数字信号处理上机实验报告材料

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

最新数字信号处理实验报告

最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。

通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。

二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。

- 利用傅里叶变换(FFT)分析信号的频谱特性。

- 观察并记录信号的时域和频域特性。

2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。

- 通过编程实现上述滤波器,并测试其性能。

- 分析滤波器对信号的影响,并调整参数以优化性能。

3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。

- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。

- 比较重构信号与原始信号的差异,评估处理效果。

三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。

- 生成一系列不同频率和幅度的模拟信号。

- 通过数据采集卡将模拟信号转换为数字信号。

2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。

- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。

3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。

- 利用IFFT对处理后的信号进行重构。

- 通过对比原始信号和重构信号,评估滤波器的性能。

五、实验结果与分析- 展示信号在时域和频域的分析结果。

- 描述滤波器设计参数及其对信号处理的影响。

- 分析重构信号的质量,包括信噪比、失真度等指标。

六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。

- 讨论实验中遇到的问题及其解决方案。

- 提出对实验方法和过程的改进建议。

七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。

数字信号处理上机实验报告

数字信号处理上机实验报告

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=(n)+(n-1)+(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。

(b) 求出系统的单位冲响应,画出其波形。

实验程序:A=[1,];B=[,]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n) x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

数字信号处理实验七(上机)报告

数字信号处理实验七(上机)报告

数字信号处理实验报告实验名称: 实验七冲击响应不变法IIR 数字滤波器设计实验时间: 2014 年 12 月 2 日 学号: 201211106134 姓名: 孙舸 成绩:评语:一、 实验目的:1、掌握构成一个频率响应与给定的滤波特性相接近的模拟滤波器的设计原理;2、掌握用冲激响应不变法设计IIR 数字滤波器的基本原理和算法;3、了解数字滤波器和模拟滤波器的频率响应特性,掌握相应的计算方法,分析用冲激响应不变法获得的数字滤波器频率响应特性中出现的混叠现象。

二、 实验原理与计算方法:1、冲激响应不变法设计IIR 数字滤波器的基本原理和算法采用冲激响应不变法设计数字滤波器,就是使其单位样值响应)(n h 与相应的模拟滤波器的冲激响应)(t h a 在抽样点处的量值相等,即)()()(nT h t h n h a nTt a === (1)其中T 为抽样周期。

因此用冲激响应不变法设计IIR 数字滤波器的基本步骤,就是首先根据设计要求确定相应的模拟滤波器的传递函数)(s H a ,经Laplace 反变换求出冲激响应)(t h a 后,对它进行抽样得到的)(nT h a 等于数字滤波器的单位样值响应)(n h ,再经z 变换所得)(z H 就是数字滤波器的传递函数。

如果模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,则可以将)(s H a 写成部分分式展开的形式∑=-=Ni iia s s A s H 1)( (2) 那么,经Laplace 反变换求出的模拟滤波器的冲激响应)(t h a 为)()(1t u e A t h Ni t s i a i ∑==相对应的数字滤波器的单位样值响应为)()()(1n u eA t h n h Ni nTs i nTt a i ∑====对上式作z 变换,得∑∑∑∑∑=-=∞=-∞==--===ni T s iN i n nTn s in nTs i Ni n zeA z eA eA zz H i i i 11111)( (3)由上面的推导可见,只要模拟滤波器的传递函数)(s H a 的N 个极点i s 都是单极点,当已经求出各个极点值i s 和部分分式的系数i A 后,则可以从模拟滤波器的传递函数的表达式(2)直接得到数字滤波器的传递函数)(z H 的表达式(3)。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理上机实验

数字信号处理上机实验

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告11-12-10

数字信号处理实验报告11-12-10

《数字信号处理》实验报告专业学号姓名实验一 利用FFT 实现快速卷积一、实验目的1.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

2.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理用FFT 来快速计算有限长度序列的线性卷积。

这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样值()x k ,然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)。

现以FFT 求有限长序列的卷积及求有限长度序列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。

序列x(n)和h(n)的长差不多。

设x(n)的长为N 1,h(n)的长为N 2,要求∑-=-=⊗=1)()()()()(N m m n x m h n y n x n y用FFT 完成这一卷积的具体步骤如下:①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运算,要求m N 2=(m 为整数)。

②用补零方法使x(n)和h(n)变成列长为N 的序列。

1122()01()01()01()01x n n N x n N n N h n n N h n N n N ≤≤-⎧=⎨≤≤-⎩≤≤-⎧=⎨≤≤-⎩③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换。

④完成X(k)和H(k)乘积,)()()(k H k x k Y = ⑤用FFT 计算 ()Y k 的离散傅里叶反变换得*10*10)(1)(1)(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∑∑-=--=N k nk N nk N N k W k Y N W k Y N n y三、主要实验仪器及材料微型计算机、Matlab6.5教学版。

四、实验内容1.数字滤波器的脉冲响应为()22()1/2(),8nN h n R n N ==。

《数字信号处理》上机实习报告 (5)

《数字信号处理》上机实习报告 (5)

计算机编程与数字信号处理实习报告一、实习目的熟悉Matlab编程,并熟悉常用的信号处理手段,加深信号分析的课程知识。

二、实习内容(一)从老师所给的源程序中文件中,选择合适的一个源程序,仔细学习程序的相关语句和做法,最后做详细标注。

以达到认识了解,从而熟练应用Matlab的目的,对今后的相关知识和学习做铺垫。

具体标注有M文件。

见文件Gibbs.m(二)、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。

(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。

(5)完成对一个源程序进行详细注释。

(三)、计算普通褶积与循环褶积,分别使用时间域与频率域两种方法进行正、反演计算,指出循环褶积计算时所存在的边界效应现象;编写一个做相关分析的源程序。

(四)、设计一个病态(矩阵)系统,分析其病态程度;找出对应的解决方法(提示:添加白噪因子)。

(五)、设计一个一维滤波处理程序(1、分别做低通、高通、带通、带阻等理想滤波器进行处理;2、窗函数)。

(六)、设计一个二维滤波处理程序(分别做低通、高通等处理)。

(七)、验证时间域的循环褶积对应的是频率域的乘积;线性褶积则不然。

(八)、请用通俗、易懂的语言说明数字信号处理中的一种性质、一条定理或一个算例(顺便利用Matlab对其进行实现)。

三、实习要求(1)对每个问题进行编程计算,给出详细的注释;(2)分析相关原理及编程思路;(3)绘图显示每个问题的计算结果;(4)编写总的实习报告(在本次实习最后一天的中午之前必须提交该报告)。

四、实习日记1. 6月21日,对matlab语言认识程度不深,只会一些最基本的用法,一天的时间都在研究matlab的编程,初步掌握了matlab编程过程。

2. 6月22日,目标完成实习内容的第二题。

由于都是matlab的基础题目,完成起来相对简单,上午的时间就完成了所有小题。

数字信号处理上机实验

数字信号处理上机实验

数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。

可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。

女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。

人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。

出色的女高音的泛音最高的可达2700hz。

童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。

FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。

四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。

3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。

数字信号处理上机实验报告

数字信号处理上机实验报告

数字信号处理上机实验报告实验一熟悉MATLAB环境一、实验目的1、熟悉 MATLAB的主要操作命令。

2、学会简单的矩阵输入和数据读写。

3、掌握简单的绘图命令。

4、用 MATLAB编程并学会创建函数。

5、观察离散系统的频率响应。

二、实验容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。

在熟悉 MATLAB基本命令的基础上,完成以下实验。

上机实验容:1、数组的加减乘除和乘方运算,输入A1234,B3456,求C A B ,D A B,E A. B,F A./ B,G A.^ B ,并用stem语句画出A、 B、C、 D、 E、F、 G。

程序:>> A=[1 2 3 4];B=[3 4 5 6];C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B;subplot(2,4,1);stem(A,'.'); subplot(2,4,2);stem(B,'.');subplot(2,4,3);stem(C,'.'); subplot(2,4,4);stem(D,'.');subplot(2,4,5);stem(E,'.'); subplot(2,4,6);stem(F,'.');subplot(2,4,7);stem(G,'.')2、用MATLAB实现下列序列。

a)x(n)0.8n0n15b) x(n)e(0. 2 3 j ) n0n 15c)x(n)3cos(0.125 n0.2 ) 2sin(0.25 n 0.1 ) 0 n 15程序:A)clear;clc;n=[0:15];x1=0.8.^n;subplot(3,1,1),stem(x1)title('x1=0.8^n')xlabel('n'); ylabel('x1');B)clear;clc;n=[0:15];x2=exp((0.2+3j)*n);subplot(3,1,1),stem(x2)title('x2=exp((0.2+3j)*n)')xlabel('n'); ylabel('x2');C)clear;clc;n=[0:15];x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi); subplot(3,1,1),stem(x3)title('x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi)') xlabel('n'); ylabel('x3');3、绘出下列时间常数的图形,对x 轴,y轴以及图形上方均须加上适当的标注:a)x(t )sin( 2 t )0t10sb)x(t )cos(100t )sin(t )0 t 4s>>m=0:0.01:10;n=0:0.01:4;x1t=sin(2*pi*m);x2t=cos(100*pi*n).*sin(pi*n);subplot(2,1,1);plot(m,x1t);subplot(2,1,2);plot(n,x2t);4、给定一因果系统 H(z)=(1+ 2z- 1z-2)/( 1- 0.67z 1z 2),求出并绘制H(z)的幅频响应与相频响应。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

数字信号处理上机实习报告

数字信号处理上机实习报告

数字信号处理上机实习报告————————————————————————————————作者:————————————————————————————————日期:2专题一 离散卷积的计算一、实验内容设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x (n) 1、h (n)=(0.8)n,0≤n ≤4; x (n)=u (n)—u (n-4) 2、h (n)=(0.8)n u (n), x (n )=u(n)—u (n-4) 3、h(n)=(0。

8)nu (n ), x(n)=u (n) 求以上三种情况下系统的输出y (n )。

二、实验目的1、掌握离散卷积计算机实现.2、进一步对离散信号卷积算法的理解.三、原理及算法概要算法:把冲激响应h(n)与输入序列x (n)分别输入到程序中,然后调用离散卷积函数y=conv (x 。

,h)即可得到所要求的结果.原理:离散卷积定义为 ∑∞-∞=-=k k n h k x n y )()()(当序列为有限长时,则∑=-=nk k n h k x n y 0)()()(四.理论计算1、h (n)=(0。

8)n,0≤n≤4; x(n )=u (n )—u(n —4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n 〈0 时,y (n )=0 (b ) 当30≤≤n 时,∑==nm n y 0)((0。

8)n(c ) 当74≤≤n 时,∑-==43)(n m n y (0.8)n(d ) 当n 〉7时,y (n )=0理论结果与上图实验结果图中所示吻合。

2、h(n)=(0.8)nu(n ), x(n )=u(n)—u(n-4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n <0 时,y (n )=0 (b) 当30≤≤n 时,∑==nm n y 0)((0。

数字信号处理上机实验汇总(原创)

数字信号处理上机实验汇总(原创)

信 号 y=u(t+3)-2u(t) 1.5
1
0.5
0
y
-0.5
-1
-1.5 -5
-4
-3
-2
-1
0 t
1
2
3
4
5
(2)绘出复指数信号 x(t ) e0.2t cos(2t 0.5) 的波形。
2
运行结果:
连 续 复 指 数 信 号 x[t]=cos(2*t+0.5).*exp(0.2*t) 2000 1500 1000 500 0
验证结合律
y1(n)=(x1[n]*x2[n])*x3[n]
6000 4000 2000 0 -2000 -100
-80
-60
-40
-20
0 n
20
40
60
80
100
y2(n)=x1[n]*(x2[n]*x3[n])
10000
5000
0
-5000 -100
-80
-60
-40
-20
0 n
20
40
60
80
5
1
x(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
1
h(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
6
y ( n) =x(n)*h(n)
4
2
0 -4
-3
-2
-1
0 n
1
2
3
4
(2) 对下面三个序列, 用 conv_m()函数来验证卷积特性 (交换律、 结合律、 分配律) 交换律 结合律 分配律 其

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理实验报告一二目录一、实验目的 (2)1.1 了解数字信号处理的基本概念 (2)1.2 掌握数字信号处理的基本流程 (3)1.3 熟悉数字信号处理中常用的算法和实现方法 (5)二、实验目的 (6)2.1 理解数字信号处理技术在通信系统中的作用 (7)2.2 掌握数字信号处理技术在通信系统中的应用实例 (8)2.3 通过实验加深对数字信号处理技术的理解和实际操作能力 (9)三、实验原理和流程 (11)3.1 通信系统的基本工作原理 (12)3.2 数字信号处理技术在通信系统中的应用 (13)3.3 实验准备和实施计划 (14)四、数字滤波器设计与验证 (15)4.1 数字滤波器的设计方法 (17)4.2 滤波器的验证方法 (19)4.3 滤波器的性能测试 (20)五、信号检测与估计技术 (22)5.1 信号检测技术在通信系统中的应用 (23)5.2 信号估计技术的实现 (25)5.3 检测与估计技术的应用案例分析 (26)六、实验结果与讨论 (28)6.1 实验结果的分析与评价 (28)6.2 实验结果的对比与优化 (30)6.3 实验中遇到的问题和解决方案 (31)七、结论与展望 (32)7.1 实验结果的主要发现 (33)7.2 对数字信号处理在通信系统中的应用的认识提升 (34)7.3 对未来实验的思考和展望 (36)一、实验目的本次数字信号处理的实验旨在使学生掌握数字信号处理的基本概念、理论和实验技能,并通过实际操作加深对数字信号处理方法的理解和应用。

具体目的包括:理解数字信号处理的基本原理,包括离散时间信号与系统的概念、抽样定理、数字滤波器设计方法和数字信号处理的应用。

学习各种数字信号处理技术,如脉冲幅度调制、谱分析、滤波器设计与实现等。

使用实验设备实施信号模拟与数字信号处理操作,以便在实际系统中应用这些技术。

通过实验数据分析和处理,培养学生解决实际问题的能力,以及数据解读、实验方案设计和报告撰写的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二、实验容(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。

(b) 求出系统的单位冲响应,画出其波形。

实验程序:A=[1,-0.9];B=[0.05,0.05]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n)x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n)n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

实验程序:x1n=[1 1 1 1 1 1 1 1 ]; %产生信号 x1(n)=R8(n)h1n=ones(1,10);h2n=[1 2.5 2.5 1 ];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)n=0:length(h1n)-1;subplot(2,2,1);stem(n,h1n);title('(d) 系统单位脉冲响应h1n');xlabel('n');ylabel('h_1(n)');n=0:length(y21n)-1;subplot(2,2,2);stem(n,y21n);title('(e) h_1(n)与 R_8(n)的卷积y_{21}n');xlabel('n');ylabel('y_{21}(n)');n=0:length(h2n)-1;subplot(2,2,3);stem(n,h2n);title('(f) 系统单位脉冲响应h_2n');xlabel('n');ylabel('h_2(n)');n=0:length(y22n)-1;subplot(2,2,4)stem(n,y22n);title('(g) h_2(n)与 R_8(n)的卷积y_{22}n');xlabel('n');ylabel('y_{22}(n)');运行结果图:(3)给定一谐振器的差分方程为y(n)=1.8237y(n-1)-0.9801y(n-2)+b0x(n)-b0x(n-2)令b0=1/100.49,谐振器的谐振频率为 0.4rad。

(a) 用实验方法检查系统是否稳定。

输入信号为u(n) 时,画出系统输出波形。

(b) 给定输入信号为x(n)= sin(0.014n )+ sin(0.4n )求出系统的输出响应,并画出其波形。

实验程序:un=ones(1,256); %产生信号 u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量 B和 Ay31n=filter(B,A,un); %谐振器对 u(n)的响应 y31(n)y32n=filter(B,A,xsin); %谐振器对 u(n)的响应 y31(n)figure(3)n=0:length(y31n)-1;subplot(2,1,1);stem(n,y31n,'.');title('(h) 谐振器对 u(n) 的响应y_{31}n');xlabel('n');ylabel('y_{31}(n)');n=0:length(y32n)-1;subplot(2,1,2);stem(n,y32n,'.');title('(i) 谐振器对正弦信号的响应y_{32}n');xlabel('n');ylabel('y_{32}(n)');运行结果图:实验二时域采样与频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验容(1)时域采样理论的验证给定模拟信号,xa (t)=Ae-at sin(Ωt)u(t)式中 A=444.128,α =50 2 π,Ω =50 2 πrad/s Tp=64/1000; %观察时间 Tp=64 微秒Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph.*t).*sin(omega*t);%给定模拟信号Xk=T*fft(xat,M); %M 点 FFT[xat)]subplot(3,2,1); stem(n,xat,'.');xlabel('n');ylabel('x_1(n)');title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[x_a(nT)],F_s=1000Hz');xlabel('\omega/hz');ylabel('(H_1(e^j^w))');axis([0,Fs,0,1.2*max(abs(Xk))]);Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M 点 FFT[xat)]subplot(3,2,3);stem(n,xat,'.');xlabel('n');ylabel('x_2(n)');title('(b) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,4);plot(fk,abs(Xk));title('(a) T*FT[x_a(nT)],Fs=300Hz'); xlabel('\omega/hz');ylabel('(H_2(e^j^w))');axis([0,Fs,0,1.2*max(abs(Xk))]);A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t); Xk=T*fft(xat,M); %M 点 FFT[xat)] subplot(3,2,5);stem(n,xat,'.');xlabel('n');ylabel('x_3(n)');title('(c) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[x_a(nT)],Fs=200Hz'); xlabel('\omega/hz');ylabel('(H_3(e^j^w))');axis([0,Fs,0,1.2*max(abs(Xk))])(2)频域采样理论的验证clc;clear;close all;M=27;N=32;n=0:M;xa=0:(M/2);xb=ceil(M/2)-1:-1:0;xn=[xa,xb]; %产生 M 长三角波序列 x(n)Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列 x(n)的 TF X32k=fft(xn,32) ;%32 点 FFT[x(n)]x32n=ifft(X32k); %32点 IFFT[X32(k)]得到 x32(n)X16k=X32k(1:2:N); %隔点抽取 X32k 得到 X16(k)x16n=ifft(X16k,N/2); %16点 IFFT[X16(k)]得到 x16(n)subplot(3,2,2);stem(n,xn,'.');title('(b) 三角波序列 x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]);k=0:1023;wk=2*k/1024;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]) ;k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');title('(c) 16 点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');title('(d) 16点 IDFT[X_1_6(k)]'); xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]);k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');title('(e) 32 点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]);n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32 点IDFT[X_3_2(k)]'); xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20]);运行结果图:实验三 用 FFT 对信号作频谱分析一.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用 FFT 。

相关文档
最新文档