《运筹学》题库

合集下载

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

《运筹学》试题

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

运筹学复习题——考试题

运筹学复习题——考试题

《运筹学》复习题一、填空题( 1 分× 10=10 分)1.运筹学的主要研究对象是(组织系统的管理问题)。

2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。

3.模型是一件实际事物或现实情况的代表或抽象。

4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。

6.运筹学用(系统)的观点研究(功能)之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是(建立数学模型),并对模型求解。

13.用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“ . ”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940 年 8 月,英国管理部门成立了一个跨学科的11 人的运筹学小组,该小组简称为OR。

19.线性规划问题是求一个( 线性目标函数), 在一组 ( 线性约束 ) 条件下的极值问题。

20.图解法适用于含有两个变量的线性规划问题。

21.线性规划问题的可行解是指满足所有约束条件的解。

22.在线性规划问题的基本解中,所有的( 非基变量 ) 等于零。

23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

25.线性规划问题有可行解,则必有基可行解。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

《 运筹学》复习题

《 运筹学》复习题

《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。

[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。

完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。

请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。

具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。

2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。

货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。

请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。

1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。

1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。

答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。

答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。

答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。

答案:网络三、问答题:根据题目要求,回答问题。

1. 什么是线性规划?请简要解释线性规划的基本原理。

答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。

其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。

2. 动态规划在运筹学中的应用有哪些?请举例说明。

答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。

举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。

3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。

运筹学试题及答案

运筹学试题及答案

一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划:MaxZ=X1+X2X1+9/14X2≤51/14—2X1+X2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进行分枝,应该分为X1≤1和X1≥2。

5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。

6。

假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7。

已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10。

若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和Xi≤INT(bi) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题.11。

知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:)对偶问题的最优解: Y=(4,0,9,0,0,0)(2)写出B—1=二、计算题(60分)1、已知线性规划(20分)MaxZ=3X1+4X2+X2≤512X1+4X2≤123X1+2X2≤8,X2≥012)若C2从4变成5,最优解是否会发生改变,为什么?3)若b2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C2从4变成5时,=—9/8σ4σ=—1/45由于非基变量的检验数仍然都是小于0的,所以最优解不变。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。

答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。

答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。

答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。

答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。

答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。

它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。

2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。

其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。

数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

运筹学期末试题及答案4套

运筹学期末试题及答案4套

《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。

三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为试画出该工程的网络图.(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。

三、(35分)设线性规划问题maxZ=2x1+x2+5x3+6x4的最优单纯形表为下表所示:利用该表求下列问题:(1)要使最优基保持不变,C3应控制在什么范围;(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;(3)当约束条件中x1的系数变为时,最优解有什么变化;(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。

四、(问指派哪个人去完成哪项工作,可使总的消耗时间最小?五、(20分)用图解法求解矩阵对象G=(S1,S2,A),其中六、(20分)已知资料如下表:(1)绘制网络图;(2)确定关键路线,求出完工工期。

《运筹学》试题及参考答案

《运筹学》试题及参考答案

《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。

运筹学试习题及答案

运筹学试习题及答案

运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。

′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案

《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。

2、运筹学包括的内容有_______、、、_______、和。

3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。

二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。

2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。

假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。

此外,手工生产每件产品的材料消耗为10元,机器生产为6元。

已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。

请用运筹学方法确定手工或机器生产的数量,以达到最大利润。

参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。

例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。

以下以背包问题为例进行详细说明。

在背包问题中,给定一组物品,每个物品都有自己的重量和价值。

现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。

这是一个典型的0-1背包问题,属于运筹学的研究范畴。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2、图解法适用于含有两个变量的线性规划问题。

3、线性规划问题的可行解是指满足所有约束条件的解。

4、在线性规划问题的基本解中,所有的非基变量等于零。

5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7、线性规划问题有可行解,则必有基可行解。

8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9、满足非负条件的基本解称为基本可行解。

10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13、线性规划问题可分为目标函数求极大值和极小_值两类。

14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。

20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m 行解的个数最为_C_。

′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。

解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。

解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。

每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。

解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。

每种物品的重量合重要性系数如表所示。

设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。

解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。

解:设每月生产A 、B 、C 数量为321,,x x x 。

321121410x x x MaxZ ++= 250042.15.321≤++x x x14002.16.13321≤++x x x2501501≤≤x 3102602≤≤x1301203≤≤x0,,321≥x x x6、A 、B 两种产品,都需要经过前后两道工序,每一个单位产品A 需要前道工序1小时和后道工序2小时,每单位产品B 需要前道工序2小时和后道工序3小时。

可供利用的前道工序有11小时,后道工序有17小时。

每加工一个单位产品B 的同时,会产生两个单位的副产品C ,且不需要任何费用,产品C 一部分可出售盈利,其余只能加以销毁。

出售A 、B 、C 的利润分别为3、7、2元,每单位产品C 的销毁费用为1元。

预测表明,产品C 最多只能售出13个单位。

试建立总利润最大的生产计划数学模型,不求解。

解:设每月生产A 、B 数量为,,21x x 销毁的产品C 为3x 。

33221)2(273x x x x x MaxZ --++=11221≤+x x 173221≤+x x13232≤-x x0,,321≥x x x7、靠近某河流有两个化工厂(参见附图),流经第一化工厂的河流流量为每天5003m ,在两个工厂之间有一条流量为200万3m 的支流。

第一化工厂每天排放有某种优化物质的工业污水2万3m ,第二化工厂每天排放该污水1.4万3m 。

从第一化工厂的出来的污水在流至第二化工厂的过程中,有20%可自然净化。

根据环保要求,河流中的污水含量不应大于0.2%。

这两个工厂的都需要各自处理一部分工业污水。

第一化工厂的处理成本是1000元/万3m ,第二化工厂的为800元/万3m 。

现在要问满足环保的条件下,每厂各应处理多少工业污水,才能使两个工厂的总的污水处理费用最少?列出数学模型,不求解。

500万3m 200万3m解:设第一化工厂和第二化工厂的污水处理量分别为每天1x 3m 和x 2万3m ,218001000m in x x Z +=st ⎪⎪⎩⎪⎪⎨⎧≥≤≥+≤≤0,4.16.18.021212211x x x x x x 8、消费者购买某一时期需要的营养物(如大米、猪肉、牛奶等),希望获得其中的营养成分(如:蛋白质、脂肪、维生素等)。

设市面上现有这3种营养物,其分别含有各种营养成分数量,以及各营养物价格和根据医生建议消费者这段时间至少需要的各种营养成分的数量问:消费者怎么购买营养物,才能既获得必要的营养成分,而花钱最少?只建立模型,不用计算。

解:设购买甲、乙、丙三种营养物的数量分别为321x x x 和、, 则根据题意可得如下线性规划模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥++≥+≥++≥++++=0,,45035721703652802064..452025min 32132131321321321x x x x x x x x x x x x x x t s x x x z 9、某公司生产的产品A ,B ,C 和D 都要经过下列工序:刨、立铣、钻孔和装配。

已知每问该公司该如何安排生产使利润收入为最大?(只需建立模型)解:设生产四种产品分别x 1,x 2,x 3,x 4单位则应满足的目标函数为:max z=2 x 1+3 x 2+x 3+ x 4 满足的约束条件为:123412341234123412340.50.51800228000.50.530003236000100600500400x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪+++≤⎪⎪+++≤⎪+++≤⎪⎨≥⎪⎪≥⎪≥⎪⎪≥⎩ 10、某航空公司拥有10架大型客机、15架中型客机和2架小型客机,现要安排从一机场到4城市的航行计划,有关数据如表1-5,要求每天到D 城有2个航次(往返),到A,B,C 城市各4个航次(往返),每架飞机每天只能完成一个航次,且飞行时间最多为18小时,求利润最大的航班计划。

1A 2A A 城的架次为x 3A ,其余依此类推。

资源限制派出的大型客机架次不能超过10架,表示为111110A B C D x x x x +++≤同理222333152A B C A B C x x x x x x ++≤++≤班次约束飞往各城的班次要满足1231231231234442A A AB B BC C CD D D x x x x x x x x x x x x ++=++=++=++=非负性约束0ij x ≥且为整数;(i=1,2,3;j=A,B,C,D )目标函数为111222333max 100002000200020002000200020002000A B C A B C A B Cz x x x x x x x x x =++++++++1D -8000x +11、 CRISP 公司制造四种类型的小型飞机:AR1型(具有一个座位的飞机)、AR2型(具有两个座位的飞机)、AR4型(具有四个座位的飞机)以及AR6型(具有六个座位的飞机)。

AR1和AR2一般由私人飞行员购买,而AR4和AR6一般由公司购买,以便加强公司的飞行编队。

为了提高安全性,联邦航空局(F.A.A )对小型飞机的制造做出了许多规定。

一般的联邦航空局制造规章和检测是基于一个月进度表进行的,因此小型飞机的制造是以月为单位进行的。

时在任何给定的时间生产多达9架飞机。

因此,下一个月可以得到的制造天数是270天(9*30,每月按30天计算)。

Jonathan Kuring 是该公司飞机制造管理的主任,他想要确定下个月的生产计划安排,以便使盈利贡献最大化。

解:设1x 表示下个月生产AR1型飞机的数目,2x 表示AR2型,3x 表示AR4型,4x 表示AR6型目标函数:1234max 6284103125z x x x x =+++约束条件:12341234123412344791127022608171115,,,0x x x x x x x x x x x x x x x x +++≤+++≤≤≤≤≤≥1234,,,x x x x 为整数12、永辉食品厂在第一车间用1单位原料N 可加工3单位产品A 及2单位产品B ,产品A 可以按单位售价8元出售,也可以在第二车间继续加工,单位生产费用要增加6元,加工后单位售价增加9元。

产品B 可以按单位售价7元出售,也可以在第三车间继续加工,单位生产费用要增加4元,加工后单位售价可增加6元。

原料N 的单位购入价为2元,上述生产费用不包括工资在内。

3个车间每月最多有20万工时,每工时工资0.5元,每加工1单位N 需要1.5工时,若A 继续加工,每单位需3工时,如B 继续加工,每单位需2工时。

原料N 每月最多能得到10万单位。

问如何安排生产,使工厂获利最大?解:设1x 为产品A 的售出量;2x 为A 在第二车间加工后的售出量;3x 表示产品B 的售出量;4x 表示B 在第三车间加工后的售出量;5x 为第一车间所用原材料的数量,则目标函数为:12345max 89.578 2.75z x x x x x =+++-约束条件:52451253451234510000032 1.52000003020,,,,0x x x x x x x x x x x x x x x ≤⎧⎪++≤⎪⎪+-=⎨⎪+-=⎪⎪≥⎩➢ 化标准形式(5)1、将下列线性规划模型化为标准形式 解:2、将下列线性规划模型化为标准形式解:3、将下列线性规划变为最大值标准形。

12341234123412341234min 34254223142322,,0,z x x x x x x x x x x x x st x x x x x x x x =-+-+-+-=-⎧⎪++-≤⎪⎨-+-+≥⎪⎪≥⎩无约束 解:⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++-++=无约束3213213213213210063244239232min x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤+++-=无约束321321321321321005232732min x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=--=--+-=+-++⋅+⋅+--+-=-05232700)(32'max 713217542165421765421x x x x x x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=-++=--++=+-+++--=-06''3'32'44''22'39''''2''3'32''max 51332153321433213321x x x x x x x x x x x x x x x x x x x z''"12344'"12344'"123445'"123446'"123445,6max 3425542231423222,,,,,0z x x x x x x x x x x x x x x x x st x x x x x x x x x x x x x =-+-+⎧-+-+-=⎪++-++=⎪⎨-+-+--=⎪⎪≥⎩➢ 图解法(5)1、用图解法求解下面线性规划 min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

相关文档
最新文档