机械优化设计ppt

合集下载

机械优化设计(5)+王ppt

机械优化设计(5)+王ppt

如:随机方向搜索法、复合形法,梯度投影法等 2. 间接解法: 将约束优化问题转化为一系列无约束优化问题求解 如:惩罚函数法
可求解同时含有 不等式和等式约束的问题
第五章 约束优化计算方法
§5-2 惩罚函数法—内点法
一、惩罚函数法的基本原理
将约束优化问题转化为一系列无约束优化问题求解 1. 转化原则 序列无约束极小化 ① 不破坏原约束条件
第五章 约束优化计算方法
4. 计算步骤
转至 第 3 步。
第五章 约束优化计算方法
§5-2 惩罚函数法—外点法、混合法
一、外点惩罚函数法
1. 基本原理
***2. 惩罚函数形式
第五章 约束优化计算方法
***2. 惩罚函数形式
第五章 约束优化计算方法
***2. 惩罚函数形式 ② 既有不等式又有等式约束
举例:
解: 其惩罚函数
第五章 约束优化计算方法

第五章 约束优化计算方法
第五章 约束优化计算方法
*3. 结论
第五章 约束优化计算方法
*3. 结论
第五章 约束优化计算方法
4. 计算步骤(略)P110
§5-2 惩罚函数法—外点法、混合法
第五章 约束优化计算方法
二、混合惩罚函数法 问题:
*** 1. 惩罚函数的建立方法 不等式约束按内点法建立, 等式约束按外点法
二. 内点法 1. 基本原理
将惩罚函数定义在可行域内,
2. 惩罚函数的形式

§5-2 惩罚函数法—内点法
第五章 约束优化计算方法
二. 内点法 举例: 建立惩罚函数:
惩罚函数
§5-2 惩罚函数法—内点法
第五章 约束优化计算方法
二. 内点法

机械优化设计PPT课件

机械优化设计PPT课件
ⅱ)设计方案—由设计常量和设计变量组成。
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;

机械优化设计PPT

机械优化设计PPT

2.梯度投影法
约束面上的梯度投影方向
四、步长的确定
1.取最优步长
2. αk取到约束边界的最大步长
1.取最优步长
2. αk取到约束边界的最大步长
1) 取一试验步长αt,计算试验点xt。
2) 判别试验点xt的位置。 3) 将位于非可行域的试验点xt,调整到约束面上。
2. αk取到约束边界的最大步长
3.计算步骤
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
图6-36 增广乘子法框图
第七节 非线性规划问题的线性化解法——线性逼近法
一、 序列线性规划法
二、割平面法 三、小步梯度法 四、非线性规划法
一、 序列线性规划法
6-37
二、割平面法
三、小步梯度法
1) 由设计者决定k个可行点,构成初始复合形。 2) 由设计者选定一个可行点,其余的(k-1)个可行点用随机法产生。 3) 由计算机自动生成初始复合形的全部顶点。
二、复合形法的搜索方法
1.反射 2.扩张 3.收缩 4.压缩
1.反射
1) 2) 3) 4) 计算复合形各顶点的目标函数值,并比较其大小,求出最好点L、最坏 点H及次坏点G 计算除去最坏点H外的(k-1)个顶点的中心C 从统计的观点来看,一般情况下,最坏点H和中心点C的连线方向为目标
四、非线性规划法
第八节 广义简约梯度法
一、 简约梯度法
一、 简约梯度法
二、 广义简约梯度法
二、 广义简约梯度法
三、 不等式约束函数的处理和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题

机械优化设计方法ppt课件

机械优化设计方法ppt课件
目标函数的一般表示式为:
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1

FL h

F(B2 h
25

机械优化设计课件2

机械优化设计课件2

用如下二维问题来说明有约束优化问题的几何解释 可知该问题的最优点为目标函数等值线 与可行域边界 g2 ( x) 0 的切点
( x1* , x2* ) (1.34,0.58)
* * 最优值为: f ( x1 , x2 ) 3.8
该问题的目标函数及等值线
该问题的设计空间及可行域
有约束的二维优化问题极值点所处位置的不同情况:
等式约束
---要求设计点同时在n维设计空间l个约束曲面上
不等式约束
---要求设计点在设计空间约束曲面的一侧(包括曲面本身)
在设计空间中,满足所有约束条件的区域称为可行域。
在设计空间中,至少不满足一个约束条件的区域称为非可行域。 可行域可记为: D x g j ( x) 0 ( j 1, 2,
在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最 后求得F(X)值最好或最满意的X值。
在实际优化问题中,对目标函数有两种要求形式
目标函数极小化 目标函数极大化
等价
所以,今后优化问题的数学表达一律采用目标函数的极小化形式
目标函数在设计空间的图像描述
一般地,n维目标函数可以在n+1维空间中描述其图像。 为了在n维设计空间中反映目标函数的变化情况,常采用 目标函数等值面的方法。其数学表达式:
1、
2、
采用作图法进行人字架的优化设计
3、数值迭代法(数学规划法):
xk
k 从一个初始设计 x 出发,按如下迭代公式:
x k 1 x k x k k 1 x 得到一个改进的设计 。
( x k ——修改量)
k 在这类方法中,许多算法是沿着某个搜索方向 ,以适当步长 k 的方式 d k 实现对 x 的修改,以获得x k 的值。

机械优化设计PPT

机械优化设计PPT

二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图

机械优化设计优化设计概述精品PPT课件

机械优化设计优化设计概述精品PPT课件
1模糊优化设计技术微分学和变分学的解析解法2面向产品创新设计的优化技术满足设计要求3广义优化设计技术满足经济性安全性和美观性等4产品全寿命周期的优化设计技术强度刚度运动学动力学和寿命面向产品的全系统设计全过程全寿命周期5cadcappcam集成系统中的优化技术结合cad有限元可靠性等6智能优化算法模拟退火遗传人工神经网络算法蚁群算法等7多学科综合优化涉及多领域复杂系统的多学科修复替代衰老损伤器官成为医学界的重点研究领域再生医学研究和应用成为治疗许多传统医学难以解决的重大疾病如白血病帕金森氏症的新希望
方法低效,一般只能获得一个可行的设计方案。
优化设计:借助计算机技术,应用一些精度较高的力 学的数值分析方法(如有限元法等)进行分析计算,并 从大量的可行设计方案中寻找到一种最优的设计方案。
能从“所有的”的可行方案中找出“最优的”的设计方案。
绪论
二、从传统设计到优化设计:
绪论
二、从传统设计到优化设计:
钢管的临界应力是 e
Fe A
2E(T 2 D2 ) 8(B2 h2 )
1
根据强度约束条件有 F (B2 h2 )2 TDh
y
1
根据稳定约束条件有 F (B2 h2 )2 TDh
2E(T 2 D2 ) 8(B2 h2 )
第一章 优化设计概述
第一节 人字架的优化设计
解析法:
人字架总质量
第一章 优化设计概述
第三节 优化设计问题的数学模型
设计变量:
在设计过程中进行选择并最终必须确定的各项独立参数,
称为设计变量。
设计变量向量:
x [x1x2 xn ]T
设计常量:参数中凡是可以根据设计要求事先给定的,称为设计常量 。 设计变量:需要在设计过程中优选的参数,称为设计变量。

机械优化设计的基本概念和数学模型PPT课件

机械优化设计的基本概念和数学模型PPT课件
.
大齿轮强度要求 小齿轮强度要求 接触疲劳强度要求 齿宽系数要求 最小齿数要求
11
综上所述,这些问题的共同点都是:
在满足设计要求和条件的情况下,使目标的参数达 到最优,即最优参数。
一个优化设计问题应包括: 合理选择一组独立的参数——设计变量; 有一个或几个需要满足最佳的设计目标,它是设 计变量的函数——目标函数; 所取设计变量必须满足一定的限制条件—约束条件。
(2)根据要解决设计问题的特殊性来选择设计变量。
例如,圆柱螺旋拉压弹簧的设计变量有4个,即钢
丝直径d,弹簧中径D,工作圈数n和自由高度H。在设
计中,将材料的许用剪切应力和剪切模量G等作为设
计常量。在给定径向空间内设计弹簧,则可把弹簧中
径D作为设计常量。
.
17
(3)设计变量应该是独立的;
(4)用设计变量来阐述设计问题应该是用 最少的数量;
小型设计问题:一般含有2—10个设计变量;
中型设计问题:10—50个设计变量;
大型设计问题:50个以上的设计变量。
目前已能解决200个设计变量的大型最优化设计问
题。
.
16
如何选定设计变量?
确定设计变量时应注意以下几点:
(1)抓主要,舍次要。 对产品性能和结构影响大的参数可取为设计变量,
影响小的可先根据经验取为试探性的常量,有的甚至 可以不考虑。
.
3
实例1、箱盒的优化设计(续)
分析:
(1)箱盒的表面积的表达式;
(2)设计参数确定:长x1,宽x2,高x3 ; (3)设计约束条件:
(a)体积要求; (b)长度要求;
x2 x1
x3
.
4
数学模型
设计参数: x1, x2, x3

机械优化设计NO.ppt

机械优化设计NO.ppt
4、作图求出问题的最优解
问题的实质:在可行域内,求使目标函数值为最小
的点及该点的函数值

X

f
(
X

)
最优解:Xf


[x1 , x2 ]T f (X )
T
[1.4142,1.4142] 0.6863
24
x2
f (X ) (x1 2)2 (x2 2)2 ( Ci )2
(如: P13飞剪机剪切
f1(X ) f2 (X )


f1 (x1, f 2 (x1,
x2 x2

xn ) xn )
机构的优化问题)
f q ( X ) f q (x1, x2 xn )
q
f (X ) f j (X ) q _ 追求的目标数目
j 1
q
f (X ) j f j (X ) j 1
g1( X ) 0 X (2)
X (4)
X (3)
D
g4(X) 0
h1 ( X ) 0
g3(X ) 0
x1
边界点:X (2)
例:一个二维问题的可行域
13
五、目标函数的等值线(面)
等值线(面): 具有相同目标函数值的点集在设计空
间形成的曲线和曲面
F(x)
① 一维问题(n =1):
目标函数是一维函
3
hv (X ) 0
2
x
2
X
1
g1(X ) x1 0
D
g3 ( X ) x12 x22 4 0
g2 (X ) x2 0
O
1
x1
2

机械优化设计概述(PPT共 95张)

机械优化设计概述(PPT共 95张)

求:在钢管压应力 不超过
和失稳临界应力
e
y
条件下,
使质量m最小的高度h和直径D?
第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计
解:(1)钢管满足的强度与稳定条件
钢管所受压力
2 FL F (B h ) F 1 h h 1 2 2
2 EI 压杆临界失稳的临界力 Fe L2

A 2 T D2 8


第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计 强度约束条件: y 稳定约束条件: e
F B h TDh
2

1 2 2

y
FB h
2
1 2 2
T D h

2 2ET2 D 2 2 8B h
使传统机械设计中,求解可行解上升为求解最优解成为 使传统机械设计中,性能指标的校核可以不再进行;
使机械设计的部分评价,由定性改定量成为可能;
使零缺陷(废品)设计成为可能;
大大提高了产品的设计质量,从而提高了产品的质量;
大大提高了生产效率,降低了产品开发周期。
绪论
2 机械的设计方法 实际案例:
2 r i arccos i
2 2 r l l 2 l l i 1 4 1 4cos i
2
2
第一章 优化设计概述
1.1 最优化问题示例 例1-3 平面连杆机构的优化 解:(2)约束条件
g 1 l1 l 2 0 g 2 l1 l 3 0 g 3 l1 l 4 l 2 l 3 0 g 4 l1 l 2 l 3 l 4 0 g 5 l1 l 3 l 2 l 4 0 l 22 l 32 l 1 l 4 2 g 6 arccos 2 l2l3 max 0

机械优化设计经典实例PPT课件

机械优化设计经典实例PPT课件


x1
x2 x1
3/ 2


0
g3 (X ) 3 l 3 x3 0
g4 (X ) d x2 0
g5 ( X ) D d x1 x2 0
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
6.12(x12 x22 )x3 106
设计实例1:
g1 ( X ) d 4 D 4 1.27 D 10 5 x2 4 x14 1.27 10 5 0
g2 ()

154.34D D4 d 4

Dd D
3/ 2

154.34x1 x14 x2 4
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )

机械优化设计NO.5.ppt

机械优化设计NO.5.ppt

凸函数的基本性质
⑴、设f(X)为定义在D上的凸函数,λ为任意正
实数,则λf(X)也是凸集D上的凸函数
⑵、若函数 f1( X )和 f2 ( X )为凸集D上的两个凸
函数,则对任意正实数a和b,函数
f ( X ) af1( X ) bf2 ( X )仍为D集上的凸函数
⑶、若f(X)为凸集D上的凸函数,则f(X)在D上的 一个极小点也就是在D上的“全域最小点”
总返回
思考题:
1、何谓凸集、凸函数、凸规划? 2、如何判断函数的凸性? 3、写出第三章内容之间的相互联系以及在求优中
的意义。
预 习: 4 一维优化方法
4.1 概 述 4.2 初始搜索区间的确定 4.3 黄金分割法
Φ(X)
a X(1) X
X(2) b
X
f(X) ≤ Φ(X)
f(X)
f(X)
Φ (X)
0a
b
cX
定义:设f (X) 为定义在Rn 中凸集D上的函数,X (1) 和 X (2)
为D上任意两点,若对于任意实数 [0,1],恒
有: f(X) ≤ Φ(X) ,即: f (X (1) (1 ) X (2) ) ≤ f ( X (1) ) (1 ) f ( X (2) )成立,则称 f(X)为 定义在凸集D上的一个凸函数

f xi
(
X
(k
)
)

2

2
二、函数的二阶导数矩阵(Hesse矩阵)




H
(
X
)

2
f
(
X
)






简写为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)性能约束
一、单级圆柱齿轮减速器的优化设计
第四节 平面连杆机构的优化设计
连杆机构的类型很多,这里只以曲柄摇杆机构两类 运动学设计为例来说明连杆机构优化设计的一般步骤 和方法。 一、曲柄摇杆机构再现已知运动规律的优化设计
1.设计变量的确定
决定机构尺寸的各杆长度,以及当摇杆按已知运 动规律开始运动时,曲柄所处的位置角φ0 为设计 变量。
g1
x
64Fx32 x1 x3
3 E x24 d 4
/
y0
1
0
g2 x 1 x1 / lmin 0
g3 x 1 x2 / Dmin 0
g4 x x2 / Dmax 1 0
g5 x 1 x3 / amin 0
第三节 圆柱齿轮减速器的优化设计
圆柱齿轮减速器是一种非常广泛的机械传动装置。
2.设计变量的尺度变换 当各设计变量之间在量级上相差很大时,在给定的搜索 方向上各自的灵敏度相差也很大。灵敏度大的搜索变化 快,灵敏度小的搜索变化慢。为了消除这种差别,可以 对设计变量进行重新标度。使它成为无量纲或规格化的 设计变量,这种处理称设计变量的尺度变换。
yi ki xi
ki 1/ xi0
x x1x2x3 T l daT
机床主轴优化设计的目标函数为
f
x
1
4
x1
x3
x22 d 2
再确定约束条件
g x y y0 0
在外力F给定的情况下,y是设计变量x的函数,其值按
下式计算
Fa2 l a
y
3 I
I D4 d 4 64
g
x
64Fx32 x1 x3
第二节机床主轴结构优化设计 一、数学模型的建立
在设计这根主轴时,有两个重要因素需要考虑。一 是主轴的自重;一是主轴伸出端c点的挠度。
对于普通机床,不要求过高的加工精度,对机床主 轴的优化设计,以选取主轴的自重最轻为目标,外伸 端的挠度为约束条件。
当主轴的材料选定时,其设计方案由四个设计变量决 定。孔径d、外径D、跨距l及外伸端长度a。由于机床 主轴内孔用于通过待加工的棒料,其大小由机床型号 决定。不作为设计变量。故设计变量取为
两者对数值变化的灵敏度相差很大,这对优化设计 是不利的。
例如采用惩罚函数时,两者在惩罚项中的作用相差 很大,灵敏度高的约束条件在极小化过程中首先得到 满足,而灵敏度小的几乎得不到考虑。
g1 x / 1 0 g2 x / 1 0
这样,各约束函数得取值范围都限制在[0,1]之 间,起到稳定搜索过程和加速收敛的作用。
展开式圆柱齿轮减速器:齿轮齿数、模数、齿宽、 螺旋角及变位系数等。
行星齿轮减速器:除此之外,还可加行星轮个数。
设计变量应是独立参数,非独立参数不可列为设计 变量。例如齿轮齿数比为已知,一对齿轮传动中,只 能取Z1或Z2一个为设计变量。
又如中心距不可取为设计变量,因为齿轮齿数确定 后,中心距就随之确定了。
目前我国减速器存在的问题:体积大,重量重、承载 能力低、成本高和使用寿命短等问题。
对减速器进行优化设计,就要考虑:提高承载能力、 减轻重量和降低经济成本。
减速器的优化设计一般是在给定功率P、齿数比u、 输入转速n以及其他技术条件和要求下,找出一组使 减速器的某项经济技术指标达到最优的设计参数。
不同类型的减速器,选取的设计变量使不同的。
l32
经分析后,只有三个变量为独立的:
x x1x2x3 T l2l3l4 T
x x1பைடு நூலகம்2x3x4x5 T l1l2l3l40 T
考虑到机构的杆长按比例变化时,不会改变其运动
规律,因此在计算时常取l1=1 ,而其他杆长按比例取为
l1 的倍数。
0
arccos
l1
l2 2 l42 l32 2 l1 l2 l4
0
arccos
l1
l2 2 l4
2l3l4
3 E x24 d 4
y0
0
刚度满足条件,强度尚有富裕,因此应力约束条件可 不考虑。边界约束条件为设计变量的取值范围,即
lmin l lmax Dmin D Dmax amin a amax
将所有的约束函数规格化,主轴优化设计的数学模型 可表示为:
f
x
1 4
x1
x3
x22 d 2
对于一般机械,可按重量最轻或体积最小的要求建立目标函数; 对应力集中现象尤其突出的构件,则以应力集中系数最小为追 求的目标。
对于精密仪器,应按其精度最高或误差最小的要求建立目标函 数。
3.约束条件的确定 约束条件是就工程设计本身而提出的对设计变量取值 范围的限制条件。
三、数学模型的尺度变换 1.目标函数的尺度变换
数学模型的三要素:设计变量、目标函数、约束条件。
1.设计变量的选择
在充分了解设计要求的基础上,应根据各设计参数 对目标函数的影响程度分析其主次,应尽量减少设计 变量的数目,以简化优化设计问题。
应注意各设计变量应相互独立,否则会使目标函数 出现“山脊”或“沟谷”,给优化带来困难。
2.目标函数的确定
把最重要的指标作为目标函数,其余的次要的指标可 作为约束条件。
第九章 机械优化设计实例
第一节应用技巧
一、机械优化设计的一般过程
机械设计的全过程一般可分为:
1.建立优化设计的数学模型。 2.选择适当的优化方法。 3.编写计算机程序。 4.准备必须的初始数据并上机计算。 5.对计算机求得的结果进行必要的分析。
二、建立数学模型的基本原则
数学模型的建立要求确切、简洁的反映工程问题的客 观实际。
xi* yi* / ki
3.约束函数的规格化
约束函数的尺度变换称规格化。
由于各约束函数所表达的意义不同,使得各约束函数 值在量级上相差很大。
例如某热压机框架的优化设计中,许用应力为 [σ]= 150MPa,而下横梁的许用挠度[δ]=0.5mm,约束函数 为:
g1 x 150 0 g2 x 0.5 0
不同的设计要求,目标函数不同。若减速器的中心
距没有要求时,可取减速器最大尺寸最小或重量最轻 作为目标函数。
f x m min f x l r1 a r4 min
若中心距固定,可取其承载能力为目标函数。
f x 1/ min
减速器类型、结构形式不同,约束函数也不完全相同。 (1)边界约束
相关文档
最新文档