 1 :q 1 = =x ( + + ) /100 =由MgCO 3生成MgSiO 3时反应耗热量q 2:q 2==x+ + /100=由CaMg(CO 3)2生成CaMg(SiO 3)2时反应耗热量q 3:q 3== X ( + ) /100=由NaCO 3生成NaSiO 3时耗热量q 4:0.251.0493 =0.2383q4== X1OO=由Na2SO4 生成NaSO3 时耗热量q5:q5= X1OO=1 kg湿粉料生成硅酸盐耗热量:q o= q i+ q2 + q3+ q4 + q5—H—I—I——(kJ)玻璃形成过程的热量平衡(以生成1 kg玻璃液计,单位是kJ/kg,从0C算起)①支出热量a.生成硅酸盐耗热量:q i—q o G粉一X—b.形成玻璃耗热量:q n—347G粉(1—气)kJ—347XX( 1 -X)—c.加热玻璃液到1465E耗热量:q m—C玻t玻C 玻—+ X0—4t 玻—+ X0—4X465—q m —C 玻t 玻—X465—d.加热逸出气体到1465E耗热量:q^ —气G粉C气t熔式中V气—粉—熔—1465 °CC 气—C CO2(CO2%+ SO2%)+ C H2O H2O%— X(+)%+ X%q^ =气G 粉C 气t 熔—XXXX1645e.蒸发水分耗热量:q v—2491G粉G水q v —2491G粉G 水—2491XX% —共计支出热量:q支一q【+ q n + q m + q^ + q v—++++②收入热量(设配合料入窑温度为36C)a.由碎玻璃入窑带入的热量:q^ —C碎玻璃G碎玻璃t碎玻璃—4C 碎玻璃—+ X10 X36—q^ —C碎玻璃G碎玻璃t碎玻璃—X/^36 —b.由粉料入窑带入的热量:q^ = C粉G粉t粉q^ = C 粉G 粉t 粉=XX36=共计支出热量:q收=中+ q皿=+ =③熔化1 kg玻璃液在玻璃形成过程中的耗热量:q = q 支—q 收=—=燃烧计算烟气组成计算:5:1•重油成分见下表4-4表4-4重油成分单位:质量分数(%)2.计算基准:100g重油;条件:重油完全燃烧;窑内气体或火焰按其化学组成成分以及具有的氧化或还原能力分为氧化气氛、中性气氛、还原气氛三种。
玻璃熔窑节能途径综述
![玻璃熔窑节能途径综述](https://img.taocdn.com/s3/m/ec30db80b9d528ea81c7797a.png)
浮周美茹河北建材职业技术学院秦皇岛066004摘要玻璃行业是耗能大户,减少生产中的能耗,提高产品质量,发展优质玻璃,对降低玻璃生产成本,提高企业的经济效益,都有重大的意义。
本文从燃烧技术、熔化部的结构、投料技术、熔窑的温度制度及蓄热室的格子砖的选择等几个方面,讨论了浮法玻璃熔窑节能的途径。
关键词节能途径浮法玻璃熔窑燃烧结构投料温度制度蓄热室随着玻璃市场竞争日益激烈,节能降耗已成为各生产厂家降低成本的主要途径之一。
近些年来随着玻璃熔窑技术的整体水平的提高,国内耐火材料和保温材料均相应取得了很大进展。
目前我国自行设计的现代浮法玻璃熔窑的能耗为6900~8372kJ/kg,但离国外先进窑炉的能耗6488~6910 kJ/kg玻璃液尚有一定的差距,节能降耗的空间很大。
1.采用先进的燃烧技术1.1富氧燃烧技术由于富氧本来就是浮法玻璃工厂生产过程中的副产物,如将其充分利用,可适当降低生产成本,提高熔化量。
目前富氧燃烧方式主要有两种:一种是将富氧喷嘴安装在燃油喷枪的下方,将富氧以高速射流的形式喷入窑内,在射流的作用下将火焰拉近液面。
因火焰下方的助燃介质中氧浓度比火焰上方高,火焰燃烧迅速,下方温度明显升高,这样火焰直接对配合料和液面的辐射传热相对加大,而碹顶温度则相应有所下降,窑体表面散热和烟气出口温度相应下降,从而熔窑的热效率得到相应提高。
另一种是采用富氧喷枪将富氧空气作为雾化介质直接与燃料充分混合而燃烧,由于这种新型喷枪产生的火焰穿透能力强、本身热效率高,从而达到节能降耗的作用。
第一种结构简单,投资少,但节能效果低,一般仅2~4%,这与浮法生产副产物——富氧产生的量有关。
第二种投资大,结构较第一种相对复杂,节能10~15%,但目前国内尚未开发出这种燃烧器。
1.2全氧燃烧技术这种燃烧技术主要起源于欧美国家,为了降低空气中NO x。
污染的需要从而开发和推广出这种新型燃烧技术。
由于使用全氧替代助燃空气,气体中基本不含N2,仅含极少量的NO x,这样废气总体积可减少约80%,相应废气带走热量大大降低。
玻璃熔窑能耗指标的设计
![玻璃熔窑能耗指标的设计](https://img.taocdn.com/s3/m/fa65520c76c66137ee06199c.png)
20 年美国玻璃制造业协会发表的文章中提 02
到 :在全美国整个玻璃工业中,用于熔化玻璃液的
熔窑单位能耗为 4 1 67 k玻 ,其中的 29-2 k/g璃 1 2 J 平板玻璃为 4 一9 5 k玻 。按此计算下 77 4 k/g二 4 9 J 来, 平板玻璃熔窑的热效率在 60-3%的范围 0o 0 内,即最好的熔窑热效率已提高了 100 00
t ,与国内同吨位的一些熔窑相比,每年可节约燃
油约 3 t 00 0 ,仅在燃料消耗上每年就节省了近 50 0 万元 ( 按中国现行油价计算 ,以下同) 。 熔窑尺寸较小,达到比较高的熔化率,从而做 到能耗较低的熔窑,在国内也有一些实例。作为采 用引进美国 T L D O E O工程公司玻璃熔窑技术 “ 目
般在 1 47 0 k/g璃 0 t 级的玻璃 0 .1 85 k玻 ;30 6 8 J / d 熔窑单位能耗指标在 7 ^7 k/g瑞 0 36 - 75 k玻 ,50 2 4 J
td / 级的玻璃熔 窑单位能耗指标在 6 0 2 一6 8 8 6 9
k/g璃 70 级的玻璃熔窑单位能耗指标在 Jk玻 ; 0 t / d
天要平均烧掉 8 t 8 燃油,平均每天多烧燃油 1 t 7 , 仅在燃料消耗上每年就浪费了近 1 万元,工厂 00 0 的经济效益受到很大损失。这是上个世纪 8 0年代
全国性建材科技期刊—
《 玻璃》 20 年 第 2 05 期
总第 19 7期
从几座胸墙 出现问题 的熔窑看 ,是这样 的一些情 况 :有的胸墙结构在设计上就存在问题,导致胸墙 大面积向窑内倾斜 ;有的是非热点部位的胸墙局部 电熔砖质量有问题,出现了提前坏损 ;有的是在非 热点部位热修小炉时操作不 当,导致胸墙 出了问 题;还有因为停电时间过长等事故 ,窑温下降造成 喷火 口暄出了问题。从这些胸墙出问题而被迫停窑 放玻璃水的玻璃熔窑来看 ,在热点部位胸墙出问题 的却是很少。这就说明了玻璃熔窑的熔化部尺寸较
500Q浮法玻璃炉窑燃气改造经济性分析
![500Q浮法玻璃炉窑燃气改造经济性分析](https://img.taocdn.com/s3/m/b2c05b66f5335a8102d220ea.png)
二、SHENWU-500Q新型燃气玻璃炉窑经济性分析 1、年消耗煤气(煤)总价 煤气单价 产气率 煤气热值 原煤单价(元/ 3 3 (Nm /kg) (kcal/Nm ) (元/Nm3) 吨) 680 3.42 1400 0.1988 年消耗煤气总 煤气耗量 原煤耗量 价(万元/ 3 (吨/年) (Nm /年) 年) 195535714.3 3887.8446 57174 2、年副产焦油及轻油总价 焦油及轻油产 焦油及轻油单 年消耗原煤 率(吨/吨原 价(元/吨) (吨/年) 煤) 0.0445 2000 57174.1855 3、年多消耗水费 水费(元/m ) 5
投资回收期(月) 15.7 15.7
总计节约标煤 (吨/年) 56301
6、年节约燃料费(万元/年) 5359.7375 7、新增投资(万元) 煤气站投资 低温段耐火材 低温段钢结 料(2500t) 构(50t) 180 15 钢管道(45t) 45 风系统(1套) 50
800 自动控制系统 新增投资总计 (1套) 150 1890 三、投资回收期(月) 总投资(万元) 7000 7000
SHENWU-500Q浮法玻璃炉窑燃气改造经济性分析
一、原500t/d燃重油玻璃炉窑年消耗重油总价 炉窑产量 (t/d) 500 单耗 (kcal/kg) 1700 重油热值 (kcal/kg) 9600 重油耗量 (kg/h) 3689 重油单价 (元/吨) 2900 年消耗重油总 价(万元/年) 9372.135417 标煤热值 (kcal/kg) 7000 重油耗量折合标 煤(吨/年) 44321
单耗 (kcal/kg) 1500
煤气耗量 (Nm3/h) 22321
22323.6 原煤折合标煤系 原煤耗量折合标 煤(吨/年) 数 0.7143 40840
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题:
• 1、无拉引量时,窑炉应如何设定各小 炉燃料分配? • 2、依热耗表达式,怎样采取有效措施, 提高窑炉热效率?
*二线热耗计算: • =(159687/Load + 28)*25.2*(1+(20%-Cullet ratio%)/2)
*三线热耗计算: • =(186476/Load + 28)*25.2*(1+(20%-Cullet ratio%)/2)
应用实例、思考
*参见一、二、三线计算公式(Excel文档) 只需输入对应data,各小炉燃料用量即可 自动生成。 data: 1-NG 低位热值; 2-窑炉负荷,即拉引量; 3-碎玻璃比率; 4-各小炉热负荷分配
推算耗热当量(无功系数)
推算步骤
1. 先将目前Load(拉引量),转化计 算成Cullet% = 20 时之拉引量。 *Cullet每增加或减少2%,相当于 Load(拉引量)降低或升高1%
推算耗热当量(无功系数)
推算步骤 2. 耗热当量=(目前单耗/25.2 – 28 - 窑龄增加量) *周拉引量 * 耗能当量实指窑炉窑体散热,玻 璃回流重复加热,出蓄热室烟气、 稀释风、冷却水带走热量系数。
窑炉单耗表达式
窑炉单耗,Kcal/Kg Glass =(耗热当量/周拉引量+28.0)* 25.2*[1+(20% - 碎玻璃占全部 玻璃的比例)*1/2]
推算耗热当量(无功系数)
表达式说明 常数:28,单位:Therm
(英制热量,1 Therm=25.2 kcal)
钠钙平板玻璃形成耗热:705 kcal/kg,合28 therm *与成份、碎玻璃量、澄清温度相 关
窑炉能耗公式推算
目的
• 合理利用燃料之热能,并使其与 窑炉负载(拉引量)相匹配。
• 使炉内热工过程、参数得到有效 控制。 • 针对特殊工况,合理燃料分配。 • 节约能源,降低生产成本。 • 减少环境污染。
推算公式资料
1. 2010年12月各线窑炉玻璃单耗
(NG C.V.=8400 Kcal/NM3) 一线:186.31NM3/MT = 1565 Kcal/kg glass 二线:188.22NM3/MT = 1581 Kcal/kg glass 三线:162.40NM3/MT = 1364 Kcal/kg glass
2.各线碎玻璃比例:12.%璃量+粉料所得玻璃量>为准)
推算耗热当量(无功系数)
基准条件
以现在各线窑炉热耗为基准,推 算出各线窑炉目前的燃料消耗量。 基准:天然气低位热值8400 碎玻璃比例:20%
碎玻璃量/<碎玻璃量+粉料所得玻璃量>
推算耗热当量(无功系数)
影响因素
• • • • • 窑体结构设计、窑体保温状况 燃烧系统效率、蓄热室回收热量效率 窑压、气氛、温度制度 卡脖水包压入深度 玻璃配方、碎玻璃加入量
• 配合料颗粒级配及表面能、细粉含量、 配合料料温、水分 • 窑龄、窑炉密封
各线窑炉耗能公式
*一线热耗计算: • =(125038/Load + 28)*25.2*(1+(20%-Cullet ratio%/2)