CREFLUX系列脱气膜元件使用说明书

合集下载

Agilent 1260 Infinity 高性能脱气机

Agilent 1260 Infinity 高性能脱气机
版本
02/2013
Germany 印刷 Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn
如果体外诊断系统已在相关权威机 构注册并符合相关法规,本产品可 用作其组件之一。 否则只可用于 常规实验室。
声明
本书内容如有改变,恕不另行通 知。安捷伦科技公司对本材料,及 由此引出的任何商务和特种用途不 承担责任。安捷伦科技公司对本手 册中可能有的错误或与装置、性能 及材料使用有关内容而带来的意外 伤害和问题不负任何责任。如果安 捷伦与用户对本书中的警告术语有 不同的书面协议,这些术语与本书 中的警告术语冲突,则以协议中的 警告术语为准。
目录 5
目录
7 维护 45 警告和注意 46 维护简介 48 清洗模块 49 装配主机盖 50 更换电源滤波器上的保险丝 52
8 零件维护 55 机盖零件 56 保险丝 57 附件工具包 58
9 识别电缆 59 电缆概述 60 模拟信号电缆 62 遥控电缆 64 BCD 电缆 67 CAN 电缆 69 外接电缆 70 与计算机相连的安捷伦模块 72 与打印机相连的 Agilent 1200 模块 73
模块电源允许有较大的电压范围。它可以承受 “ 第 13 页的表 1” 中所述范围 内的任何线路电压。因此在部件的后部没有电压选择器。
警告
如果设备连接到高于规定数值的线路电压, 可能存在仪器遭受电击的危险或造成破坏。 ➔ 请仅将仪器连接到指定的线路电压。
警告
只要未拔掉电源线,即使在切断电源时模块仍会部分带电。 在模块盖打开,且模块处于通电状态时,维修模块可能会造成人身伤害 (例 如电击)。
溶剂瓶中的溶剂在 LC 泵的抽动下流过真空腔内的半渗透性管。当溶剂流过真空 腔时,溶剂中溶解的气体将渗过这些管,进入真空腔。当溶剂离开真空脱气机的 出口时,就已经完成了脱气。

洁弗膜净水超滤_PP膜组件技术手册

洁弗膜净水超滤_PP膜组件技术手册

P P 膜产品技术手册杭州洁弗膜技术有限公司Hangzhou JEFFEL Membrane T echnology Co., Ltd.目录第一章公司简介 (1)1.1 公司概况 (1)1.2 研发与服务 (1)第二章洁弗PP超滤膜介绍 (2)2.1 特性介绍 (2)2.1.1 具有高强度 (2)2.1.2 耐酸、耐碱等腐蚀性能好 (2)2.1.3 膜孔结构 (2)2.1.4 应用领域广 (2)2.2 应用领域 (2)第三章洁弗JF1系列膜组件性能 (4)3.1 JF系列膜组件型号和规格说明 (4)3.2 洁弗超滤组件的设计和维护 (5)3.2.1 建议膜组件的设计流量 (5)3.2.2 组件使用条件和清洗方法 (5)3.3 洁弗超滤膜尺寸图 (7)3.4 超滤运行示意图 (7)3.4.1 反洗系统 (8)3.4.2 化学分散清洗系统 (8)3.4.3 化学清洗系统 (9)3.4.4 压缩空气系统 (10)3.4.5 超滤装置程控步序表 (10)第四章超滤装置的运行 (11)4.1 启动前的检查内容 (11)4.2 启动 (11)4.2.1 超滤组件的冲洗 (12)4.2.2 启动程序 (12)4.2.3 自动控制 (13)4.3 装置的停机程序 (13)第五章系统的维护及故障分析 (14)第六章超滤的清洗 (15)6.1 超滤膜组件清洗前的准备 (15)6.1.1 清洗方案的选择 (15)6.1.2安全注意事项 (16)6.1.3化学清洗药剂的质量要求 (16)6.1.4清洗系统设备的配置 (16)6.2清洗 (16)6.2.1 清洗方案(1) (16)6.2.2 清洗方案(2) (17)第七章超滤膜组件的包装、运输与贮存 (18)7.1 包装与运输 (18)7.2 安装与贮存 (18)第一章公司简介1.1 公司概况杭州洁弗膜技术有限公司是由浙江大学和上海洁弗过滤技术有限公司共同投资组建的高新技术企业,注册于浙江大学国家大学科技园。

3-AQUCELL产品使用说明书

3-AQUCELL产品使用说明书

3-AQUCELL产品使⽤说明书AQUCELL产品使⽤⼿册前⾔:⼀.产品系列及规格说明⼆.产品功能及原理说明三.标准产品型号及技术参数⼀览表四.标准膜组件外形尺⼨五.正确的使⽤条件及要求六.超滤膜的安装和超滤(主机)系统的组装七.超滤(主机)系统的调试⼋.超滤(主机)系统的维护保养九.超滤系统常见故障及排除⼗. 售后质保及产品追溯泥沙、细菌、胶体、铁锈、⼤分⼦有机物等有害物质是超滤膜孔径的⼏⼗及到⼏百倍以上。

被截留后随浓缩⽔⼀起排出。

净⽔净⽔浓缩⽔中空纤维超滤膜原⽔膜孔径为纳⽶级,只有⽔分⼦、离⼦依靠⾃⾝的⽔压可以通过,其它杂质则被截留在膜管内侧。

AQUCELL 超滤膜组件使⽤说明前⾔:感谢您使⽤AQUCELL 公司的产品,为确保您获得理想的使⽤效果,在使⽤前,AQUCELL 公司全体⼯作⼈员真诚的希望您先阅读此使⽤⼿册,按正确的设计参数设计.安装.使⽤和维护。

⼀.AQUCELL 超滤功能及过滤原理1.AQUCELL 超滤功能说明:超滤膜是利⽤纳⽶级的物理孔径对料液中的物质进⾏分离.净化.纯化和浓缩;主要功能是祛除液体中的悬浮物.胶体.微⽣物.细菌.病毒.⼤分⼦有机物.脱⾊.除油;降解液体的浊度.COD 和BOD 。

2.超滤膜过滤原理:AQUCELL 中空纤维超滤膜组件采⽤先进的内压式膜分离技术,在常温和低压下进⾏分离,它具有能耗低、过滤精度⾼、产⽔量⼤、抗污能⼒强等优点,可有效滤除⽔中的细菌、胶体、悬浮物、铁锈、⼤分⼦有机物等有害物质,产⽔⽔质⼲净、卫⽣,中空纤维超滤膜净化⽔原理见下图1所⽰:图1:过滤原理图⼆.产品系列及规格说明:1.AQUCELL 公司的标准产品有五种基本系列和四种截留分⼦量精度:1.1 AQU90系列;AQU160系列;AQU200系列;AQU250系列;AQU4080系列。

每种系列⼜分为常规型产品和抗污染型产品;常规型主要是⽤于原液⽔质较好的⼯况条件,抗污染型主要是⽤于原液⽔质较差的⼯况条件,如污⽔和废⽔的处理。

LIQIUCELL脱气膜膜手册

LIQIUCELL脱气膜膜手册

涂敷工厂的200 立方米/小时(880加仑/分钟)的14英寸膜系统微电子研究领域的18 立方米/小时(79加仑/分钟)的10英寸膜系统行业业绩 C on t a ct o rT yp ea聚烯烃膜容量Fiber Type1x3 辐射流式2.5x8 外流式4x13 外流式6x28 外流式6x28 无挡板10x28 外流式高纯度14x28 外流式X40X50XIND 聚烯烃膜微型膜组件 最大到200毫升/分钟X–1升/分钟布水管中空纤维液体出口膜丝滤芯外壳封闭端盖真空单个Liqui-Cel 6 x 28 NBTM膜元件处理容量:5-50加仑/分钟(1.1-11.4 立方米/小时)。

主要应用领域:只用于真空抽吸去除溶解氧。

Liqui-Cel NBTM设计是采用中空纤维膜的辐射流装置。

Liqui-Cel NBTM膜组件没有中间挡板。

而是由一个封闭端盖起导流挡板作用。

Liqui-Cel NBTM膜组件液体出口端在膜组件的侧面,液体辐射状流经中空纤维。

NB(无中间挡板)设计在没有吹扫气体只能采用真空抽吸操作模式的领域中具MiniModule ® 小型膜组件设计MiniModule ® 小型膜组件没有采用中间挡板导流设计。

这种膜组件采用液体从膜丝内壁流过,而膜丝外壁采用真空抽吸。

这些小型膜组件是为小流量而设计。

这些装置是专门用于生化技术和分析仪器的水中气体脱除。

模块化设计能够灵活地实现您的系统未来快速平衡方式保证了设备迅速启动。

单位体积内的膜面积最大化保证了产品的优秀性能和空间的使用效率。

不同的膜组件尺寸和材料选择适合于各种系统设计反渗透锅炉Liqui-Cel ®膜组件广泛用于各行各业。

在高纯和工业领域使用Liqui-Cel ®膜组件以提高产能和实现腐蚀控制已成为行业的标准。

下面图示当今Liqui-Cel ®膜组件的一些应用。

电脱盐/连续电脱盐反渗透离子交换反渗透反渗透在反渗透后离子交换或电脱盐(EDI)前去除CO2, 不仅减少化学消耗而且能使EDI达到最佳的运行状态。

膜包使用指南

膜包使用指南

Pellicon○R2盒式膜包使用指南Pellicon,Durapore,Ultracel和Biomax是密理博公司的注册商标,M的标识是德国达姆施塔特的默克公司的商标,Tween是美国ICI公司的注册商标,Tergazyme是Alconox公司的注册商标,Triton是美国联合碳化物公司的注册商标。

©2003年,2011年Millipore公司。

保留所有权利。

P35430 D版,09/2011目录前言 (3)膜类型 (3)膜包之间的垫片 (3)泵流量 (3)水的质量要求: (4)名义截留分子量(NMWL) (5)安装 (6)冲洗操作 (7)进液流道(Feed Channel)冲洗 (7)透过流道冲洗 (7)清洗操作 (8)进液流道清洗 (8)透过流道的清洗 (8)冲洗 (9)消毒操作 (11)除热原操作 (12)完整性测试操作 (13)标准水通量(NWP)测量 (15)保存步骤 (17)进液流道冲洗 (17)透过流道冲洗 (17)故障排除 (19)一般有限保修条款 (20)技术支持 (20)前言本使用手册提供Pellicon○R2膜包安装和维护程序。

并不提供验证程序或支持验证目的的数据。

这方面的信息请参考验证指南。

膜类型在一个膜夹具上一次只能安装一种类型的膜包。

不能将不同孔径或名义截留分子量的膜包混装在一起。

膜的数量取决于特定应用所需的过滤面积。

避免用手接触滤膜表面。

膜包之间的垫片所有的Pellicon○R2盒式膜包(0.5 m2)和Maxi 膜包(2.5 m2)的包装盒中都装有两个硅胶垫片,用于膜包安装过程中安装在膜包之间。

泵流量当操作Pellicon○R2 膜包,应确保选择能够提供足够流量的泵,推荐的切向流速是:A和C 流道装置:4-6L/min/m2V流道装置:5-35L/min/m2优化的切向流速应参照实际的超滤的溶液和产品。

水的质量要求:名义截留分子量(NMWL)安装Pellicon ○R2膜包应安装于一个Pellicon ○R2夹具中,安装请参考夹具安装手册。

Liqui-Cel脱气膜及常规使用问题解答

Liqui-Cel脱气膜及常规使用问题解答

Liqui-Cel脱气膜及常规使用问题解答Liqui-Cel® Extra-Flow产品对于向水或表面张力和水类似的液体中添加气体或对其脱气而言,是很理想的。

Liqui-Cel Extra-flow 接触器有多种尺寸,可以处理不同的 流量。

您只需根据您的流量需求简单选择产品尺寸即可。

接触器平行地加入,以便处理大于其在表格中列出的工艺流量。

目前为止,我们拥有最多可脱气7400 gpm (1696 m3/hr)的单系统。

我们的 SuperPhobic® 膜脱气器对于喷墨墨水、电镀溶液、显影剂和其它表面张力在20-40 dynes/cm间的溶液的脱气和去气泡,是很理想的。

我们的 MicroModules® 和 MiniModules® 是小型除泡器和脱气器,对于实验室规模流量高达3000 ml/min的成行除泡是很理想的。

请点击下面的链接,查看我们产品的完整数据表。

如果您在为您的脱气应用确定真空泵尺寸时需要帮助,请联系我们,获取更多的帮助。

除泡产品ߋ列流量 (一支膜件)MicroModule® 0.5 x 15-30 毫升/分钟MicroModule® 0.75 x 115-100 毫升/分钟小型膜元件1 x 5.5高达 500 ml/min小型膜元件1.7 x 5.5高达 2500 ml/min小型膜元件1.7 x 8.75高达 3000 ml/min气体运移 (O2、CO2、N2、VOC 去除和O2、CO2、N2、H吸收)产品ߋ列流量 (一支膜件)Liqui-Cel® 外流式2.5 x 80.1-0.7 立方米/小时Liqui-Cel® 外流式4 x 130.5-3.4 立方米/小时Liqui-Cel® 外流式4 x 28 1.1-6.8 立方米/小时Liqui-Cel® 外流式6 x 28 1.1-11.4 立方米/小时Liqui-Cel® 外流式大流量 8 x 20 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® 8x20 不锈钢 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® High Pressure 8 x 4025 - 125 gpm ( 5.7 - 28.4 m3/hr)Liqui-Cel® High Pressure 8 x 8050 - 150 gpm ( 11.4 - 34.1 m3/hr)Liqui-Cel® 外流式大流量10 x 2810-57立方米/小时Liqui-Cel® 工业级10 x 2810-48立方米/小时Liqui-Cel® 工业级14 x 2816-90.8立方米/小时Liqui-Cel® 工业级14 x 4016 – 125 立方米/小时低表面张力流体脱气 (墨水、显影剂、感光乳剂和油料))产品ߋ列流量 (一支膜件)SuperPhobic MicroModule® 0.5 x 15 - 30毫升/分钟SuperPhobic® 1 x 315-60毫升/分钟SuperPhobic® 2 x 6100-1,000毫升/分钟SuperPhobic® 2.5 x 80.1- 0.7 立方米/小时SuperPhobic® 4 x 130.7- 3.4 立方米/小时SuperPhobic® 4 x 281.1 - 6.8 立方米/小时技术服务产品ߋ列技术服务此文档涵盖了广泛的支持选项真空泵(配用于大型膜管)产品ߋ列 5.3 标准平方英尺/每分钟 (9 m 3/hr )到242标准平方英尺/每分钟(420 m 3/hr )50Hz 5.9 标准平方英尺/每分钟 (10 m 3/hr )到307 标准平方英尺/每分钟(520 m 3/hr )50Hz4x28、10x28等数字是什么意思?这些数字代表Liqui-Cel膜接触器外壳内芯子的大致尺寸。

MBR和超滤膜介绍2011.3.15

MBR和超滤膜介绍2011.3.15
→冲洗→反洗(2-3min)
预处理水
Creflux MBR系统流程示意图
P
备用泵
FP
H
LS
~ ~ ~ ~ ~ ~ ~ ~ ~ LS L
~~~~~~~~~ ~~~~~~~~~
~~~~~~~~~
~~~~~~~~~
FP
膜池(好氧池)
自吸泵
加药系统装置 加药泵
LS
加药水箱
保安过滤器
反洗泵
鼓风机
自来水/ MBR产水
SS:<0.1mg/L 项目自2008年7月开始运行至今!
反渗透系统 求是超滤系统
国家发 明专 利!
广东新丰垃圾填埋场1000吨/天渗滤液处理
●处理工艺:垃圾渗滤液+生化系统+粗滤
+超滤+RO反渗透)
●由法国威立雅管理,是我国第一座引进
国外技术并进行管理的垃圾填埋场;
●原先使用某进口品牌的超滤,后由于运
急速砂滤 废水处理设备
Creflux加压式超滤标准运行工况
过滤(20-30min) 气洗(30sec) 反洗(30sec) 正冲(30sec)
约30min一个循环
1-10day/维护性清洗
1-6Month/标准化学清洗
● 标准过滤方式:错流过滤
● 维护性化学清洗:
循环流量:20-50%
NaCLO洗:5-10天一次, 200-300ppm
化学清洗池
LS
H
LS
产水池
L
(反洗水池)
LS
镇江金东纸业造纸废水回用项目
●项目规模:20000吨/天 ●处理工艺:二沉池+粗滤器+超滤+RO ●国内最大的造纸废水回用项目之一 ●超滤出水高品质、稳定,保证了后

费斯托气动系统收缩膜产品操作手册说明书

费斯托气动系统收缩膜产品操作手册说明书

原版操作手册的译本© 2020 Festo SE & Co. KG 保留一切权利1关于本文件1.1专业人员的资质仅允许由具备资质、熟悉气动系统安装的专业人员进行产品的安装、调试、维护及拆卸。

1.2适用文件有关产品的所有可用文件 è 。

2安全2.1一般性安全提示–仅在原装状态下使用产品,请勿擅自进行改动。

–请仅在技术状态完好的情况下使用本产品。

–请注意产品上的各种标识。

–注意使用地的环境条件。

–遵守负载极限 è 14 技术参数,è 14.1 特征曲线。

–在产品上作业前:关断电源,并做好防重启保护。

2.2按规定使用该产品按规定应安装在机器或自动化系统中。

该产品可用作气动驱动器或弹簧元件。

只能在遵守以下规定的前提下向产品施加纵向拉力:–接口偏移量(角度公差和平行度公差)–产品初始张力–允许的最大作用力值和附加负载值。

2.3可预见的错误使用在施加压缩空气时,收缩膜会径向膨胀。

–请勿将直径膨胀用于夹紧任务。

相对运动会导致收缩膜磨损。

–确保有足够的侧向间隙。

3其他信息–附件 è /catalogue 。

4服务若有技术问题,请联系 Festo 公司在您所在地的联系人 è 。

5结构1径向气接口2轴向气接口和/或安装螺纹3连接件(法兰,套筒)4收缩膜5安装螺纹(外螺纹)6螺母Fig. 1 产品结构该产品由收缩膜和用于固定的连接件组成。

膜片以气密的方式密封住工作介质。

根据型号的不同,连接件可提供气接口和/或用于固定的安装螺纹。

5.1连接元件将该产品用作带有第一个和第二个连接件的双侧固定拉伸型执行元件时,以下连接元件可用于保护收缩膜,以保持平行度和角度公差:–双耳环,用于补偿安装点的轴向偏移–关节轴承,用于补偿安装点的球面偏移–连接件,用于补偿安装点的径向偏移。

连接元件固定在正面螺纹 2 上。

6功能该产品是模仿生物肌肉的单作用拉伸型执行元件。

加压时,产品在拉力 F 的作用下收缩。

Omega Omegalux QF系列高温纤维面热器说明书

Omega Omegalux QF系列高温纤维面热器说明书

1HIGH TEMPERATURE CLOTH-FACED INFRARED PANEL HEATERSOMEGALUX TM QF Series heaters are very popular infrared panel heaters used in a wide variety of applications. The QF Series panel heaters’ radiant surface is constructed through a patentedprocess using bonded high temperature cloth quartz. A black coating is applied to the face of the heater for greater emissivity. A 2.5 cm (1") thick ceramic fiber refractory board is grooved out to support the precision resistance coils.The resistance coil is then housed into the grooved-out refractory board. A layer of durable, high temperature, cement is used to bond the quartz face to the resistance coils as well as to the refractory coil support. The resistance coils used are an iron/chromium/aluminum alloy which can operate up to 1315°C (2400°F). These are then welded to stainless terminals which are routed to the back of the heater for external electrical connections. The welding insures the best possible electrical path. By changing to stainless buss bars and terminals, the conductivity is increased, insuring less heat buildup in the terminals. The heater board is then backed up by a high temperature insulation to prevent back heat loss. Finally, this is all packaged in a sturdy aluminized steel frame.U 870°C (1600°F) Maximum Operating Temperature U B lack Quartz Ceramic Cloth Face U O utput Wavelength Between 2.5 and 6 Microns U N o External Reflectors RequiredCHOOSING THE RIGHT IR HEATER Not all infrared heaters are alike. Here is a list of some of the most important questions to answer when determining which heater to choose.1. R ESPONSE TIME: How quickly do heaters need to reach operating temperature? IR heaters can reach operating temperatures as quickly as 2 seconds or take as long as 1 hour. Most take between 5 seconds and 10 minutes.2. P OWER REQUIREMENTS: What watt density (usually referred to as watts per square inch) is required?3. E NVIRONMENT: What will theambient temperature be? Will there be any flux, fibers, hazardous chemicals, or any other matter disturbing the environment? 4. C ONTROL METHOD: IR heaters can be controlled one of two ways:1 having the heaters on a percentage timer (open loop) and 2 through the use of a temperature control (closedQF SeriesShown with the CN9000A Series Controller.loop) method. The temperaturecontrol method is the most accurate way to control heaters and keep them at a consistent temperature. If you choose temperature control, you will have to decide whether to use a thermocouple or a pyrometer to measure temperature.5. P ROCESS NEEDS: Is it a conveyor, indexing, or a stationary process? Does the process call for a cleanable surface on the heater? Are zones in the individual heaters required? Compensation?6. A PPLICATION PROCESS: What exactly is the application? Are you trying to cure something? Melt something? Cook something, etc.?7. S PACE RESTRICTIONS: Is space limited?* Specify voltage, i.e. insert 240 for 240V or 480 for 480V.Ordering Example: QF-061810, 15 x 46 cm (6" x 18") 1080 Watt heater, 10 W/in2 Watt density that may be powered by either 120 Vac or 240 Vac single phase.2* Specify voltage, i.e. insert 240 for 240V or 480 for 480V.† This heater has two junction boxes at opposite ends of the panel.Ordering Example: QF-123625/240, 30 x 91 cm (12" x 36") 10800 Watt 3-phase heater, 25 W/in2 Watt density, 240 Vac.3QF SERIES INFRARED PANEL HEATERSCONSTRUCTION1. H eater Element: precision iron/chrome/ aluminum resistance wire, designed for uniform emission over entire heating surface and extended life.2. S urface: rugged black woven ceramic cloth for high radiant energy transfer.3. F rame: heat resistant, heavy gauge aluminized steel.4. H eater Element Support: grooved ceramic fiber refractory board is used to support precision coil resistance wire. This helpsto insulate the heater as well as reflect the infrared energy onto the application.5.H igh Temperature Insulation:to minimize heat loss from the backof the heater.6.S tainless Steel Terminals: all welded construction, for easy power connection.7.O ptional Quartz Thermowell: high temperature 4 mm (5/32'') diameter 127 mm (5'') long quartz thermowell, with strain relief.APPLICATIONSU Paint DryingU Plastic FormingU Wave SolderingU Silk ScreeningU LaminatingU Moisture RemovalU Thermo Forming SPECIFICATIONSMaximum Temperature Emitter Face: 870°C (1600°F)Power: 120, 240, 480 Vac single and dual voltage, 1 phase, 3 phase and dual phaseWattage: 720 to 21,600 wattsWatt Density: 10, 15, 20, and 25 W/in2 Enclosure: Heavy gauge aluminized steelPatented4。

德国布鲁特科技有限公司电导漏渗膠纤维带热电器系列产品说明书

德国布鲁特科技有限公司电导漏渗膠纤维带热电器系列产品说明书

566CERAMIC-INSULATED STRIP HEATERSHCS Series Starts at£2475FEATURESThe HCS Series stainless steel strip heaters provide clean, dependable heat with sheath temperatures up to 649°C and watt densities up to 40 W per square inch. Because of the seamless stainless steel sheath,these ceramic-insulated strip heaters are dimensionally stable inmilled slots.Ordering Example: HCS-080-120V, strip heater, 120V, 250 W, £25.50.HCS-080-120V, £25.50, shown smaller than actual size.Standard TerminationOffset at one endTolerancesWidth: 38.1 mm ±0.26 mm Length:Up to 600 mm:±1.6 mm600 mm and Over:±3.2 mm Thickness:9.5 mm ±0.13 mm Wattage Tolerances: -10 to 5% at rated voltageFormula for Determination of Watt DensityWatts/sq. in. =Total unit wattage C (heated length) x 3CANADA www.omega.ca Laval(Quebec)1-800-TC-OMEGA UNITED KINGDOM Manchester,England0800-488-488GERMANY www.omega.deDeckenpfronn,Germany************FRANCE www.omega.fr 088-466-342BENELUX www.omega.nl 0800-099-33-44UNITED STATES 1-800-TC-OMEGA Stamford,CT.CZECH REPUBLIC www.omegaeng.cz Karviná,Czech Republic596-311-899TemperatureCalibrators, Connectors, General Test and Measurement Instruments, Handheld Instruments for Temperature Measurement, Ice Point References, Indicating Labels,Crayons, Cements and Lacquers, Infrared Temperature Measurement Instruments, Recorders, Relative Humidity Measurement Instruments, PT100 Probes, PT100 Elements,Temperature & Process Meters, Timers and Counters,Temperature and Process Controllers and Power Switching Devices, Thermistor Elements, Probes and Assemblies,Thermocouples, Thermowells and Head and WellAssemblies, Transmitters, Thermocouple Wire, RTD ProbesPressure,Strain and ForceDisplacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and StrainMeasurements, Load Cells, Pressure Gauges, PressureReference Section, Pressure Switches, Pressure Transducers,Proximity Transducers, Regulators, Pressure Transmitters,Strain Gauges, Torque Transducers, ValvespH and ConductivityConductivity Instrumentation,Dissolved OxygenInstrumentation,Environmental Instrumentation,pH Electrodes and Instruments,Water and Soil Analysis InstrumentationHeatersBand Heaters,Cartridge Heaters,Circulation Heaters,Comfort Heaters,Controllers,Meters and SwitchingDevices,Flexible Heaters,General Test and Measurement Instruments,Heater Hook-up Wire,Heating Cable Systems,Immersion Heaters,Process Air and Duct,Heaters,Radiant Heaters,Strip Heaters,Tubular HeatersFlow and LevelAir Velocity Indicators,Doppler Flowmeters,LevelMeasurement,Magnetic Flowmeters,Mass Flowmeters,Pitot Tubes,Pumps,Rotameters,Turbine and Paddle Wheel Flowmeters,Ultrasonic Flowmeters,Valves,Variable Area Flowmeters,Vortex Shedding FlowmetersData AcquisitionAuto-Dialers and Alarm Monitoring Systems,Communication Products and Converters,Data Acquisition and Analysis Software,Data LoggersPlug-in Cards,Signal Conditioners,USB,RS232,RS485and Parallel Port Data Acquisition Systems,Wireless Transmitters and Receivers。

FLEXELL漂悬式中空纤维超滤膜组件用户手册

FLEXELL漂悬式中空纤维超滤膜组件用户手册

FLEXELL漂悬式中空纤维超滤膜组件用户手册DOW WATER SOLUTIONS上海市广中西路757号多媒体大厦6楼A座邮编:200072 6F(A),Multi-media Building No.757,Guangzhong Rd(W) Shanghai,200072,P.R.China网址(website): 电话(Tel): (+86) 21 6140 4333 传真(Fax): (+86) 21 6140 4399目录1.产品概述 (1)1.1 简介 (1)1.2 MBR(膜生物反应器) (1)1.3 工艺流程 (1)2.膜材料 (3)2.1 膜的材料 (3)2.2 表面孔的直径 (3)2.3 膜的特性 (4)3.膜组件现场装配说明 (5)3.1 组件安装示意图 (5)3.2 拆分部件装箱说明: (5)3.3 膜组件装配步骤 (6)3.4 膜元件规格 (7)3.5 膜元件的安装 (8)4.MBR系统运行 (9)4.1 运行及水气擦洗 (9)4.2 化学加强反洗 (10)4.3 化学清洗 (10)5.保养及维护 (12)5.1 启用 (12)5.2 停用 (13)5.3 低温保存 (13)1. 产品概述1.1 简介DOW 公司生产的漂悬式中空纤维膜组件作为聚合技术和膜的制作技术积累的成果,是适合用于浸没式超滤和MBR(膜生物反应器)的微滤膜组件。

该单元由中空纤维膜丝、曝气管、产水集合管组成,每一支膜组件又由含八束起过滤作用的膜丝组成。

由于该组件特殊的结构,使之具有更强的抗污染能力,即在相同的产水流量下,透过膜的压力更低。

此外,由于膜的材料为PVDF(聚偏氟乙烯),具有优越的抗污泥和化学性能。

1.2 MBR(膜生物反应器)MBR(膜生物反应器)作为用于污水处理系统的一种新技术近来引起了很大的关注,相对于传统的活性污泥法处理,MBR 具有获得高质量的水质、占地小而易于安装,操作方便等许多优点。

脱气膜元件使用说明书

脱气膜元件使用说明书
流量计(FI-201)
2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:
1)通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。
2)通过调整针形阀门(V-212),观察流量计至设计的空气流量。
3)通空气到每根脱气膜组件。
4)出气气体排放到一个开阔地带以避免在密闭空间氧气耗尽.。
1、下表说明真空水平怎样影响液体出口含气量浓度的。 除了真空水平其他使用参数也是同样重要的。
表3 :使用真空方式,出口溶解氧的浓度。
真空水平
(绝对气压,假设760 mmHg大气压)
164.5mbar
(125 mm Hg)
97.4 mbar
(74 mm Hg)
65.8mbar
(50 mm Hg)
47.4mmbar
图4:加气吹脱操作模式PID图
三、抽真空模式
操作指示:真空方法在液体中总气体控制和大量气体脱除中使用。
真空方式是在液相和气相之间创造的一个分压梯度。真空导致被溶解的气体从液体部扩散到真空侧。这些气体通过真空泵被抽吸后排放。真空度的高低直接影响脱除效率。真空度越大,出口液体含气量越低。表3说明在不同的真空度水平下的气体脱除。
避免与表面活化剂、酒精和氧化剂(臭氧等)接触
违反这些操作指南可能会对膜寿命不利,或者质保无效。 如果您有关于您的系统设计问题,请与膜公司联系。
4、保护您系统的其他设备:
如果脱气膜发生故障,由于液体侧比气相的压力要大,水将会流到膜的气相侧。为了检测,可以在液体侧安装一个低压警报开关或流程开关,来防止设备损伤。
表1 :二氧化碳脱除对空气气量的要求
脱气膜
每根脱气膜的空气量(m3/hr)

数码印花机PALL脱气膜说明书

数码印花机PALL脱气膜说明书

IUDM100CHUltiFuzor 脱气模柱UltiFuzor 脱气模柱是一种中空纤维膜分离组件,用于有效地去除出口喷墨印刷系统墨水中的溶解气体。

118 +_2 31A真空A真空口图1:尺寸图(单位:mm)进口1.0 产品规格2.0 液体流动线路产品型号UDM - 21110 墨水在中空纤维的内侧流动,而真空应用于纤维的外侧。

直线流动线路可沿整条纤维连续脱气。

材质中空纤维膜外壳高密度聚乙烯聚丙烯(黑色)环氧充填树脂Female luer lock 21 + 2 g 脱气后的墨水出口接口重量(干净重量)最高使用压力1 无孔中间层真空0.2 MPa @ 45 ºC / 30 PSI @ 113ºF最高使用温度145 ºC / 113 ºF真空口最高真空压力1 kPa (绝对压力) / 7.5 torr(注意:请参照真空操作指导第3.6章)多孔支撑层气体分子流量1 – 100 mL / min墨水进口1 在相容液体中,该液体不会软化膨胀或对结构材料产生不利影响图2:中空纤维的内侧流向示意图3.0 安装与启动一般准则4.0 模柱更换3.1 UltiFuzor 脱气模柱可以以任何方向安装; 为获得最佳性能,垂直方向是首选。

如果水 平安装,使真空端口朝下以促进任何潜在可 凝结蒸汽的排放。

4.1 停止流动,逐步释放真空,隔离UltiFuzor脱气模柱,并通过系统泄压阀减压。

4.2 警告!试图从系统中取下该模柱之前,请确保模柱已被完全隔离和减压。

如果不这 样做,可能会导致液体迅速排出,这可能 会造成人身伤害和设备损坏。

3.2 连接墨水进口/出口和真空端口(见图2)。

确认连接表面干净并且没有损坏。

请务必不 要将luer lock 接头拧得过紧。

4.3 请将模柱与系统分离。

请注意:当模柱取下时,模柱可能会释放出 少量墨水。

3.3 可连接一个真空端口,另一真空端口用盖子封住。

吉林海普科技发展有限公司膜分离技术与设备说明书

吉林海普科技发展有限公司膜分离技术与设备说明书

Hydropure海普科技液体物料的分离、浓缩、纯化、澄清Separating、Concentrating、Purification、clarification For The Liquids反渗透(RO)、纳滤(NF)、超滤(UF)、微滤(MF)服务于:汽车、医药、化工、生物、食品、饮料、能源、环保、饮水等领域。

吉林海普科技发展有限公司JILIN HYDROPURE SCI&TECH DEVELOPMENT CO.,LTD膜分离技术与设备膜分离技术简介利用具有选择性分离功能的半透膜实现液体物料(或气体)的不同组分间的分离、纯化、浓缩、澄清的过程称作膜分离过程。

它与传统过滤的不同在于,膜可以在分子、离子范围内进行分离,并且这个过程是一种物理过程,不需发生相的变化。

根据其孔径或截留分子量的不同,可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。

有机膜是由高分子材料制成的,如聚偏氟乙烯、芳香族聚酰胺、聚醚砜、聚氟聚合物等,是目前应用最为广泛的膜材料,其主要优点是填装密度大,使用操作简便,行业标准比较一致。

膜分离方法优点(1)膜分离过程不发生相变化,和其它方法相比能耗较低,因此膜分离技术是一种节能技术;(2)膜分离过程是在压力(或电力)驱动下,常温下进行,因而特别适用于对热敏性的物质,如对果汁、酶等的分离与浓缩过程,在食品工业、医药工业、生物技术等领域具有独特的适应性;(3)膜分离技术不仅适用于有机物和无机物的分离,从病毒、细菌到微粒的广泛分离,而且还适用于许多特殊溶液体系的分离,如溶液中大分子与无机盐的分离,一些共沸物或近沸点物质的分离等;(4)膜分离装置简单,操作容易且易控制,便于维修又分离效率高,作为一种新型的水处理方法与常规水处理方法相比,具有占地面积小、处理效率高、可靠性高等优点。

海普科技我公司是一家以科技人员为主体的高科技股份制企业,做为致力于液体物料分离和过滤技术二十余年的专业公司,我们与世界知名的分离、过滤产品生产商以及国内科研单位密切合作,努力将世界上最先进的液体物料分离和过滤技术及产品推广、并应用到各相关领域,推动其技术与生产的发展。

液体脱气膜使用说明

液体脱气膜使用说明

目录目录 (2)第一节技术概述 (3)第二节气体脱除技术 (4)A.清扫气模式 (4)B.气侧抽真空模式 (6)C.组合模式 (7)第三节常规系统设计导则 (10)A.水流侧配置 (10)B.最大操作压力和温度 (11)C.过滤的要求 (11)D.膜污染 (11)E.仪表的最小配置 (11)第四节系统设计要求 (13)A.获得较含量的溶解氧 (13)B.空气泄漏和对溶解氧浓度的影响 (13)第五节启动和停运步骤 (14)A.启动步骤 (14)B.停运步骤 (14)C.停运后启动的步骤 (15)第六节问题解答 (15)第一节技术概述Liqui-Cel膜组件可以在不使水溶液分散(喷淋、雾化等)的情况下使其与气体分离或将气体加入其中。

膜组件包含由几千支Celgard微孔聚丙烯中空纤维围绕一个布水管编织而成的管束。

中空纤维均匀地排列成一个有进出水口的单元,可以有更大的水流容量和膜表面的更大利用。

由于中空纤维膜是疏水性的,因而水溶液无法透过微孔。

气液界面由于液相侧对气相侧的压力差而固定在微孔上。

并非像内装填料、分散液相的脱气塔,Liqui-Cel膜组件可以在超出水流量操作范围时提供一个恒定的分离界面。

虽然Liqui-Cel膜组利用的是微孔膜,但它的分离原理实质上不同与其它的例如渗滤膜和气体分离膜等膜分离技术。

在Liqui-Cel膜组件里,没有连续透过微孔的液流。

Liqui-Cel膜组件像一个惰性的支撑物使水相和液相直接接触而不需分散。

相间物质的转移几乎完全受气相侧压力的控制。

原因在于Celgard中空纤维的接触的几何原理,它的每列单元的接触表面积要比传统的接触高一个数量级。

这样将使在分离性能不变的情况下组件的体积大大减小。

膜Liqui-Cel 膜组件在用于吸收或分离技术中有两种不同的纤维可供选择,即X-30和X-40中空纤维膜。

X-30膜壁薄而且内径大。

这种特性使其与X-40相比有更大的二氧化碳的去除率,但对操作压力和温度有一定的限制。

脱气膜清洗手册

脱气膜清洗手册

Cleaning GuidelinesCleaning GuidelinesThe NewStandard ForDissolved Gas ControlLiqui-Cel® Membrane ContactorsCLEANING GUIDELINESCONTENTS Page1. Intent of Document 22. Cleaning Parameters 23. Chemical Compatibility / Sanitizing / Detergents 34. Cleaning Solution Flow Rate and Back Pressure Guidelines 45. High Temperature Cleaning / CIP 56. Cleaning Protocol for Biological Soil Removal 67. Cleaning Protocol for Mineral Deposits Removal 98. Cleaning Protocol for Particle Fouling 119. Membrane Drying 1210. Membrane Contactor Integrity Test 1411. Storage and Handling Guidelines 1512. Contactor Decontamination for Return to MEMBRANA 16Schematics Page1. Biological Soil Removal 82. Acid Cleaning for Mineral Deposit Removal 103. Particle Fouling Cleaning 114. Bulk and Final Drying 13IMPORTANT INFORMATION - PLEASE READ CAREFULLY1.0 INTENT OF DOCUMENTThere are many different types of contaminants that may adhere to the membrane. The cleaning protocol, which covers chemical cleaning agents, concentrations, time and flow rates, will be specific to your system. The cleaning guidelines contained in this document represent a starting point and may require modification to suit your specific application.2.0 CLEANING PARAMETERSThere are four parameters that affect the cleaning process:•Time (duration and frequency)• Temperature• Mechanical agitation•Chemical type (caustic, acid, alcohol, etc.)Changing any of these parameters can affect the others. Therefore, it is important to develop a specific cleaning protocol that best suits your application. The following guidelines will help you to begin and guide you through the cleaning process. We recommend that you start with cleaning chemicals that are generally used within your industry.The initial performance of the contactor should be monitored to establish its baseline performance.This baseline performance can be compared to the performance of the contactor after cleaning.Other considerations for establishing the best protocol for your applications are:• Experimentation with time (frequency and duration), temperature, chemical concentration and flow rate will determine the best method for cleaning the contactor.•Refer to the Liqui-Cel Membrane Contactor product data sheet for maximum temperature and pressure ratings. Take into account the temperature rise that occurs during a chemicalreaction (caustic in water) or from pumping.•An aggressive cleaning protocol may clean the contactor in a shorter time period, but can also reduce the contactor service life.The frequency of cleaning can generally be determined by monitoring a drop in the systemperformance.3.0 CHEMICAL COMPATIBILITY / SANITIZATION / DETERGENTSFor general questions about chemical resistance, refer to the Liqui-Cel® Membrane Contactor Chemical Resistance Guide available at or from your Membrana representative.Table 1 shows the maximum recommended exposure times for several chemicals, which can be used to clean or sanitize a Liqui-Cel Membrane Contactor. To determine the total exposure time as a function of concentration,divide the value shown in column 2 of Table 1 by your actual chemical concentration. The resulting value is the total number of hours the contactor can be exposed to a specific chemical concentration.Table 1: Sanitizing GuidelinesColumn 2 Column 3Chemical Concentration-hours at RoomTemperature Maximum Recommended Chemical Concentration *Chlorine pH > 7 24000 ppm-hours 100 ppmHydrogen Peroxide 4800 %-hours 10% wt.Peracetic acid 4800 ppm-hours 100 ppm* Exposure times were determined when the fiber tensile strength and elongation values just began to decrease.The test conditions did not exceed these maximum concentrations, and testing was completed at 23°C. Using higherconcentrations is not recommended, and at elevated temperatures the expected life is much shorter.Exposure Time CalculationsCase 1: 2% hydrogen peroxide sanitation everyday for 30 minutes.a) What is the total exposure time for a solution of hydrogen peroxide at 2% concentrationat room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 % - hours by 2%. Total exposure time = 2400 hours.b) Divide 2400 hours by 0.5 hours (30 minutes). Total number of cycles = 4800.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years). It would be safe to use this chemical for dailycleaning for 30 minutes per day at 2% concentration at room temperature since 1095cycles < 4800 cycles.The total life expectancy of a Liqui-Cel Membrane Contactor is affected by many factors, one of which is the chemical cleaning cycle. Do not assume the total number of exposure cycles can be used to predict the ultimate lifetime of a contactor. Use this total number of cycles to judge whether the contactor lifetime will be affected by the cleaning cycle. In the case above, compare the number of theoretical cleaning cycles (4800 cycles) to the desired number of cleaning cycles over the expected lifetime of the contactor (1095 cycles). The conclusion in this example is that cleaning cycles will probably not reduce the 3-year lifetime of themembrane.Case 2 illustrates a cleaning protocol that we DO NOT RECOMMEND.Case 2: 200 ppm peracetic acid sanitization every day for 30 minutes.a) What is the total exposure time for a solution of peracetic acid at 200 ppmconcentration at room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 ppm - hours by 200 ppm. Total exposure time = 24 hours.b) Divide 24 hours by 0.5 hours (30 minutes). Total number of cycles = 48.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years).It would NOT be safe to use this chemical for daily cleaning for 30 minutes per day at200 ppm concentration at room temperature since the required number of cycles(1095) is much greater than the maximum number of 48 cycles.However, the protocol could be used if the cleaning frequency was changed to 4 times peryear for 3 years = 12 cycles, which is less than maximum number of 48 cycles.IMPORTANT NOTES FOR CLEANING SOLUTION SELECTION:DO NOT USE STRONG OXIDIZING AGENTS such as ozone.Do NOT use any chemicals that contain DETERGENTS or surfactants.Surfactants may allow liquids to pass through the membrane. This phenomenon is called break-through or wet-out. The membrane can be restored to a hydrophobic state by rinsing thedetergent from the contactor and then drying it but this is a time consuming process.4.0 CLEANING SOLUTION FLOW RATE AND BACKPRESSURE GUIDELINESIt is important to apply a backpressure to the system to insure a liquid-full system during the cleaning cycle. To increase the cleaning solution backpressure, slowly close the outlet flow valve.Refer to Table 2 for general guidelines. Indicated flow rate is for a single unit and should be used just as a guideline. Depending on the fouling nature, the flow rate should be adjusted accordingly.Table 2: Cleaning Solution Flow Rate and Backpressure GuidelinesContactor Size MiniModule®Contactors2 × 6Contactor2.5 × 8Contactor4 × 28 & 6 × 28Contactor10 × 28Contactor14 × 28ContactorShellside Flow Rate≤ 0.13 gpm(≤ 500 ml/min)≤ 0.26(≤ 1 lit/min)1 –2 gpm(0.23 – 0.45 m3/h)10 – 30 gpm(2.3 – 6.8 m3/h)30 – 40 gpm(4.5 – 9.0 m3/h)50 – 60gpm(11.4 – 13.6 m3/h)Shellside Backpressure10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)Lumenside Flow Rate≤ 0.08 gpm(≤ 300 ml/min)NotApplicable≤0.5 gpm(≤ 0 .11 m3/h)3 - 7 gpm(0.68 - 1.60 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)Lumenside Backpressure5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)NOTE: Shellside = Outside of fiber. Liquid flows shellside for 2x6, 2.5, 4, 6, 10 and 14-inch contactors Lumenside = Inside of fiber. MiniModules run with liquids on the lumenside. Since gas normally flows through lumenside with 2 x 6, 2.5, 4, 6, and 10-inch contactors, lumenside cleaning is less frequent.To prepare a cleaning solution when using untreated raw water, it is important to know the water chemistry. We recommend using water that has been filtered and de-chlorinated. We recommend using de-ionized water for cleaning if possible. We also recommend paying attention to metals, such as Mg, iron, Al, and to SiO2. These elements can precipitate onto the membrane when there is a pH shift in the water.5.0 HIGH TEMPERATURE & CIP CLEANINGHot water or hot caustic can be used to clean Liqui-Cel Membrane Contactors in stainless steel housings, depending upon the specific contactor. Please contact your representative prior to using temperatures above 122ºF (50ºC) at105 psi (7.4 kg/cm2).Circulate all solutions through theshellside.Table 3: CIP Cleaning GuidelinesStep Description Chemical Solution Time (min.)1 Water flush / oncethrough10 micron filtered, ambient to cold water 52 Alkalinewash/recirculated 2% to 5.5% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-122ºF (ambient-50ºC)30 min – 2 hours3 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCL usingfiltered (10 micron) water at ambient temp.30 – 605 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved6 Purgelumens CO2, N2, air, or gas at maximum flow rate. If operating in combomode, use maximum sweep gas in combination with yourvacuum pump. Until no water droplets appear from exit sweep portNOTE: in steps 1 - 6, always keep a water backpressure less than 30 psig.•Do not use a commercial caustic that contains surfactants.•Do not purge CO2 during alkaline wash. If vacuum is in the system, pull a vacuum during Hot CIP. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).5.0 HIGH TEMPERATURE & CIP CLEANING CONTINUEDOnce the membrane has been cleaned, it is ready for the high temperature sanitization guidelines below. Be careful not to exceed 85ºC. Also note that only SS vessels are recommended for Hot CIP cycles to 85ºC.Table 4: High Temperature Sanitization Guidelines Stainless Steel Housings, X40 Fiber in 4 and 10-inch sizes. X-50 in 4-inch OnlyMaximum Temperature Maximum OperatingPressureMaximum exposure cycles(at 30 minutes per cycle)181ºF-185ºF(83 - 85ºC)30 psig (2.11 kg/cm2) 1000NOTE: The lumenside should have N2 or vacuum flow, if available, during high temperature cleaning cycle. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).To maintain the product warranty, the maximum normal operating feed water temperature should not exceed 122ºF (50ºC).The water temperature during the sanitization cycle should be accurately controlled so it does not exceed 185ºF (85ºC).6.0 CLEANING PROTOCOL FOR BIOLOGICAL SOIL REMOVALA. Biological Soil RemovalIf the performance of the contactor is decreasing, the contactor probably needs to be cleaned. If the soil has not penetrated the membrane pore structure, surface cleaning of the wetted side of the membrane (normally the shellside) is usually sufficient to restore performance. If theperformance is not restored after two cleaning cycles, then use the Severe Biological Soil Cleaning Protocol – see 6.0 section B.Table 5: Normal Biological Soil Cleaning ProtocolStep Description Chemical Solution Time (min.)1 Water flush /once throughAmbient to cold water filtered to 10 micron 52 Alkalinewash/ recirculate 2% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-104ºF (up to-40ºC)45 min to 2 hrs.3 DrainContactor4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.45 min to 2 hrs.5 Rinse Contactor /once through Ambient to cold water filtered to 10 micron 15-30 oruntil neutral pHis achievedNOTES: in steps 1 - 6, always keep a water backpressure less than 30 psig.Do not use a commercial caustic that contains surfactants.Do not purge the lumens with CO2 during an alkaline wash.B. Severe Biological Soil Cleaning ProtocolWet-out occurs when the membrane looses its hydrophobic property, thus allowing liquids to pass through the pore structure. Wet-out can also occur when the membrane is exposed to protein containing liquids such as beer, wine, or fruit juice. Removing the biological deposits that have penetrated the membrane pore structure will restore the membrane hydrophobicity.To remove the proteins adhering to the polymer surface, a Severe Biological Soil cleaning Protocol is recommended. This Severe Biological Soil Cleaning protocol uses an alcohol-water solution followed by caustic solution and a drying step. The frequency of cleaning will depend upon the types and concentrations of proteins. In order to prevent wet-out, a daily cleaning protocol should be used until an appropriate cleaning frequency for your system is determined.The drying step is critical in removing any liquid remaining in the pore structure. If liquidremains in the pore structure, any liquid that is introduced into the contactor will pass through the membrane. Therefore, the contactor must be dried before it is put back into service.Contact your Membrana representative to learn more about contract cleaning servicesavailable in our facility for your convenience.Table 6:Severe Biological Soil Cleaning ProtocolStep Description / FlowSchematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Wet-outmembrane/ Recirculate 50% isopropyl alcohol + 50% filtered (10 micron)water (v/v).15-303 Pressurize shell side and let liquid come out of lumen sides4 Alkaline wash / recirculate 2-5% w/w. caustic (NaOH or KOH) solution usingfiltered (10 micron) water. Suggested temperature86ºF – 122ºF (30ºC – 50ºC) 1 to 4 hrs.5 Draincontactor6 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3% phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.1 to 2hrs.7 Draincontactor8 Water flush/Once-through Filtered (10 micron) water – ambient temperature.Flush until pH in = pH out.20-309 Drying Inert gas is preferred. Clean, dry, oil free air canalso be used. Do not exceed 122ºF (50ºC) gastemperature when using air to dry the contactorsSee section 8.010 Membrane Integrity Test Seesection9.0*Note that the air temperature should not exceed 30ºC (86ºF) in normal operations. Higher temperatures are only recommended for short cleaning/drying cycles.Flow Schematics for Normal Biological Soil RemovalFlow Schematics for Severe Biological Soil Removal7.0 CLEANING PROTOCOL FOR MINERAL DEPOSITS REMOVALThe inlet water should be treated to prevent mineral precipitation. For example changes in pH due to carbon dioxide removal may initiate a precipitation reaction.If the performance of the contactor decreases and the inlet water source is not treated to remove minerals, such as calcium carbonate, it is likely that a layer of mineral scale has formed on the wetted side (normally the shellside) of the contactor. A simple acid clean followed by a water flush should restore the performance. The contactor does not need to be dried after this protocol. Also note that phosphoric acid is more efficient for removing hard mineral deposits or other precipitated deposits.Table 7: Cleaning Protocol for Mineral Deposit RemovalStep Description / Flow Schematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Acid wash / recirculate (repeatif necessary) 5% w/w citric, or 3% Nitric or phosphoric,or a combination of 3% Nitric and 3%phosphoric acid solution using filtered(10 micron) water – ambient temperature30-603 Draincontactor4 Water flush /Once through Filtered (10 micron) waterFlush until pH in = pH out5-10If silica, aluminum or a combination of these is found in the inlet water source, it is likely that they will precipitate on the membrane surface. If CO2 is used as a sweep gas, precipitation can occur depending on the concentration and the water pH shift. For aluminum precipitation follow the mineral deposit removal procedure. For Silica precipitation use the Biological soil removal procedure, but increase the caustic concentration to 5.5% by weight and increase the temperature to 50 C. If possible try to clean the contactors using similar process water flow rates and do not change the direction of the water flow.Flow Schematics for Acid Cleaning to Remove Mineral Deposits8.0 CLEANING PROTOCOL WHEN PARTICLE FOULING IS SUSPECTEDFollow the steps described in Sections 6.0(a.) and 7.0, with the following exceptions: •Backflush the cleaning solutions (i.e. introduce the cleaning solutions in the direction opposite of the normal operating flow direction).•Once the cleaning solution is flowing into the contactor, introduce clean, dry, and oil free compressed air into one gas port, in the same direction as the liquid flow. Valve off, or cap, the other gas port.•Regulate the air pressure 5-10 psig GREATER than the liquid pressure, such that the air will bubble vigorously into the cleaning solution.•At the end of the cleaning procedure, shut off the air supply first, then the liquid.9.0 MEMBRANE DRYINGThe drying process involves two steps:• Bulk Water Removal• Final DryingThe purpose of the Bulk Water Removal is to quickly remove water prior to passing the drying gas through the contactor. The purpose of the Final Drying is to evaporate the remaining water from the contactor. Dry air, nitrogen, and carbon dioxide gas can be used to facilitate drying. Tables 8 and 9 provide a reference point for flow rates and drying times.Vacuum is not recommended for drying the contactor. Tests have shown residual water after several hours of vacuum operation.A. Bulk Water RemovalTo reduce the drying time, it is recommended to first remove the bulk water by flowing room temperature gas into the top shellside and lumenside ports. See the Bulk Water Removalschematic on page 10. Use clean, dry filtered (0.2 micron) gas at flow rate shown in Table 8.Keep the lower lumen and shellside ports open.Discontinue the gas flow after the water discharge rates decreases to a few drips. Close the bottom shellside port when finished.Table 8: Bulk Water Removal ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate scfm*MiniModules and 2 x 6 0.5 scfm (0.84 m3/hr)2.5 x 8 1 scfm (1.7 m3/hr)4 x 28 and 6 x 28 10 scfm (17 m3/hr)10 x 28 and 14 x 28 70 scfm (120 m3/hr)*Maximum gas pressure = 10 psig (0.7 kg/cm)B. Final DryingThe final drying step involves flowing a clean, dry, filtered (0.2 micron) gas into the top shellside port. Using a warm gas will reduce drying time. We recommend using Nitrogen as the gas in the final drying step, as hot air can shorten the membrane life.Table 9 can be used as a guide for the Final Drying step.Table 9: Final Drying ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate* Estimated Drying Time**2 x 6 0.5 scfm (0.84 m3/hr) 1 hr @ 60ºC (140ºF)2.5 x 8 1 scfm (1.7 m3/hr) 1 hr @ 60ºC (140ºF)4 x 28 10 scfm (17 m3/hr) 4 hr @ 60ºC (140ºF)6 x 28 25 scfm ( 40 m3/hr) 8 hr @ 60ºC (140ºF)10 x 28 70 scfm (120 m3/hr) 16 hr @ 60ºC (140ºF)14 x 28 80 scfm ( 130 m3/hr) 24 hr @ 60ºC (140ºF)*Maximum gas pressure = 10 psig (0.7 kg/cm) **If using air in the final drying step, do not exceed 30ºC (86ºF)Drying SchematicsBulk Water Removal/Initial Drying StepFinal Drying*If using air in the final drying step, do not exceed 30ºC (86ºF)10.0 MEMBRANE CONTACTOR INTEGRITY TESTThere are three conditions, which will cause the contactor to leak.• Membrane wet-out• A fiber break•O-ring / seal failureMembrane wet-out can occur from solutions containing surfactants or proteins, such as beer, juice, wine, fermentation broth or other organic solutions. This is a reversible condition once the contactor is cleaned. The integrity test can be used to verify that the hydrophobic property of the membrane has been restored. This test involves pressurizing the shellside with water andmeasuring the drip rate leaving the lower lumenside port. The integrity test should be completed after cleaning.Table 10: Membrane Contactor Integrity TestSteps1. Relieve lumenside pressure. Blow-out lumenside stream with nitrogen or oil-free air. Openthe lower lumenside port connection so an observation can be made.2. Close the shellside outlet valve3. Fill the shellside with filtered (10-micron) water. Slowly apply 60 psig (4.2 kg/cm2) pressureto the shellside.4. Measure the drip rate from the lumenside port for 1 hour.5. Release the shellside pressure by slowly opening the outlet valve.Drain the contactor.If the contactor leaks at a higher rate than the value listed in Table 11, either the cleaning protocol needs to be repeated, a fiber is broken or an O-Ring is damaged. Contact your Membranarepresentative for further help.Table 11: Guidelines for Typical Amounts of Liquid Passing to the Lumenside2 x 6 Contactor2.5 x 8Contactor4 x 28Contactor10 x 28Contactor14 x 28ContactorCondensation <0.5ml/hr@60 psig<5ml/hr < 1.2 ml/min. <7 ml/min. <11ml/min.It is normal for water vapor to collect in the lumenside of the membrane. It can condense and flow out of the contactor. The condensate rate can be compared to a new contactor to establish a baseline. The rates vary slightly depending on the fiber types but table 11 provides a good guideline.11.0 STORAGE AND HANDLING GUIDELINESThe Liqui-Cel Membrane Contactor that you have purchased can be damaged through improper handling and storage. The following guidelines are intended to provide a framework for successful storage of these contactors. If you have any questions, please contact your Membrana representative. HandlingProper handling of contactors is critical. Care must be taken not to hit or jar (shock) the contactor to minimize the possibility of internal damage or damage to plastic parts from the contactor being knocked over or dropped. All four (4) ports should be protected to prevent the introduction of contaminants into the contactor. It is recommended that the contactors be stored in a dry, heat-sealed plastic bag or shrink-wrap material [0.076 mm (0.003 in.) wall thickness] in their original box.All plastic port extensions should be supported to prevent bending of extensions under excessive piping loads.TemperatureStore the contactors dry in their original boxes at temperatures not to exceed 49o C (120o F). Contactors stored at very low temperatures < 5o C (41o F) should be allowed to equilibrate to room temperature prior to introducing water.HumidityIt is recommended that contactors be stored at low to moderate humidity levels (< 60% relative humidity). Humidity will not affect the components of the contactor but exposure at high humidity levels may affect the integrity of any cardboard packaging.Storage PositionStore the contactors in the horizontal position. Ten-inch contactors with SS housings packaged in wooden crates and 14-inch contactors should not be stacked more than two crates/boxes high. Ten- inch contactors with FRP housings and six-inch contactors are packaged in foam reinforced cardboard boxes. For safety considerations, they should not be stacked more than 3 boxes high. Four-inch contactors are packed in cardboard boxes and can be stacked up to 7 boxes high.Shelf LifeMembrane samples from contactors stored for 4 years (room temperature, low to moderate humidity, heat-sealed bag but not stored in a box) have shown no changes in physical properties (hollow fiber tensile strength and elongation).Exposure to SunlightContactors should not be stored where they are exposed to direct sunlight. Contactors should always be stored in sealed bags, or shrink wrap material, in the original box or other opaque box.12.0 Contactor Decontamination for Return To MEMBRANAIn the event that a contactor needs to be returned to MEMBRANA for analysis, it must be cleaned and dried. A Returned Material Authorization (RMA) form must be obtained from MEMBRANA before a contactor is returned. Please follow the instructions below when returning a contactor.Call your MEMBRANA Representative at (704) 587-8888 to obtain an RMA Form. Complete the Form and return it by fax to (704) 587-8585, Attn: Liqui-Cel® Membrane ContactorTechnical Service.I. If Non-Hazardous materials (water, air, nitrogen, oxygen, and carbon dioxide) were used,clean and dry the contactor, and place it in a clean leak-proof plastic bag.II. Write the RGA number on the outside of the shipping box.III. If Hazardous Materials were used in the contactor, follow the cleaning procedure in section 6.0. Provide a Material Safety Data Sheets (MSDS) of any chemical(s) introducedinto the contactor to your product representative. Even though these chemicals need to beflushed from the contactor prior to shipment, the MSDS is required information to safe-guard our personnel when handling the returned contactor. Place the contactor in a cleanleak-proof plastic bag. Write the RGA number on the outside of the shipping box.If non-human (or other non-primate) blood or blood products were used in thecontactor, follow your established normal cleaning protocol. In addition, flush thecontactor with water until the rinsed water is completely clear. Continue rinsing for30 more minutes to ensure complete removal of any blood product.Prior to returning the contactor to MEMBRANA, it must be sterilized. The followingsanitizing protocol is recommended: (5.25% available chlorine) diluted 1:500 withfiltered water (final concentration = ~100 ppm available chlorine). Adjust the pH >10using caustic prior to adding the hypochlorite solution.Recommended contact time and temperature with the contactor is 30 minutes at 70°F -100°F (21°C - 38°C). The active chlorine level should be maintained at 100 ppm during theduration of the cleaning cycle. The entire cartridge needs to be contacted with this solutionto kill bacteria or viruses. Therefore, both the shell and tube side flow paths need to bedecontaminated.Dry the contactor as per section 8.0 and place the contactor in a leak-proof plastic bag.Write the RGA number on the outside of the shipping box.It is important to Fax a copy of the RMA form to MEMBRANA prior to shipping.Fax to: (704) 587-8585, Attn: Liqui-Cel® Membrane Contactor Technical Service.。

(整理)脱气膜元件及脱气设备使用手册

(整理)脱气膜元件及脱气设备使用手册

* 这就驱使从液体中的气体从液体移向气体。

液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。

3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。

气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。

气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。

这就降低了液相中的溶解气体浓度。

从而达到脱除气体的目的。

注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。

是最经济有效的方法。

1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。

2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。

2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。

3) 通空气到每根脱气膜组件。

4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。

5) 如果采用压缩空气,必须是无油压缩空气的。

6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。

如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。

鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。

吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CREFLUX TM聚丙烯中空纤维膜脱气膜元件及脱气设备用户使用手册杭州求是膜技术有限公司二OO八年一、概述:1、基本原理:气体传送分离是基于亨利定律:水中的溶解性气体浓度和液体上面所接触的这些气体的分压成正比。

(图1)。

亨利系数温度图.1: 亨利定律: P 1 = H 1 · X 1; P 1 = 气体分压, H1 = 亨利系数, X 1 = 溶解性气体浓度.如上图所示:空气中氧的分压为0.21bar ( 3 PSI)。

如果和水接触的气体的分压发生改变,水中氧气分压也会随之改变。

2、采用中空纤维膜脱气CREFLUX脱气膜元件(图2)装填有疏水性的聚丙烯中空纤维膜,具有装填密度大,接触面积大,布水均匀的特点。

液相和气相在膜的表面相互接触,由于膜是疏水性的,水不能透过膜,气体却能够很容易地透过膜。

通过浓度差进行气体迁移从而达到脱气或加气的目的。

图2:CREFLUX 脱气膜工作过程CREFLUX 脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:● 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高; ● 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。

3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式:(见图3)● 加气吹脱 ● 抽真空● 抽真空与加气吹脱结合空气中气体溶入水中直至达到气液平衡当施以真空或气体吹脱后,气液平衡就向一方偏移。

液/气接触面在孔隙位置真空或 吹扫气体液体CO 2/O 2CO 2/O 2出水进水吹扫气体真空模式出气口出水进水吹扫气体出水进水到真空泵到真空泵到真空泵CREFLUXTMCREFLUXTMCREFLUXTM真空辅助吹扫模式气体吹扫模式二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。

气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。

气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。

这就降低了液相中的溶解气体浓度。

从而达到脱除气体的目的。

注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI 系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。

是最经济有效的方法。

加气体侧的基本配置和操作当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。

●压力调整器阀门●针形阀门●压力表●流量计脱除二氧化碳时可以采用压缩气体或无油的压缩空气。

基本操作步骤:1、通过调整压力调节阀门,把进气压力设置压力在0.7 kg/cm2以下。

2. 通过调整针形阀门,观察流量计至设计的空气流量。

3. 通空气到每根脱气膜组件。

4. 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。

5. 如果采用压缩空气,必须是无油压缩空气的。

6、如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。

如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。

鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。

吹风机的出风温度不能升高(>30°)过高的空气温度会影响中空纤维膜的使用寿命。

每根脱气膜的空气量脱气膜M2/hr 膜面积(m2)DGM4040 1.6--9.6 22DGM5040 1.6--32 45DGM8040 4.5—30.2 90DGM8060 4.5—30.2 140对于液体侧的配置和操作每根脱气膜的进水量脱气膜M2/hr 膜面积(m2)DGM4040 1.5--3 22DGM5040 3--5 45DGM8040 6—10 90DGM8060 6—10 14050%以上。

重要操作指示:膜保护:当使用空气作为吹扫气体时,注意以下信息:●水温不应该超出30o C (86o F)。

●气温不应该超出30 o C(86o F)。

●在进CREFLUX脱气膜之前去除余氯、臭氧和所有其他氧化性物质。

当使用氮气等惰性气体作为吹扫气体时,注意以下信息:●在进CREFLUX脱气膜之前去除余氯、臭氧和所有其他氧化性物质。

●城市给水使用余氯<1 ppm,水温度(<40o C,104o F)可以正常使用。

为保护膜不被氧化,如果有余氯存在,并且水温大于30°C (86°F),吹扫气体必须用氮气等惰性气体。

避免与表面活化剂、酒精和氧化剂(臭氧等)接触违反这些操作指南可能会对膜寿命不利,或者质保无效。

如果您有关于您的系统设计问题,请与求是膜公司联系。

保护您系统的其他设备:如果脱气膜发生故障,由于液体侧比气相的压力要大,水将会流到膜的气相侧。

为了检测,可以在液体侧安装一个低压警报开关或流程开关,来防止设备损伤。

维护工作当水蒸气和其他挥发性气体穿过膜,脱除气体与水蒸气将会饱和。

根据环境温度,在出口气体管道会发生凝结现象。

所以,应该使出口管道系统远离脱气膜系统。

必须从脱气膜和管道系统外面设计管道系统排泄凝结水。

如果没有去除水蒸气,它可能随着时间的积累,脱气膜的脱气效果会受到影响。

凝结现象还取决于液体温度。

液体温度越高,水蒸气越易透过膜。

这种凝结现象是正常的。

加气吹脱操作模式PID图(图4)V-102101101201100V-212V-200201201V-213V-114并联并联并联使用压缩空气水平吹扫模式过滤器进水进气脱气水三、抽真空模式操作指示真空方法在液体中总气体控制和大量气体脱除中使用。

内部扩散到真空侧。

这些气体通过真空泵被抽吸后排放。

真空度的高低直接影响脱除效率。

真空度越大,出口液体含气量越低。

表3说明在不同的真空度水平下的气体脱除。

下表说明真空水平怎样影响液体出口含气量浓度的。

除了真空水平其他使用参数也是同样重要的。

真空水平(绝对气压,假设760 mm Hg大气压)164.5mbar(125 mmHg)97.4 mbar(74 mm Hg)65.8mbar(50 mm Hg)47.4mmbar(36 mm Hg)出口含量(PPb)1400 850 580 425流速3 m3/hr温度25°C入口根据饱和氮气、氧气和二氧化碳计算真空侧配置和操作下列是在真空方式下基本的仪器配置列表。

(参见图5)。

●压力开关●压力表显示●检查阀门●真空液体储存区操作步骤:(遵守真空泵生产商的启动使用说明)。

1. 打开真空吸入阀门。

2. 打开真空泵3. 慢慢地打开进水阀。

真空模式下能否正常运行取决于一个良好的真空系统(包含管道和真空泵)。

当设计真空系统时,请遵照以下建议:1. 管道输送●保证整个真空管道不泄漏,不要用螺纹或其他易泄漏的连接方式。

推荐用焊接或密封性好的连接方式,任何气体泄漏将影响排气效率。

●避免管道系统过长,减少弯头并使压力损失减到最小。

●考虑系统水蒸汽凝结水的排放。

水蒸气和其他挥发性气体将穿过膜,气体与水蒸气将变得饱和。

根据环境温度,在出口气体管道会发生凝结现象。

所以,系统设计时应该把出口管道倾斜使凝结水可以慢慢流到系统外面。

如果不去除水蒸气,它会逐步累积,会减少真空泵的使用寿命,最后影响整体设备的使用寿命。

液体温度越高,水蒸气越易透过膜。

这种凝结现象是正常的。

2. 真空泵类型和尺寸●首先根据脱气要求确定脱气膜的型号、数量、布置方式以及需要的排气量和真空度。

排气量和真空度决定了真空泵的大小。

●建议使用液环真空泵。

一个完整的真空系统包括:真空泵、分离器、单向阀、放气阀门,测量仪。

具体可以咨询杭州求是膜技术公司。

对于液体侧的配置和操作,参考一般性系统设计指南。

重要操作指示:膜保护使用真空方式时,注意以下信息:●在进CREFLUX脱气膜之前去除余氯、臭氧和所有其他氧化性的物质。

●对城市给水的用途,允许余氯在1 ppm,温度< 40o C (<104o F)的情况下使用。

然而,为减少膜的氧化作用,特别是开启和关闭任何液流时一直保持真空的操作状态。

避免与表面活化剂,酒精的接触,并且操作时的氧化剂(臭氧等等)可能使膜寿命受影响或者损坏膜。

如果您有关于您的系统设计的问题,请与求是膜技术公司联系。

保护系统的其他设备:如果脱气膜发生故障,液体比气相总是压力要高,液相将流动到膜的气相侧。

在真空操作或与吹扫操作组合方式中,为防止膜脱气膜泄漏保护整个系统,推荐安装一个真空液体储存区和一个高真空压力开关。

液体出口侧建议使用一个低压警报开关或流量开关。

这将防止水泵或其他主要设备干转。

设定真空度(系统的最低真空度) :1.电磁阀通常是闭合的。

2.真空泵打开时,在正常操作情况下,V204和V-202应该保持闭合,V-201应该打开。

3.当液面到达设定水平之上时,V-201应该关闭。

在不到两秒钟之后,V-202和V-204应该打开。

4.当液面到达设定水平以下时,V-204,V-202应该关闭。

在不到两秒钟之后,V-201应该打开。

注:在脱气膜泄漏出故障的情况下,水将迅速填装真空液体储存区。

真空操作模式PID图(图5)V-303301302V-302V-301301301101101V-101100V-204V-202V-201V-402V-403V-207V-102V-115V-114真空罐真空泵气液分离器水环水纯水进排放水气体脱气水四、抽真空与加气吹脱结合操作模式操作指示:在要求脱除溶解氧气或二氧化碳达到极低水平时采用抽真空与加气吹脱结合操作模式。

接到真空源。

吹扫气体可以稀释从液相中跑到气相侧的气体同时把他们带出脱气膜。

在此操作模式下通常的真空水平在绝对大气压65.8mba(50 mm Hg)。

抽真空与加气吹脱结合操作模式通常用于锅炉给水要求溶解氧的浓度小于10PPB 的场合,待脱气的纯水在中空纤维膜的外侧流动,在中空纤维膜的内侧施加真空抽吸,同时辅以小量的N2吹扫。

施加真空抽吸和气体吹扫的目的是为了将膜内的氧气分压降低至几乎为零。

由于分压不同,因此水中的氧气的分压也就降到几乎为零。

气相和液相总是要趋向动态的溶解平衡点。

又由于在气相中含氧很少,因而液相中的氧就不断由液相向膜内侧的气相移动,并由吹扫气体和真空抽吸带走。

这就降低了水中的溶氧浓度。

抽真空与加气吹脱结合操作模式吹扫气体连接侧基本配置:(参见图6) :●压力调整器阀门●针形阀门●测量仪●流量计压缩气体或无油压缩空气(脱除二氧化碳)可以使用作为吹扫的气源。

具体按下列操作步骤:1. 开启真空系统(如真空方式操作模式所描述)。

2. 调整压力调节阀门,设置吹扫气体入口压力在< 0.07 kg/cm2 (< 1 psig,0.069bar)。

相关文档
最新文档