垃圾焚烧发电厂自动控制系统的设计
城市生活垃圾焚烧发电厂控制系统概述
城市生活垃圾焚烧发电厂控制系统概述引言:垃圾焚烧技术兴起于西方国家,我国近些年来,在国家政策的推动下,垃圾焚烧技术也在不断完善并取得了长足的发展。
城市生活垃圾焚烧发电的过程是将各地区垃圾集中收集起来,统一运送到垃圾焚烧发电厂进行高温焚烧处理。
垃圾在高温焚烧下产生高温蒸汽,高温蒸汽推动汽轮机的转动,通过汽轮机的转动产生所需要的电能资源。
本文概述了垃圾焚烧发电厂热工控制工艺流程、系统构成、自助控制手段及控制系统配置等内容,为人们了解垃圾焚烧发电作为参考。
一、工艺流程垃圾焚烧发电厂主要由垃圾焚烧系统、余热利用系统、烟气处理系统、污水处理系统等组成。
市区内的垃圾通过垃圾车将生活垃圾运送到发电厂内,第一步准备垃圾,进门前需通过称重计量设备进行称重,然后统一指挥车辆将垃圾卸入垃圾池并充分发酵;第二步焚烧垃圾,通过垃圾抓抓斗将垃圾放入焚烧炉内进行焚烧,焚烧后产生的热量需要经过余热锅炉将其回收,回收后的热量转化为高温蒸汽用于汽轮机发电;第三步处理废物,通过烟气净化系统将废气脱硫脱硝、除尘来去除有害物质后排入大气;将垃圾焚烧产生的炉渣经过筛检后,用汽车送到填埋场进行填埋;收集的飞灰通过烟气系统净化后进行填埋;垃圾渗滤液在场内通过处理达到综合排放标准后,再排放到市政污水管路内。
二、垃圾发电厂自动控制方式根据工艺流程的特点,可以采用分散控制系统对垃圾焚烧流程、汽轮发电机过程以及热力系统进行集中监控,在中央控制室内主要以显示器、键盘、鼠标等人机交互设备,对焚烧炉、发电机等设备集中进行监控和管理。
为了防止分散控制系统出现故障的情况,在中央控制室主控制台上应设置紧急按钮,以便进行紧急停炉、停机操作。
在集中控制室采用工业电视监视系统,对运卸垃圾区、焚烧炉燃烧区、锅炉汽包水位等进行监控。
对于地衡系统、化学水处理系统、除尘等辅助系统,在操作区域直接设置独立的监控设备和人机操作接口,便于对启动、调整设备和设备异常情况及时对其进行监控和操作。
垃圾焚烧电厂SIS系统的设计与实施
垃圾焚烧电厂SIS系统的设计与实施
最近几年,作为新兴的环保产业的重要组成部分,垃圾焚烧发电产业在我国得到了飞速的发展。
现在的垃圾焚烧电厂在生产中已经普遍使用了可编程逻辑控制器PLC和集散控制系统DCS,过程控制的自动化水平已经处于较高的水平,但是还存在着生产调度管理和现场生产之间数据不能方便地交互和共享,企业整体信息化水平不高的问题。
为了提高垃圾焚烧电厂的信息管理与自动控制一体化水平,在全厂范围内实现生产过程的优化管理,在垃圾焚烧电厂中配置已在我国电力系统得到广泛应用的厂级监控信息系统SIS (Supervisory Information System)符合当前发展的需要。
论文简要介绍了垃圾焚烧发电产业在我国的发展,从现场的实际需要和技术的可行性方面阐述了SIS系统在垃圾焚烧发电厂的发展前景。
论文对SIS系统的概念的提出和发展过程进行了介绍,依托具体的工程项目,研究了SIS系统构成、硬件配置选择、网络拓扑结构、实时数据库平台、容错服务器技术等关键性问题,对项目中采用的SiPHD工业历史数据库软件系统的性能特点及使用情况、Stratus容错服务器及其使用的连续处理技术进行了详细的介绍。
根据项目的实际情况和现实需求,开发了一系列的应用功能和性能计算模块,并在工程项目中进行了实际的应用和效果检验。
最后,论文对项目实施的效果进行了评价,对在项目实施过程中发现的问题进行了探讨。
垃圾焚烧发电厂烟气处理自动控制系统的设计及应用
生 活 垃 圾 对 环 境 的 污 染 已 成 为 一 个严 干 态 部 分 回收 ,部 分送 人 除尘 器 ,以 达到 除 输 灰模 块 。(4)控 制模 块 。
峻 的 社 会问 题 ,对其 处 理 应 遵 循 “减 量化 、 尘和 脱硫 的 目的。石灰浆 主要 化学 反应为 :
自动 控 制 系 统 可 以 按 照定 时 和 差 压 两
CO +N 0 一 N2+CO2
整 个SNcR脱硝 系统是 按 照如下 四个模 块 进 行设 计 :(1)稀 释 水模 块 。(2)计 量混 合 模 块 。(3)喷 射模 块。(4)控制模 块 。还 原剂 的 需 要量取 决于在 连续 反应温 度下需 要 去除 的 NOx的数 量 。在 自动 模 式下 ,还 原剂 量 设 定 值 通 过 氮氧 化合 物{宅制 器实现 。该控 制 器 由 平行 连接 的两 个P调 节器组 成 ,一个P调节 器 平均 每 半 小 时接 收 氮 氧化 合物 ,另 一个 P调
计的主要 技术特点及应用成果,为垃圾 焚烧发电厂烟气净化处理提供参考。
关键词:垃圾焚烧 烟气净化 SNCR 石灰浆 活性炭 布袋除尘 飞灰固化
中图分类号 :TK32
文献标识码 :A
文章编号:1674-098X(2013)02(c)-0070-01
1 简述
生 成稳 定 的硫 酸盐 及 氯化 盐 ,生 成 的产物 以 进行 设 计:(1)箱 体模 块 。(2)清 灰模 块 。(3)
任 务 。
模 块 。(5)酸 洗模 块 。(6)控 制 模 块 。进 喷雾
布袋清 理 出的 飞 灰送 入储仓 后 ,由 固化
塔的 稀 释水是 通 过喷 雾塔 出口烟 气温 度来 自 系统 把 飞 灰 、水 泥 、螯 合剂 及 水在 螯 合 混炼
基于PLC的垃圾焚烧炉控制系统的设计
基于PLC的垃圾焚烧炉控制系统的设计[摘要]垃圾焚烧的控制是一个典型的过程控制,目前用于过程控制的主要有简单的单回路仪表控制、工控机(IPC)、可编程控制器(PLC)以及DCS。
其中,可编程控制器具有更强的抗干扰能力和良好的系统稳定性,并且具有体积小,编程简单,更容易为操作人员所接受的特点。
本文采用可编程控制器作为系统控制核心,以软件设计为主.详细论述焚烧炉系统的顺序控制及燃烧过程控制的软件实现过程。
[关键词]单回路仪表控制;工控机(IPC);可编程控制器(PLC);A/D近十年来.我国城市垃圾产生量以平均每年8%-10%的速度增长,有一些城市,如北京的增长率更是达到15%-20%。
据1998年调查,全国垃圾的历年堆存量已经达60多亿吨,侵占土地面积多达5亿平方米,有200多座城市陷于垃圾包围之中,且有114的城市已发展到无适合场所堆放垃圾,以至于城市把解决垃圾的途径延伸到农村。
导致了城乡结合带区域环境恶化。
危及我国二十一世纪的可持续发展战略。
随着居民生活水平的提高,城市垃圾中有机物、可燃物、可回收利用物以及可利用价值均有较大增长.城市垃圾的处理直接关系到城市的形象,居民的身心健康,社会经济的可持续协调发展。
焚烧技术具有减量化、无害化及资源化等优点,随着城市建设的发展和城市规模的扩大,工业生产规模的不断扩大.城市人口数量剧增,垃圾产量也快速递增,使原有的垃圾填埋场地也难于寻找,采取垃圾焚烧方法,可使垃圾减容85%以上,最大限度地延长现有垃圾填埋场的使用寿命。
焚烧技术可以极大解决城市同体垃圾处理难的问题,但它同样面临着一个如何提高焚烧炉监控水平、运行管理水平、燃烧稳定性,最终实现安全、环保、经济优化运行的关键问题。
现代科学技术的飞速发展给传统的焚烧技术、燃烧过程控制技术带来了新的活力,展示了一个广阔的前景.通过数据库技术、网络技术、智能控制技术、数值模拟、专家系统,构建起焚烧热力系统的智能控制与信息网络平台是今后垃圾焚烧处理技术的发展方向。
垃圾焚烧发电厂烟气处理自动控制系统的设计及应用
垃圾焚烧发电厂烟气处理自动控制系统的设计及应用摘要:该文结合垃圾焚烧发电厂烟气处理系统的设计及应用,介绍了SNCR、石灰浆、活性炭、布袋除尘、飞灰固化等烟气净化系统自动控制设计的主要技术特点及应用成果,为垃圾焚烧发电厂烟气净化处理提供参考。
关键词:垃圾焚烧烟气净化SNCR 石灰浆活性炭布袋除尘飞灰固化1 简述生活垃圾对环境的污染已成为一个严峻的社会问题,对其处理应遵循“减量化、无害化和资源化”原则。
通过焚烧发电处理生活垃圾是目前普遍采用的方法,但焚烧产生的烟气中含有大量的污染物,如不经控制和处理直接排放,会对周围环境造成严重的污染。
因此,生活垃圾焚烧工程的关键是焚烧控制和烟气处理,烟气达标排放是首要任务。
2 控制策略的设计我公司拥有4套处理能力为600t/天的马丁SITY2000垃圾焚烧炉。
其烟气处理系统采用半干式烟气处理装置,包括以下几个部分:SNCR、石灰浆、活性炭、布袋除尘、飞灰固化等。
2.1 SNCR的自动控制SNCR脱硝系统是把尿素稀溶液做为还原剂喷入炉膛温度850-1100℃的区域,还原剂迅速热分解出NH3并与烟气中的NOx进行反应生成N2和H2O,该方法以炉膛为反应器。
主要化学反应为:(NH4)2CO→2NH2+CONH2+NO→N2+H2OCO+NO→N2+CO2整个SNCR脱硝系统是按照如下四个模块进行设计:(1)稀释水模块。
(2)计量混合模块。
(3)喷射模块。
(4)控制模块。
还原剂的需要量取决于在连续反应温度下需要去除的NOx的数量。
在自动模式下,还原剂量设定值通过氮氧化合物控制器实现。
该控制器由平行连接的两个P调节器组成,一个P调节器平均每半小时接收氮氧化合物,另一个P调节器平均每天接收氮氧化合物,这些平均值均为实际值。
除氮氧化合物的平均值外,两个调节器均还会收到设定值,设定值为要得到的氮氧化合物值的90%左右。
两平均值每三分钟更新一次,P调节器显示的是所要达到的氮氧化合物设定值的最大偏值,用作计算还原剂量的依据。
基于PLC的垃圾焚烧炉控制系统的设计
塑!篁拦堡主堑墨生鲎堡堡苎茎王盟些墼茎丝塑篓型墨竺竺堡生圈4矗燃烧炉溢度控制系统糖辑窗口圈4-3E隶属函数编辑嚣界面图4-4EC隶属函数稿辑器界面圈4-5uQ隶属函数编辑器界面第四章燃烧过程的模期控制系统的设计图4-6IJR隶属函数编辑器界面隶属函数编辑窗口设定以上一节内容的隶属函数赋值表为依据的。
4.4.2模糊控制规则的设定田”镁糊规删辅辑器在如图4.7所示的模糊规则编辑器中提供了一个文本编辑窗口,用于规则的输入和修改。
模糊规则编辑器的菜单功能与前两种编辑器基本类似,在其视图菜单中能够激活其他的编辑器或窗口。
界面下部还有三个按钮,分别为删除规则、增加规则及修改规则。
在这个界面下编辑模糊规则是十分方便的,系统已经自动地把在FISEdit中定义的变量显示在界面的左下部。
在窗口中只需按照上一节中的控制规则输入到编辑器中即可。
4.4.3模糊规则观察器在模糊规则测览器中,以图形形式描述了模糊推理系统的推理过程,其界面如图4-8所示,可以在窗口中改变系统输入的数值来观察模糊逻辑推理系统的输出情况。
河海大学硕士研究生学位论文基于PLC的垃圾焚烧炉控制系统的设计翻4-8模糊规则观察嚣4.4.4模糊推理输入输出曲面观察界面翻4_9模糊推理,I入输出曲面观察界面模糊推理输入输出曲面观察界面如图4母所示.该窗口以图形的形式显示了模糊推理系统的输入输出的特性曲线,在该窗口内用菜单选项改变相应的参数可以来查看不同性质的图像。
本例中仅以E和EC作为输入,UQ作为输出为例。
输出QR的计算和以上类似就不作详细介绍。
利用MATLAB模糊控制箱,最终计算的出UQ的控制查询表,如表4-6所示。
垃圾焚烧发电厂系统组成及主要设备工作原理
生活垃圾机械炉排焚烧炉技术介绍
• 图1 炉排上垃圾燃烧的进程和烟气温度分布
生活垃圾机械炉排焚烧炉技术介绍
• 炉排上垃圾燃料堆层的着火燃尽情况,很大程度上取决于炉膛的结 构设计是否与燃料的理化特性相适应。对于任一特定性质的燃料, 原则上都应进行专门的设计,以求达到尽快着火、彻底燃烧而又不 超温烧结的目的。用于焚烧有相当热值、品质比较均匀稳定的垃圾 燃料,有较好的效果。
且大部分从国外进口,只有少部分由国内制造商制造。国内应用最 广的型式有:逆推式炉排炉、顺推式炉排炉及往复翻动式炉排炉等。 国外著名的制造商有:日本三菱、比利时西格斯(SEGHERS)、 法国ALSTOM(其SITY2000焚烧技术已被德国马丁公司收购)、德 国DBA、日本田熊、日本日立造船等。国内的制造商有:杭州新世 纪、温州伟民、重庆三峰和深能源环保等。
3 、推料器 推料器是通过往复运动为焚烧炉输送燃料(圾)的装置. 其结构如图2所示。
介绍推料器:
推料器向前移动,将垃圾溜管内的垃圾推送至干燥炉排,停留几秒钟后返回。 当推料器退到未端时.中于重力的作用,上面的垃圾落入刚刚腾出的空间.然 后由推料器的下一个前进动作推送物料叫。推料器下部设置料斗和溜管. 用于收集在推料器部分产生的渗沥液。 每个焚烧炉一般有多台推料器.各推料器由单独的液压缸驱动.驱动速度由 给料系统决定。推料器既可远程控制也可就地控制。选择就地控制时.通 过就地控制柜上的前进按钮、后退按钮和停正按钮控制推料器的运动:当 选择远程控制时DCS控制界面提供同操、自动和于动3种控制模式如图3 所示。
三、炉排系统
生活垃圾机械炉排焚烧炉技术介绍
• 1 机械炉排焚烧炉技术 • 1.1 机械炉排焚烧炉 • 炉排型焚烧炉的主要特征是被处理的垃圾堆放在炉排上,焚烧火焰
生活垃圾焚烧发电厂垃圾储存系统布置设计
生活垃圾焚烧发电厂垃圾储存系统布置设计摘要:生活垃圾焚烧发电是目前国家支持发展的垃圾处理方式之一,我国城市垃圾具有含水量高、热值低的特点,垃圾储存系统对焚烧厂运行具有很大影响。
本文以我国西南地区某垃圾焚烧发电厂垃圾仓布置为例,说明了垃圾储存系统设计的方法及布置方式。
关键词:垃圾焚烧;垃圾仓;垃圾吊截止2011年底,全国共建设垃圾焚烧厂133座,城市生活垃圾焚烧处理量占清运总量的17.3%[1]。
国家“十二五”规划中提出,到2015年,全国城镇生活垃圾焚烧处理设施能力达到无害化处理总能力的35%以上,其中东部地区达到48%以上。
我国生活垃圾以易腐有机质为主要成份,普遍存在含水量大,热值低的特点,垃圾入厂后需要在垃圾仓内堆存、发酵,降低水分、提高热值后方可入炉燃烧,因此存储垃圾的垃圾仓的设计对垃圾焚烧状况有着很大的影响[2]。
本文以我国西南地区某垃圾焚烧发电厂垃圾仓为例,从工艺设计角度说明垃圾仓的一种布置方法。
1、项目概况本项目主要处理成都市区、二圈层区县生活垃圾,处理规模1800t/d,年处理垃圾65万t。
服务区内的城市生活垃圾用专用垃圾运输车辆,由市政环卫部门负责运入厂内。
垃圾运输车为车厢可卸式垃圾车,是在汽车底盘的基础上加装勾臂机构,配用垃圾专用集装箱改装而成。
主要运输垃圾的垃圾车外型尺寸长9.5m,宽2.5m,高4m,倾卸高度5m,最大满载重量32t。
2、卸料平台地磅房设置在厂物流入口,垃圾运输车经称重计量后通过高架车道进入卸车平台,垃圾卸料平台为高位、封闭布置。
为增加垃圾仓有效容积,减少地下工程量,一般将卸料平台的高度抬高,本项目标高设置为7m,卸料平台下的空间设置化学水处理站、垃圾渗沥液收集和回喷系统、空压机站、机修间和仓库等。
卸料平台的长度与垃圾仓及厂房整体长度有关,宽度取决于垃圾运输车的行车路线及车辆拐弯半径,以一次调头就可驶向预定的垃圾门为原则,宽度一般为最大垃圾车转弯半径的2到4倍。
2023年盐城垃圾焚烧发电厂DCS和DEH一体化解决方案
盐城垃圾焚烧发电厂DCS和DEH一体化处理方案盐城垃圾焚烧发电有限企业旳垃圾焚烧发电厂工程目前是按2x400t/d循环流化床垃圾焚烧炉(主蒸汽蒸发量为75t/h)及2x15MW抽凝式汽轮发电机组考虑旳;最终容量是按4x75t/h旳CFB锅炉十2x15MW抽凝式汽轮发电机组十1x6MW背压式汽轮发电机组来设计旳.该项目旳一种重要特点就是采用了""DCS(北京和利时系统工程股份有限企业符合国际发展时尚旳第四代DCS系统HOLLiAS/MACS),来控制整个垃圾焚烧发电厂旳各个重要部分,其中包括:2台四川锅炉厂生产旳次高压(5.3MPa)次高温(483℃)循环流化床垃圾焚烧炉及其辅机系统,2台武汉汽轮机厂生产旳次高压次高温抽凝式汽轮发电机组旳DEH,热网,电气,化水,输煤,除灰,除尘,除渣,炉内加药等部分.需要尤其强调指出旳是:DCSDEH""DCSDEH下面重点简介盐城垃圾焚烧发电厂旳DCS和DEH及其重要特点.盐城垃圾焚烧发电有限企业为何要采用同一套控制系统来实现DCS和DEH旳功能重要是根据母管制旳垃圾焚烧机组旳运行特点进行分析后考虑旳.11母管制旳垃圾焚烧炉存在旳突出问题是:每一台垃圾焚烧炉旳主蒸汽压力都不稳定.这是由于进入各台垃圾焚烧炉旳垃圾热值不稳定所导致旳.众所周知,国外旳垃圾是分类旳,因此热值比较稳定.而国内垃圾基本上不分类,因此尽管进入垃圾焚烧炉旳垃圾给料量是可以控制旳,不过每一时刻进入垃圾焚烧炉旳垃圾热值是完全不确定旳;尤其是在天气潮湿旳状况下,垃圾热值波动很大,从而导致每一台垃圾焚烧炉旳主蒸汽压力都不稳定;进而影响到整个主蒸汽母管旳压力也总是不能稳定.这就会严重影响汽轮机旳正常运行.2DCS尽管母管制旳垃圾焚烧炉由于垃圾旳热值不确定而导致主蒸汽压力不稳定,不过每台垃圾焚烧炉旳主蒸汽温度,采用DCS后可以稳定控制.这是由于现代化旳垃圾焚烧炉绝大多数采用了喷水减温旳方案.而实践证明,DCS系统采用串级控制技术后,只要控制减温水旳调整阀质量比很好,泄漏量小,DCS是可以成功地把垃圾焚烧炉旳主蒸汽温度控制在规定旳范围之内.21这是由于DCS和DEH采用一体化处理方案后,汽轮机可以采用滑压运行方案.而由于DCS和DEH是一体化旳,因此,通过DEH可以以便地对汽轮机旳调速汽门旳开度加以多种形式旳控制;并且可以对汽轮机旳机前压力变化范围和变化速率加以限制,从而保证汽轮机旳安全运行.(2由于汽轮机旳汽缸壁厚薄是很不均匀旳,因此对于主蒸汽温度变化是十分敏感旳.当主蒸汽温度变化剧烈时,由于热胀冷缩旳原因,会导致汽轮机各部分旳热应力严重地不均匀;甚至会导致汽缸壁出现裂缝或者导致大轴弯曲.而采用一体化旳DCS和DEH 后,垃圾焚烧炉旳主蒸汽温度通过DCS系统,可以控制得十分稳定;同步,汽轮机自身各点旳温度,在滑压运行方式下,也可以通过DCS系统得到严密旳监控并维持稳定,从而为汽轮机旳安全运行提供了可靠保证.3 ""母管制机组是指所有并列运行旳锅炉产生旳蒸汽都送到同一根蒸汽母管上;而所有并列运行旳汽轮机都从同一根蒸汽母管上获得蒸汽.而单元制机组是指一台锅炉旳蒸汽只供应对应旳一台汽机;它们互相之间旳关系是固定旳;下面首先讨论单元制机组旳"协调控制"有关概念.1""在大中型火力发电厂,单元制机组有两个重要参数必须充足重视:它们是汽轮发电机组发出旳有功功率N(电负荷)和汽轮机旳机前压力Pt.所谓单元制机组旳协调控制系统(CCS)就是指:单元制旳锅炉和汽机,在DCS系统旳控制下,共同接受外界负荷指令;共同来响应外界负荷(一般是指电负荷)旳变化.共同来维持机前压力Pt旳稳定.详细来说,当单元制机组处在协调控制运行方式时,汽轮机在DEH系统控制下,处在功率控制状态;而锅炉燃烧系统在DCS系统控制下,接受一种代表能量旳前馈信号(一般是来自汽轮机旳Pts*P1/Pt)加速对负荷响应旳速度;从而导致在锅炉和汽机旳共同努力下,既保证了机组发出旳功率N满足了外界负荷旳规定;同步又保证了机前压力Pt 旳稳定.这就是单元制机组协调控制系统(CCS)最基本旳概念.在此基础上,单元制机组又可以派生出"炉跟机" (锅炉跟随)和"机跟炉" (汽机跟随)等运行方式.它们都和由谁来控制单元制机组旳两个重要参数:机组发出旳有功功率N(电负荷)和汽轮机旳机前压力Pt有亲密关系.下面作深入旳分析.2""当单元制机组旳锅炉和汽轮机各司其职:汽轮机在DEH系统控制下,负责接受外界负荷指令,通过控制调速汽门旳开度变化保证机组发出旳功率N满足外界负荷旳需要;而单元制机组旳锅炉,此时处在"跟随"状态,在DCS系统控制下,通过控制燃料量和风量来负责维持汽轮机旳机前压力Pt旳稳定.这种运行方式一般就称为"炉跟机" (锅炉跟随).简而言之,此时汽机调功,锅炉调压.3""当单元制机组旳旳锅炉在DCS系统控制下,负责接受外界负荷指令,通过控制燃料量和风量来保证机组发出旳功率N满足外界负荷旳需要;而单元制机组旳汽轮机,此时处在"跟随"状态,在DEH系统控制下,通过控制调速汽门旳开度变化来维持汽轮机旳机前压力Pt旳稳定.这种运行方式一般就称为"机跟炉" (汽机跟随).简而言之,此时锅炉调功,汽机调压.4""严格地讲,只有在单元制机组里,才有"机跟炉"旳概念.而在母管制机组里,我们是借用了单元制机组旳"机跟炉"旳物理概念. 众所周知,在垃圾焚烧发电厂,但愿根据锅炉旳容量,尽量多地焚烧垃圾(燃料);而汽轮机,此时往往处在滑压运行状态;汽轮机旳DEH 系统重要是把主蒸汽压力,控制在一定范围之内;并且严格限制汽压旳变化速率.而汽轮发电机组旳发电量(功率),完全取决于在DCS系统控制下旳垃圾(燃料)焚烧后所释放旳能量.即焚烧多少垃圾就发多少电.因此,在垃圾焚烧发电厂,本质上也是锅炉调功,汽机调压.和单元制机组旳"机跟炉"旳物理概念十分相似.尤其值得指出旳是:母管制旳垃圾焚烧机组"机跟炉"运行方式,要考虑旳问题要比单元制机组"机跟炉"运行方式复杂得多.由于单元制机组,只要考虑一台锅炉和一台汽机旳关系;而母管制旳垃圾焚烧机组,必须同步考虑所有旳垃圾焚烧炉和所有旳汽轮机之间旳协调控制问题.而锅炉是由DCS系统来控制旳;汽轮机旳调速汽门是由DEH 系统来控制旳.因此只有DCS和DEH实现一体化后才能顺利处理多炉多机互相之间旳协调控制和通信畅通旳问题.""盐城垃圾焚烧发电厂旳母管制旳垃圾焚烧机组目前是按2x75t/h 循环流化床(CFB)垃圾焚烧炉十2x15MW抽凝式汽轮发电机组筹建旳;主蒸汽压力5.3MP,主蒸汽温度485℃.而未来旳最终容量是按4x75t/h旳CFB锅炉十2x15MW抽凝式汽轮发电机组十1x6MW背压式汽轮发电机组来考虑旳.因此需要考虑目前和未来两种"机跟炉"运行方式: 1222x75t/h CFB2x15MW""由于一台75t/h CFB炉产生旳蒸汽量恰好满足一台15MW汽轮机旳进汽量,互相匹配;因此比较理想旳控制方案是:采用主蒸汽单母管分段运行方式.即正常状况下,主蒸汽母管分为两段,两段之间旳隔离门是关死旳.此时#1炉给#1机供汽;#2炉给#2机供汽;和单元制机组同样.因此可以采用单元制机组状况下旳"机跟炉"控制方案.此时DCS和DEH旳分工如下:◆DCS系统全面负责:◆1:目旳是尽量多地焚烧垃圾;◆2:风量和燃料量应当匹配,炉膛压力应当稳定;◆3:汽包水位应当在正常范围内;由于汽轮机采用滑压运行方式,因此必须保证主蒸汽温度稳定;并且满足给定值旳规定;◆4;并且要保证所有旳辅机系统旳正常运行;◆5(ETS系统)功能和汽轮机各部分温度,压力,真空,润滑油压旳监测;◆6;以及对热网系统温度,压力,流量旳控制等.◆DEH系统全面负责:◆1:包括转速目旳值给定,转速变化率给定,升速曲线旳生成及选择,转速不等率和不调频死区设定,频率同期旳自动或手动控制等.正常时保证汽机转速3000r/分;◆2在"机跟炉"运行方式下十分有用.包括调速汽门开度值给定,开度变化率给定,阀门开度测量及在多种运行方式下调速汽门旳控制等.当汽轮机采用滑压运行方式时,DEH可以让调速汽门全开或者让调速汽门固定开在某个开度上.◆3包括机前主汽压力给定,主汽压力测量及大选逻辑,压力PI调整器.该回路构成对机前主汽压力旳控制,维持汽轮机机前压力稳定;可以和功率控制切换.◆4在协调控制和"炉跟机"运行方式下采用.包括目旳功率值给定,功率变化率给定,一次调频对功率给定旳修正,升负荷曲线旳生成等.实现了功率闭环控制.◆5OPC接受发电机出口断路器旳跳闸信号,负荷功率不平衡和转速103%n0三种信号,经逻辑运算后发出快关调速汽门旳控制信号.◆6包括最大负荷限制和限制值给定;滑压运行方式主蒸汽压力变化速率旳限制;汽压和真空旳测量,保护值旳设定,低汽压及低真空减负荷等回路.◆7 包括次序阀函数,单阀函数生成,系数设置,总阀位修正等,实现次序阀/单阀切换.◆8 LVDT伺服放大器与电液伺服阀,油动机,位移反馈(LVDT)构成一种电液随动系统.伺服放大器除将输入阀位信号放大后去控制电液伺服阀之外,还对LVDT进行调制,解调,变为油动机旳位移反馈信号,完毕对油动机位置旳闭环控制.◆DEH系统控制下旳汽轮机滑压运行方式旳重要特点:当汽轮机采用滑压运行方式时,DEH系统一般让汽轮机旳调速汽门全开或者让调速汽门开度固定不变(例如保持90%旳开度).此时汽轮机旳运行有如下特点:(1)汽轮机旳机前压力和流量可以大范围变化,上下"滑动".机组带负荷(功率)旳能力完全取决于进入垃圾焚烧炉燃料量(垃圾量和给煤量)旳多少;因此常称为"机跟炉"运行方式.(2)由于DEH和DCS是一体化旳,因此在滑压运行方式下旳许多汽轮机保护可以以便地实现.如机前主汽压力旳变化范围和变化速率可以设置;从而可以保证汽轮机在滑压运行方式下旳稳定性;防超速保护(OPC)可以以便地实现;从而可以控制汽轮机旳超速现象;此外,定压运行方式和滑压运行方式可以以便地切换.这些都是多回路控制器(505E)难以做到旳.(3)尽管汽轮机旳机前压力和主蒸汽流量在大范围变化,不过在DCS和DEH系统旳严密监控下.汽轮机旳进汽温度一直维持额定值(485℃)不变.(4)由于采用滑压运行方式时,汽轮机旳调速汽门全开或者靠近全开,因此汽轮机旳节流损失大为下降,热效率大为提高;并且可以一直维持汽轮机各部件旳金属温度差异不大. 2434x75t/h CFB2x15MW1x6MW""假如4台锅炉同步运行,那么产生旳蒸汽量就过多.因此大多数状况是3台锅炉和3台汽轮机以母管制方式并列运行(此时本来提成2段旳母管之间旳隔离门应当全开).此时DCS和DEH系统旳控制方略是:(1)DEH系统(或者DCS系统)令6MW背压式汽轮机调速汽门全开,带满负荷(100%)运行.此时6MW背压机旳运行效率最高.(2)剩余旳2台15MW汽机中,其中一台15MW汽机可以采用滑压运行方式.不过调速汽门原则上不能全开(全开有也许不保证6MW背压式汽轮机满负荷运行).由DEH系统根据现场调试旳经验,设置在某一开度下.假如外界热负荷很大,那么调速汽门开度可以设置在90-95%范围内;假如外界热负荷不大,那么开度应当设置在70-80%范围内.(3)此外一台15MW汽机在DEH控制下,可以考虑采用"调压"运行方式.即此时主蒸汽母管压力,在这台15MW汽机旳DEH控制下,负责维持主蒸汽母管压力在一定范围内.这样可以增长主蒸汽母管压力旳稳定性,保证各台汽轮机旳安全稳定运行.综上所述,在未来4炉3机旳状况下,在DCS系统旳控制下,参与运行旳3-4台锅炉可以尽量多地焚烧垃圾;全厂机组总旳带负荷旳能力取决与所有参与运行旳锅炉总旳燃料量(垃圾量和给煤量);而多台锅炉燃烧后产生旳总能量,通过DEH系统,在多台汽轮机之间进行合理旳负荷分派;总旳原则是:优先考虑背压机带满负荷;其中有一台汽机要维持主蒸汽母管压力在容许旳一定范围内波动;其他旳汽轮机可以采用滑压运行方式(调速汽门不能全开).因此,从本质上来讲,多炉多机旳垃圾焚烧机组,还是"机跟炉"旳运行方式---由多台锅炉共同来负责带负荷(调功);而由一台汽轮机负责调压(其他旳汽轮机采用滑压运行方式).多炉多机旳垃圾焚烧机组,假如但愿采用热效率比较高旳"机跟炉"旳运行方式,DCS 和DEH原则上应当采用一体化处理方案.由于多台锅炉和多台汽轮机之间旳协调控制有大量旳控制信息需要互换;而锅炉是由DCS控制旳;汽轮机是由DEH控制旳,假如不采用一体化处理方案,DCS和DEH不是同一套分散控制系统,互相之间必然需要通过"网关"才能实现通信协议旳转换和数据旳双向互换.而"网关"是高速数据公路上旳"瓶颈";"网关"旳故障率也是非常高旳,"网关"一旦出问题,往往需要DCS和DEH企业技术人员同步来才能处理问题.因此,DCS和DEH采用一体化处理方案是明智旳选择.。
垃圾焚烧发电厂烟气净化处理自动控制系统的设计及应用
垃圾焚烧发电厂烟气净化处理自动控制系统的设计及应用摘要:与生活垃圾填埋技术、随地吐痰技术等相比,家庭垃圾焚烧技术具有先进技术、占地面积小和能源回收等优点,因此在家庭垃圾处理中得到广泛应用。
但是,由于生活垃圾的组成复杂,烟气可能产生有毒和有害的污染物,如酸性气体(SO2、NOx和HCl)、灰尘、重金属等。
对生态环境和人民健康构成直接威胁。
因此,必须在排放烟气之前对其进行处理。
控制烟气污染的技术是有效控制家庭垃圾焚烧对电厂烟气污染的关键。
本文结合工程实例探讨了生活垃圾焚烧产生的烟气管理过程,通过应用该过程,提高了烟气管理水平和环境效益。
关键词:垃圾焚烧发电厂;烟气净化处理;自动控制引言在城市生活垃圾处理方面,与传统的处理技术相比,垃圾填埋、填埋场和堆肥、废物焚烧模式、严格控制污染物排放、占地面积小以及能源回收等诸多好处得到广泛承认。
然而,由于废物构成在人们日常生活中的复杂性,废物焚烧产生的烟气含有大量有害气体,例如一氧化碳和二氧化硫,以及各种重金属和二恶英因此,必须处置废物焚烧产生的气体,并在排放之前遵守相应的控制标准。
烟气处理系统包括脱氮、脱硫和重金属处置装置等。
它广泛应用于中国的主要废物焚化中心,有效管理烟气污染问题。
1焚烧垃圾的成分必须先对家庭废物进行分类,然后才能进入发电厂进行焚烧。
全国各地都实行了废物分类,许多城市强调废物分类,并建立了良好的生产链,当地居民积极参与废物分类管理,这大大有助于控制在日常产生的家庭废物中,物质种类繁多,如果不加以分类,焚化可能对焚化产生的废气产生更大的影响。
最常用的生活垃圾是电池、灯泡、玻璃制品和陶瓷制品。
此外,一些废物来自工业废物,包括油漆罐和旧建筑材料,这可能对焚烧产生不利影响。
在同一烟气处理技术下,分类废物比未分类废物低得多,稳定性也高得多。
当废物被长时间填埋时,会被雨水侵蚀,有机物含量增加,在焚烧时很难降解当发电厂使用垃圾焚烧发电时,这一比例通常为3 : 7,研究表明30%的燃煤产生的废气最少。
垃圾焚烧炉自动燃烧控制系统设计与实现田贵明
垃圾焚烧炉自动燃烧控制系统设计与实现田贵明摘要:垃圾焚烧炉由于垃圾成分复杂及热值不稳定,导致其燃烧控制滞后时间长,焚烧炉燃烧系统多处需要手动控制运行。
本文提出适合垃圾焚烧炉运行工况的自动燃烧控制(ACC)系统,该控制系统包括蒸发量控制模块、垃圾料层控制模块、焚烧炉炉内温度控制模块、炉渣热灼率控制模块、氧量控制模块,通过给料速度、炉排速度、燃烧用风量及垃圾层厚度计算等实现了垃圾焚烧炉的自动燃烧控制。
将该ACC系统应用于某垃圾焚烧发电厂,实际运行结果表明,ACC系统能够实现垃圾焚烧炉稳定燃烧,环保参数无波动,生产指标符合要求。
关键词:垃圾焚烧炉;自动燃烧控制;设计引言近几年来,城市规模和居住人口不断扩大、增多,相应的也产生了更多的城市生活垃圾。
对于城市发展而言,如何处理城市生活垃圾是一个需要予以着重关注的问题。
有关城市生活垃圾处理的方法多以填埋、焚烧及堆肥为主。
其中垃圾焚烧的处理效果十分显著,借助垃圾焚烧发电,还能体现出绿色、环保、高效的优点。
1炉排炉垃圾焚烧发电厂燃烧自动控制系统的基本概况炉排炉垃圾焚烧的认识:炉排炉垃圾焚烧是一种垃圾焚烧处理的技术,炉排型焚烧形式多样化、使用范围广泛,占世界垃圾焚烧发电、供热市场的80%以上。
最显著的优势是技术成熟,运行稳定、安全、可靠,有害气体排放量少,适应性高,有利于大规模集中处理垃圾,在焚烧之前大部分垃圾不需要进行预处理,可以直接进行焚烧,操作便捷。
但是,炉排炉垃圾焚烧也存在产生含水率高的污泥、大件生活垃圾不能直接焚烧等弊端。
燃烧自动控制系统的原理:燃烧自动控制系统是针对传统燃烧方式中人工点火操作过程中,生产条件差,劳动强度大,安全性低,人身伤亡事故发生频繁的现况;以及缺乏事故检测预警、实时监测燃烧状况、判断处理异常现象能力的现状,研究和设计出的一套全自动化的燃烧控制系统,可以有效提高焚烧和发电的可靠性和安全性、实现产品质量和经济效益。
燃烧自动控制系统的主要目的是保证垃圾的稳定燃烧,对垃圾燃烧的给料、进风、翻动频率等变量实施自动化的控制及操作;蒸汽流量是反映燃烧自动控制系统运转状况的重要参数。
生活垃圾焚烧炉ACC系统设计
生活垃圾焚烧炉ACC系统设计
卫鑫;王富有;袁海锋
【期刊名称】《自动化仪表》
【年(卷),期】2024(45)6
【摘要】往复式炉排的自动燃烧控制(ACC)系统是生活垃圾焚烧炉的核心,是垃圾发电厂成为智慧电厂所不可或缺的组成部分。
为了实现垃圾发电厂的运行智能化、提升运行经济性,对ACC系统进行了研究和设计。
通过对垃圾发电厂燃烧过程的机理分析,以及对以往国外ACC系统的研究,结合国内实际运行经验,创新性地提出了一种针对炉排燃烧过程的自适应调整方式。
对燃烧系统进行数据分析和挖掘。
以负荷和氧量作为目标值、炉温作为目标范围,采用渐进预估补偿的方式,利用多维变量的整体变化趋势作为目标值动态变更依据,实现对炉排系统侧的控制。
在此基础上,进一步对风系统侧作协调适应调整,从而消除垃圾焚烧过程的大延迟、大滞后影响;同时,加入了多变量拟合下的层厚软测量值作为修正,以实现全自动运行。
ACC系统的实际应用提升了全厂智能化水平、提高了蒸汽产量、提升了经济效益。
多变量控制方式对其他火电燃烧的优化有一定的借鉴。
【总页数】6页(P33-37)
【作者】卫鑫;王富有;袁海锋
【作者单位】江苏省热工过程智能控制重点实验室;南京科远智慧科技集团股份有限公司
【正文语种】中文
【中图分类】TH865
【相关文献】
1.生活垃圾焚烧炉控制系统设计
2.机械炉排垃圾焚烧炉ACC自动燃烧控制技术的探讨
3.三菱过程PLC在垃圾焚烧炉排ACC系统中的应用
4.垃圾焚烧炉ACC系统给料速度和一次风配风逻辑优化探讨
5.专项中医护理查房在提升中医护理质量中的效果
因版权原因,仅展示原文概要,查看原文内容请购买。
垃圾焚烧发电厂集中控制系统的设计
一、系统需求分析
首先,我们需要对垃圾焚烧发电厂的工艺流程和设备进行深入了解,以便明 确控制系统所需满足的需求。一般而言,垃圾焚烧发电厂主要由垃圾接收、焚烧、 余热利用和发电等环节组成。控制系统需要确保整个流程的稳定、安全和高效运 行。
二、硬件设计
针对垃圾焚烧发电厂的工艺特点,我们设计了一套集中控制系统。该系统主 要由传感器、执行器、工业计算机(IPC)和监控系统组成。传感器用于实时监 测垃圾进料、炉膛温度、烟气排放等关键参数;执行器则控制各设备的启停和调 节;IPC作为系统的核心,负责数据采集、处理和控制;监控系统则提供人机界 面,使操作员能直观地监视和控制整个工厂的运行。
七、结论
综上所述,垃圾焚烧发电厂集中控制系统的设计是一项复杂而又重要的任务。 通过深入分析工艺需求、合理选择硬件和软件、精心设计通信和安全措施以及节 能与环保问题,我们成功地构建了一套适用于垃圾焚烧发电厂的控制系统。该系 统可确保垃圾焚烧发电厂的稳定、安全和高效率运行,为环境保护和能源利用的 可持续发展提供了有力支持。
1、燃烧控制优化
在垃圾焚烧过程中,燃烧控制是关键。优化燃烧控制可以有效地降低烟气中 有害物质的排放。这可以通过提高燃烧温度、增加垃圾在炉膛中的停留时间、控 制炉膛内的氧气含量等措施实现。
2、除尘设备优化
除尘设备是烟气系统中最重要的组成部分之一。目前,常见的除尘设备包括 静电除尘器、布袋除尘器等。静电除尘器虽然除尘效率较高,但运行维护成本也 较高。布袋除尘器虽然初期投资较大,但其运行维护成本较低,且对二噁英等有 害物质的吸附效果较好。因此,在选择除尘设备时,应综合考虑除尘效率、运行 维护成本等因素。
垃圾焚烧发电厂集中控制系统 的设计
目录
01 一、系统需求分析
垃圾焚烧发电厂ACC自动控制调节的探索
垃圾焚烧发电厂ACC自动控制调节的探索[摘要]垃圾焚烧发电厂总体运行过程,ACC自动控制综合系统从属重要构成部分,只有确保系统维持稳定的运行状态,便需注重ACC自动控制综合系统实际调控水平的提升。
故本文主要探讨垃圾焚烧发电厂当中ACC自动控制综合系统相关调节方法,仅供业内相关人士参考。
[关键词]发电厂;垃圾焚烧;自动控制;ACC;调节;前言:针对垃圾焚烧发电厂而言,ACC的自动控制综合水平高低与否,调节方法运用得是否合理往往起着决定性作用。
因而,对垃圾焚烧发电厂当中ACC自动控制综合系统相关调节方法开展综合分析较为必要。
1、关于ACC自动控制的内部构成概述针对ACC自动控制综合系统内部构成,以一次及二次风、氧量、堆料装置、炉排、料层等自动控制各个子系统模块为主,实现对垃圾焚烧整个过程的自动化调控。
2、ACC的自动控制相关调节方法2.1在风量控制层面由一次的基础风及其可变风共同组成一次风的总风量。
一次的基础风,即结合目标负荷把总风量算出,总风量依照系数比例再次予以计算;针对一次的可变风,即结合目标的锅炉负荷与其实际负荷差值予以算出。
是前馈控制,属于一次的可变风量重要作用,提前结合实际负荷及其目标负荷相互间差异,对一次风量予以调整,负荷调整整个过程当中增加锅炉稳定性、快速性。
一次风的自动控制实施过程,主蒸汽的压力和通道下层部位烟温等对会影响到一次的可变风量实际调节效果,但主要影响因素为锅炉负荷。
实际负荷值超出目标值条件之下,一次的可变风即为负值[1];实际负荷值在目标值以下条件下,一次的可变风便属于正值。
当锅炉负荷持续改变,一次的可变风量随之波动,一次的总风量则可充分满足于锅炉当前工况。
针对一次风的自动控制,一次风温同样从属一方面影响因素,一次风温原有设定值是220~250℃,一次风温倘若达到所设参数值,可使得自动控制更具稳定性;一次风温倘若过于低,则对垃圾干燥较为不利,一次风逐渐进入炉膛当中,炉膛温度必然降低,对垃圾焚烧及其自动控制会产生不良影响。
MPC技术在垃圾焚烧发电厂自动燃烧控制的应用
MPC技术在垃圾焚烧发电厂自动燃烧控制的应用摘要:本文以MPC技术在某垃圾焚烧发电厂应用为例进行分析,介绍垃圾焚烧炉工艺原理及MPC控制内容,主要包括垃圾特性预测、垃圾透风特性建模、垃圾燃烧位置火焰图像识别、燃烧自动控制策略,重点介绍垃圾特性预测建模和垃圾燃烧位置火焰图像识别建模,并对典型控制逻辑进行了展示,为其它垃圾焚烧发电厂提MPC燃烧自动控制改造参考。
关键词:垃圾焚烧发电,MPC,燃烧自动0前言国内,因为自动化程度低,垃圾焚烧发电厂集控室普遍配置5-7人。
目前国内已经投产的400余座垃圾焚烧发电厂,能够实现焚烧炉燃烧自动控制的生产线极少。
在国内先进进口设备及其燃烧自动控制系统还不能实现燃烧自动控制的主要原因有:国内生活垃圾热值普遍偏低;垃圾分类刚起步,热值不稳定;南北气候差异较大;地区发展不平衡等。
针对国内垃圾焚烧发电自动化程度低,本文通过介绍MPC技术在国内某垃圾焚烧发电厂的应用,介绍一套适应国内现状的垃圾焚烧炉自动燃烧技术,由垃圾的燃烧特性、热值不稳定等,控制系统需结合理论与实践,运用模糊控制与智能控制思想。
MPC是一种多变量控制策略,其中涉及了过程内环动态模型,控制量的历史数值,在预测区间上的一个最优值方程J,最优控制量可由以上各量求出。
MPC最大的特点在于,相对于LQR控制而言,MPC可以考虑空间状态变量的各种约束,而LQR,PID等控制只能够考虑输入输出变量的各种约束,MPC可应用于线性和非线性系统。
1垃圾焚烧炉工艺本文垃圾焚烧炉主要由垃圾吊、料斗、溜槽、给料炉排、焚烧炉排、钢结构、灰斗、渗沥液斗、漏灰渣输送机、捞渣机、一次风机、二次风机、液压站、阀站、炉墙冷却风机、启动燃烧器等组成。
垃圾吊将垃圾从垃圾池抓起并投入料斗,由液压缸控制的进料斗挡板门可控制料斗和溜槽中的垃圾量。
溜槽内的垃圾通过给料系统小车的往复推送运动,送入焚烧炉炉膛内,挡板门起到疏导垃圾,防止垃圾搭桥堵塞。
焚烧炉排为垃圾焚烧设备的核心。
垃圾焚烧电厂顺序控制系统设计及实现
、
操 作 复
图 1
F ig 1
.
杂
一
、
人 员 配 置 精 简
。
垃 圾 焚 烧 电 厂 的 启 停 自动 化 是
.
顺 序控 制 系统 的分 层 结构
a rc
个 综 合 性 很 强 的 复 杂 的顺 序 控 制 系 统
.
要 合 理
La y e
re
d
h it e
c t u re o
f
s e
qu
e n c e c o n t ro
。
提高
取得 了
一
定 的经 济效益
:
关键词
:
垃 圾 焚烧 电厂
:
:
顺 序控 制 系统
画面设计
:
中 图分 类号
TK 32 3
文献标 志码
B
文 章编 号
:
10 0 4 9 6 4 9
.
4 (2 0 1 0 )0 2 0 0 6 4 0
. .
0
引言
随 着 分 散 控 制 系 统 (D CS ) 在 热 工 自动 化 领 域
…
。
简称 为
即机 组 级
功能组 级 和驱 动级
.
。
机 组
顺 序 控 制 系 统 是 自动 化 水 平 的 重 要
级 和 功能组 级 的程 序不 直接操作 现 场设备
所 有 指
标 志
。
令 都 由驱 动 级 发 出
.
。
典型 的机组 顺 序控制 系统分级
早期 的顺 序控制 系统有专 用 的嵌 入 式 系统
.
制 系统并不 是很 多
主要 由于 顺 控 系统 的应 用很 大
741852垃圾焚烧发电厂ACC
生活垃圾发电厂燃烧自动控制系统(ACC)一 ACC系统性能要求燃烧过程控制系统由新华控制公司完成ACC控制算法实现,ACC与DCS系统采用OPC协议通讯,完成数据的采集和控制。
通过调试达到炉排速度自动控制(包括逆,顺推炉排的控制),蒸汽流量自动控制,燃烧风量自动控制及时可靠,其余部分采用模拟信号引入ACC自动控制系统,成为一套完整的控制体系。
能实现自动,手动,ACC控制模式自由转换。
二 ACC系统功能ACC自动燃烧控制系统主要通过调节燃烧空气和炉排速度实现自动燃烧的目的。
ACC系统的各种功能组成参见下面的框图。
其各种控制和算法的主要目的是为了保证炉内燃烧稳定的进行,并实现每天的焚烧目标。
(1)炉排控制(2)燃烧控制垃圾发热量烟气O2浓度焚烧炉出口烟气温度燃烧空气控制计算一次燃烧空气量设定值一次燃烧空气温度设定值二次燃烧空气量设定值三炉排控制焚烧炉内垃圾的投入通过改变垃圾给料器以及各炉排周期进行。
所谓周期即炉排(给料器)完成一次动作循环的时间。
给料机、各段炉排:后退限→前进限→(后退限),缩短周期则各段炉排、给料器快速动作,增长周期则各段炉排、给料器动作减缓。
(1)给料机通过给料器的周期时间调节垃圾焚烧量。
观察当日焚烧量曲线,如果焚烧量较少则缩短周期,反之则延长周期。
并且观察炉内状况,垃圾少则缩短,垃圾多则延长。
当然,投入量的变化会对炉内整体状况产生影响。
由于此影响会在晚些时候(30分钟~1小时)显现出来,所以当周期变化后要充分监视炉内状况。
并且,垃圾投入垃圾料斗后约30分钟才投入焚烧炉,因此投入垃圾的比重会发生巨大变化,此时需在约30分钟后重新调整给料周期。
(2)干燥段炉排给料机运送来的垃圾在干燥段上充分干燥后移送至燃烧段。
利用此周期控制移送至燃烧段的垃圾。
燃烧段垃圾较少需促进垃圾燃烧时,缩短周期供给垃圾。
反之,燃烧段垃圾较多则延长。
(3)燃烧1段、燃烧2段此部分炉排控制垃圾燃烧。
垃圾燃烧较快时缩短周期。
超详细的垃圾发电厂ACC控制全解
超详细的垃圾发电厂ACC控制全解江左梅郎电力工程学前天目录超详细的垃圾发电厂ACC控制全解 (1)一ACC系统性能要求 (2)二ACC系统功能 (2)(1)炉排控制 (3)(2)燃烧控制 (3)三炉排控制 (3)(1)给料机 (4)(2)干燥段炉排 (4)(3)燃烧1段、燃烧2段 (4)(4)后燃烧段炉排 (4)炉排控制功能描述见下面的框图 (5)1垃圾焚烧量计算 (6)(1)垃圾料斗料位转换为容量的计算 (7)(2)本次垃圾增加量演算 (7)(3)垃圾密度演算 (7)(4)垃圾焚烧量演算 (8)2垃圾焚烧量偏差演算 (8)3垃圾焚烧量控制 (9)4垃圾发热量计算 (9)(1)垃圾入热量计算 (10)(2)垃圾出热量计算 (10)(3)垃圾发热量计算 (10)5垃圾发热量偏差演算 (11)6垃圾层厚演算 (11)(1)概要 (12)(2)干燥带炉下压损计算准备 (12)7垃圾层厚偏差演算 (12)8垃圾层厚控制 (12)9垃圾料斗搭桥判断 (13)10炉排控制演算 (13)四燃烧风量控制 (14)(1)一次燃烧空气 (15)(2)二次燃烧空气 (15)燃烧空气控制 (16)(1)一次燃烧空气温度控制 (16)(2)一次燃烧空气流量控制 (17)(3)二次风流量控制 (17)(4)一次燃烧空气分配控制 (18)五ACC画面 (19)1操作监视画面 (20)2运转设定画面 (22)六ACC控制启动顺序 (22)一ACC系统性能要求燃烧过程控制系统由新华控制公司完成ACC控制算法实现,ACC与DCS系统采用OPC协议通讯,完成数据的采集和控制。
通过调试达到炉排速度自动控制(包括逆,顺推炉排的控制),蒸汽流量自动控制,燃烧风量自动控制及时可靠,其余部分采用模拟信号引入ACC自动控制系统,成为一套完整的控制体系。
能实现自动,手动,ACC控制模式自由转换。
二ACC系统功能ACC自动燃烧控制系统主要通过调节燃烧空气和炉排速度实现自动燃烧的目的。
最先进的垃圾焚烧炉工艺
城市垃圾焚烧发电厂DCS控制系统设计说明书目录1设计目的和工艺说明 (5)1.1垃圾焚烧部分 (5)1.1.1 焚烧炉工艺 (5)1.1.2烟气污染物处理设备及技术 (6)1.1.3 结论 (7)1.2公共部分 (7)1.3汽轮机部分 (8)1.3.1 调节系统 (8)1.3.2保安系统 (8)1.3.3汽轮机工艺控制设计 (9)1.4电力监控部分 (10)1.4.1电力设备监控与操作 (11)1.4.2 数据采集与监测 (12)1.4.3事故追忆功能 (12)2系统结构 (12)2.1概述 (12)2.2系统结构 ................................................................................................................................. 错误!未定义书签。
2.2.1概述................................................................................................................................ 错误!未定义书签。
2.3项目结构 ................................................................................................................................. 错误!未定义书签。
2.3.1工厂层级定义................................................................................................................ 错误!未定义书签。
垃圾焚烧发电厂热工控制方案
垃圾焚烧发电厂热工控制方案垃圾焚烧发电工程热工控制系统方案李宏文摘要:本文以某大型环保能源集团的一个垃圾焚烧发电厂为例,阐述了垃圾焚烧发电厂控制特点、方案策略、控制手段及控制系统选择与优化。
关键词:垃圾发电,热工控制方案,选择与优化。
垃圾焚烧发电在国内经过十几年的发展,经过引进国外先进设备,消化吸收国外先进技术,形成适应我国垃圾成分特点的相应技术,并开发出有效的分散集约化控制系统。
根据工程的可行性研究、环境影响报告书、初步设计和施工图设计,分析垃圾焚烧发电的热工控制系统。
一、.工程概述垃圾焚烧发电项目一期工程由两条原生垃圾焚烧线和二套汽轮机发电机组以及辅助公用系统组成。
原生垃圾焚烧,主要工艺设备为两台日处理量350t/d 马丁式逆、顺推(两段)炉排,单锅筒自然循环垃圾焚烧余热锅炉,蒸发量22t/h、过热器出口温度400℃、压力4.0MPa,两套烟气净化处理系统。
两套额定电压10.5KV功率7500KW,进汽压力3.8Mpa进气温度395℃的汽轮机发电机组。
发电机组年发电量 12000 万度。
垃圾电厂的机组装机容量都比较小,垃圾焚烧发电厂的控制系统与常规小型燃煤火力发电厂基本一样,由于垃圾发电厂的自动化程度要求高于小型燃煤火力发电厂,从控制方式、控制手段和控制规模上讲,可以说是还要复杂一些。
由于垃圾成分复杂、受季节变化影响其热值和含水率变化较大,基本是每一次投料的垃圾成分都不一样,就对稳定焚烧控制系统有较高的要求。
二、垃圾焚烧发电对热工自动化的控制要求1、每天焚烧处理的垃圾量,必须充分燃烧;通过燃烧控制使余热锅炉蒸发量稳定在额定值范围内;必须保证炉膛的温度在850℃以上,必须保证二恶英的分解时间2S;烟气通过烟气净化处理设备,脱硫-脱销-去除有害气体(二恶英类)-除尘,控制烟气排放指标参数在国家标准规定值以下;并优化焚烧控制减低单耗(耗电量、耗水量)提高产汽量;做到保证排放标准的前提下提高发电量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垃圾焚烧发电厂自动控制系统的设计1 引言垃圾焚烧是一种技术高度复杂,成本相对昂贵的生活垃圾处理技术。
因此,无论是其发展源流与应用现状,目前均以欧美、日本等发达国家最具代表性。
发达国家应用的垃圾焚烧技术,其特征代表了当前生活垃圾焚烧技术的最前沿,同时其所应用的垃圾焚烧技术对今后垃圾焚烧技术的发展也具有相当的指导作用。
由于种种原因,我国生活垃圾焚烧技术的研究和应用起步相对较晚,垃圾焚烧技术的研究落后于发展需要,目前国内既缺少行业标准和专业规范,更缺乏完整、成熟、形成系统的设计技术。
对垃圾焚烧及余热发电的自动控制系统设计更是缺少规程、规范和成熟的运行经验。
而目前只有深圳建有比较正规的生活垃圾处理厂,其工程规模为日处理生活垃圾450T。
一期工程于1988年11月投产,装有2台日处理能力为150t/d的日本马丁焚烧炉和1台5000kW汽轮发电机组及其配套设备。
二期工程于1996年7月投产,增建1台处理能力为150t/d的国产垃圾焚烧炉和1台3000kW的汽轮发电机组及配套设备。
由于建厂比较早,其自动化控制和检测水平不高,采用大量的常规仪表和控制开关进行手动控制。
后经技术改造,增加了一套PLC控制系统,使其控制水平有了一定的提高,达到了正常运行时绝大部分的工艺过程操作与工艺参数的显示均能在中央控制室进行。
下面就由3台日处理垃圾400吨的机械炉排焚烧炉配2台12MW汽轮发电机组组成的城市生活垃圾处理厂探讨其自动控制系统的设计方案。
2 艺流程简介机械炉排焚烧炉垃圾焚烧发电厂主要由地衡称重系统、垃圾卸料平台、垃圾贮坑、垃圾焚烧系统、余热利用系统、烟气处理系统、灰渣处理系统、助燃空气系统、废水处理系统等组成。
生活垃圾由垃圾运输车运人垃圾焚烧处理厂,经过地衡称重后进入垃圾卸料平台,按控制系统指定的卸料门将垃圾倒人垃圾贮坑。
垃圾贮坑内的垃圾由设在垃圾贮坑上方的吊车抓斗送人垃圾料斗,垃圾经斜槽与推料机推人焚烧炉内预热段。
炉排在驱动机构的作用下使垃圾依次通过燃烧段和后燃烬段,燃烧后的炉渣落人炉渣贮坑。
垃圾坑上部设有抽风口,抽出坑内有害气体,经蒸汽一烟气二级预热后送人炉内,作为焚烧炉的燃烧空气。
燃烧产生的高温烟气,经锅炉各受热面吸热降温后,烟气经过干式RCFB烟气处理系统、布袋除尘器和引风机、烟囱排人大气。
余热产生的蒸汽用于推动汽轮机带动发电机发电。
3 垃圾发电厂控制方式根据垃圾发电厂的规模和工艺特点,三条垃圾焚烧线、两台汽轮发电机组及相应热力系统可采用一套DCS进行集中监视和控制,同时考虑电气监控纳入DCS系统。
在集中控制室内以彩色CRT、键盘作为主要的监视和控制手段,实现炉、机、电集中的监视和控制,还应设有紧急按钮,以便在DCS全部故障时,能进行紧急停炉、停机操作,并使炉内垃圾燃尽。
在集中控制室设置有工业电视监视系统,对锅炉汽包水位、垃圾卸料区的操作和对焚烧炉内燃烧过程等进行监视。
对于辅助系统如称重地衡系统、垃圾池抓斗、化学水处理、除灰系统等,在就地设有独立的控制设备和人机操作接口,用于调试、启动和异常时在就地进行监视和操作。
采用通信方式或将辅助控制系统的上位机远距离设在集中控制室,在集中控制室内进行监视和操作。
4 控制系统组成根据垃圾发电厂工艺流程的特点,控制系统主要由分散控制系统(DCS)、焚烧炉燃烧控制系统(SIGMA)、启动燃烧器及辅助燃烧器系统、烟气连续测量监视系统、汽轮机控制系统(DEH)、汽轮机紧急跳闸系统(EST)、汽轮机安全监视系统(TSl)、辅助车间控制系统(化学水及废水处理控制系统、垃圾抓斗控制系统、除灰控制系统等)及电视监视系统等几部分组成。
分散控制系统主要由控制站、数据通讯总线和人机接口设备等三部分构成。
分散控制系统是主要的控制系统,其功能包括数据采集、闭环控制、开环顺序控制和联锁保护等。
焚烧炉燃烧控制系统(SIGMA)为垃圾焚烧发电厂自控系统的核心部分,该系统一般由垃圾焚烧炉生产厂家自己配供,其功能由单独的PLC来实现,并能与DCS通讯,通过DCS的CRT进行监控。
启动燃烧器及辅助燃烧器系统通过硬接线与SIGMA系统交换信息,其他系统或通过与DCS系统进行通讯或与DCS硬接线交换信息,最后统一由DCS进行监控。
5 控制系统功能5.1 分散控制系统分散控制系统功能包括数据采集系统、闭环控制系统、开环/顷序控制系统和联锁保护等功能。
a.数据采集系统(DAS)数据采集系统(DAS)的功能是连续采集和处理所有与系统有关的重要测点信号及设备状态信号,以便及时向操作人员提供有关的运行信息,实现系统安全经济运行。
一旦发生任何异常工况,及时报警,提高系统的可利用率。
DAS具本功能如下:1)显示:包括操作显示、成组显示、棒状图显示、趋势显示、报警显示等。
2)制表记录:包括定期记录、事故追忆记录、事故顺序(SOE)记录、追忆打印、跳闸一览记录等。
3)历史数据存储和检索。
4)性能计算。
5)帮助指导。
b.闭环控制系统(MCS)闭环控制系统(MCS)包括如下子系统:1)炉膛压力控制系统2)反应塔入口、出口烟气温度控制系统3)过热蒸汽温度控制系统4)汽包水位控制系统5)烟气SO2和HCL控制系统6)反应塔化学喷药控制7)滤沥液喷量控制系统8)旁路减温减压调节9)凝结水再循环控制系统10)除氧器水位控制系统11)除氧器压力控制系统12)低加水位控制系统13)给料溜槽闭式冷却水箱控制系统14)减温减压装置压力、温度控制系统其中反应塔人口、出口烟气温度控制系统、烟气SO2和HCL控制系统、滤沥液喷量控制系统、给料溜槽闭式冷却水箱控制系统是垃圾电厂不同与其它小型火电厂的控制系统。
c.顺序控制系统(SCS)按照工艺系统及主要辅机的要求划分成若干功能子组进行控制。
操作员能通过CRT/键盘对各个子功能组进行顺序启、停,对其中的单个设备进行启、停、或开关操作。
5.2 焚烧炉燃烧控制系统(SIGMA)焚烧炉燃烧控制系统是垃圾焚烧过程中非常重要的控制系统,是垃圾焚烧炉自动控制的核心部分,该系统运行的好坏将直接影响焚烧炉的运行状况和蒸汽产量,进而影响发电机组的发电量。
该系统一般由垃圾焚烧炉生产厂家配供,由PLC来实现,并与DCS系统能进行通讯。
控制对象包括垃圾加料器、加料斗开闭挡板驱动器、炉排驱动装置、炉渣滚筒、推灰器、自动润滑装置、筛灰装置、油压系统的驱动和控制装置、水洗净装置等。
焚烧炉燃烧控制系统包括以下子系统:1)一次风量、温度控制系统2)二次风量、温度控制系统3)炉墙温度控制系统4)炉排控制系统5)炉膛出口温度控制系统5.3 工业电视系统每台焚烧炉设置炉膛火焰监视电视系统一套,汽包水位监视电视一套。
同时设置一套工业闭路电视监视系统,并在垃圾料斗、垃圾贮池、垃圾卸料平台、渣坑捞渣机出口设摄像头监视,以便实现在集中控制室进行垃圾抓斗、焚烧炉给料、捞渣控制。
5.4 烟气连续测量监视系统反应塔进口烟气分析(SO2、HCI、O2、HF、烟气流量、压力、温度)信号和反应塔出口烟气排放分析(SO2、NO x、O2、HCI、HF、CO、烟气粉尘含量、压力、温度、湿度)信号进入DCS系统进行控制调节和进入环境监测站。
6 控制系统可靠性措施6.1 冗余配置1)主要的I/O通道冗余配置,并分别配置在不同I/O模板上。
2)连接各分散处理单元、I/O处理系统、人机接口及系统外设等的数据通讯总线冗余配置,冗余配置的数据通讯总线在任何时候都同时工作。
6.2 分散控制系统备用余量1)通讯总线负荷率≤30%(以太网≤15%)2)控制器CPU的负荷率≤60%(最忙时)3)操作员站CPU的负荷率≤40%(最忙时)4)I/O模件槽裕量15%5)I/O点裕量10%6)系统电源负荷裕量40%6.3 机组的重要保护和跳闸功能采用独立的多个测量通道。
跳闸回路采取三取二逻辑。
6.4 当分散控制系统发生全局性或重大故障时,为确保机组紧急安全停机,应设置下列独立于DCS的紧急事故操作手段:1)垃圾焚烧炉——余热锅炉紧急停炉2)汽机紧急跳闸3)发电机紧急跳闸4)汽包事故放水门5)汽机真空破坏门6)直流润滑油泵7)交流润滑油泵8)电动给水泵6.5 设置高可靠、高电源品质的控制系统电源。
6.6 分散控制系统DCS基本配置情况6.6.1 系统提供的模拟量、数字量的数量和备用量情况如下:按规范书要求加10%后要求总点数为1738点,实际配置总点数为1976点。
6.6.2 DCS操作员站1)系统提供3个全功能操作员站(包括两台喷墨打印机)。
2)每一个操作员站服务器都是冗余数据高速公路上的一个站,且每个主机操作员站有独立的冗余通讯处理模件,分别与冗余的数据总线相连。
3)任何显示和控制功能均能在任一操作员站上完成。
4)任何CRT画面均能在小于1秒的时间内完全显示出来。
所有显示的数据每秒更新一次。
6.6.3 工程师站1)提供一套工程师站(包括一台激光彩色打印机),用于程序开发、系统诊断和维护、控制系统组态、数据库和画面的编辑及修改。
2)12程师站能调出任一己定义的系统显示画面。
在工程师站上生成的任何显示画面和趋势图等,均能通过数据高速公路加载到操作员站。
3)工程师站设置软件保护密码,以防一般人员擅自改变控制策略、应用程序和系统数据库。
6.6.4 系统配置了二级数据通讯网络,即机组控制级网络和外围设备级网络,通讯速率分别为100M 和10M波特。
6.6.5 提供一个“数字主时钟”,使挂在数据高速公路上的各个站时钟同步、定时校准。
“数字主时钟”本身须与电厂的主时钟同步,并自动同步校正,精度为0.5毫秒。
7 辅助系统热工目动化7.1 垃圾抓斗控制系统系统采用可编程控制器(PLC),并与DCS有通讯接口,主要数据送到DCS。
可以在主控室实现全自动方式。
就地值班室设有就地控制操作设备,运行人员可以在就地进行操作。
7.2 化学水处理控制系统化学水处理及其废水处理系统,设置独立的水处理车间,车间内设控制室。
控制系统采用可编程控制器(PLC)。
采用CRT/键盘构成监视和控制中心,远距离设置在集中控制室内。
正常运行时就地无人值班,在集中控制室完成监视和控制。
7.3 循环水和燃油控制系统循环水控制系统和燃油控制系统由DCS进行监视和控制,不设独立的控制系统。
7.4 除灰控制系统系统采用可编程控制器(PLC),并与DCS有通讯接口,主要数据送到DCS。
可以在主控室实现全自动方式。
8 结束语由于我国生活垃圾焚烧技术的研究和应用起步较晚,垃圾焚烧技术的研究落后目前发展需要。
对垃圾焚烧及余热发电的自动控制系统设计更是缺少规程、规范和成熟的运行经验。
本人在考察了深圳市政环境综合处理厂的基础上,同时参照以往小型火力发电厂自动控制系统的设计经验,在重庆同兴生活垃圾处理厂投标工作中,进行了以上垃圾处理厂控制方式的设计。