球罐及贮槽计算书

合集下载

储 罐 设 计 计 算 书

储 罐 设 计 计 算 书

hw t1 d1 / ψw mL m M1 ξ σ
GB50191-93 (19.2.6) GB50191-93 (19.2.6-2) GB50191-93 (19.2.7) GB50191-93 (19.2.7) GB50191-93 (19.2.9) 见图 见图 2013-8-15
Pa N N
N / A + CLM1 / W Σ Gi 9367 x 9.81
s3 s4 s5 s6 s6
计 算 公 式
来源
c. 第3圈罐壁板规格厚度 d. 第4圈罐壁板规格厚度 e. 第5圈罐壁板规格厚度 f. 第6圈罐壁板规格厚度 2 顶圈罐壁板的规格厚度 3 各圈罐壁板的实际高度 a. 第1圈罐壁板实际高度 b. 第2圈罐壁板实际高度 c. 第3圈罐壁板实际高度 d. 第4圈罐壁板实际高度 e. 第5圈罐壁板实际高度 4 各圈罐壁板的当量高度 a. 第1圈罐壁板当量高度 b. 第2圈罐壁板当量高度 c. 第3圈罐壁板当量高度 d. 第4圈罐壁板当量高度 e. 第5圈罐壁板当量高度 5 6 7 罐壁筒体的当量高度 罐壁筒体的临界压力 罐壁筒体的设计外压 a. 设计负压 8 9 设计者:高鹏 罐壁加强圈数量 罐壁加强圈至包边角钢的实际距离
罐壁,罐顶,保温层等自重标准值和雪荷载标准 值的50%之和 (a1). 罐壁自重标准值 设计者:高鹏
G G1 第6页
典型设计
储罐设计计算书
144823838.xls
序号


符 号
G2 G3 G4 r S N t1 d1 A CL W [σ c r] E /
单位
N N N m m2 N m m m / m3 Pa Pa Pa σ 1 - [σ
HO - Σ ( h1 ~ h2 ) HO - Σ ( h1 ~ h3 ) HO - Σ ( h1 ~ h4 ) HO - Σ ( h1 ~ h5 ) 0.0049[ρ 1D(Hi - 0.3)]/[[σ ]φ ] + C + C1 0.0049[ρ 1D(H1 - 0.3)]/[[σ ]φ ] + C + C1 0.0049[ρ 1D(H2 - 0.3)]/[[σ ]φ ] + C + C1 0.0049[ρ 1D(H3 - 0.3)]/[[σ ]φ ] + C + C1 0.0049[ρ 1D(H4 - 0.3)]/[[σ ]φ ] + C + C1 0.0049[ρ 1D(H5 - 0.3)]/[[σ ]φ ] + C + C1 2013-8-15 SH3046-92 (5.3.1-1)

低温储罐计算书

低温储罐计算书

低温储罐综述引言随着国民经济的快速发展和低温技术的普及, 液氮、液氧、液氩、液氢、液氦、液化天然气等低温液体的应用日趋广泛, 各行各业对贮存和输送低温液体的低温容器的需求不断增长。

尤其是近几年, 随着改革开放的深入, 国外主要跨国气体公司竞相在我国建立合资企业, 带来了先进的空分设备、技术和管理, 使我国低温液体的产量大幅度提高, 供应的地区和范围不断扩大, 价格大幅度降低( 如液氮和液氧价格从2¥/kg左右, 降低到1¥/kg左右) , 促进了低温液体的应用, 带动了我国低温容器的发展, 使低温容器成为一个新兴的行业。

近年来国际油价持续攀升, 替代能源特别是清洁能源越来越受到人们的关注。

由于沿海经济发达地区资源匮乏, 天然气需求较大, 且在城市燃气、发电、化工等应用方面已具备完善的基础设施, 形成发展液化天然气产业的有利条件, 近年来中国LNG项目得到了迅速发展。

天然气基本成分是甲烷, 与煤炭、石油并称目前世界一次能源的三大支柱, 其蕴藏量和开采量都很大。

由于天然气的产地往往不在工业集中或人工密集的地区, 因此天然气的开发必须解决运输和储存问题。

液化后的天然气(LNG) 在0.1MPa 压力和112K 温度下, 密度是标准状态下甲烷气体的600 多倍, 体积能量密度是汽油的72%, 十分有利于输送和储存。

近年来, LNG 广泛应用于天然气发电、城市居民生活燃料、工业燃料、天然气空调、LNG汽车等领域, LNG的生产和应用已经形成了成熟的产业链。

天然气液化后其体积缩小到原来体积的1/625,通常储存在温度为112 K、压力为0. 1MPa左右的低温储罐内, 其密度为标准状态下甲烷密度的600多倍。

作为储存、运输液化天然气的装置, 液化天然气储罐属于低温压力容器, 具有体积小、储存运输方便等特点。

LNG的主要成分为甲烷(含量为90-%98%) ,具有易燃易爆、低温特性和易膨胀扩散性, 其储运过程中的安全性问题不容忽视。

球罐结构设计

球罐结构设计

第二章 球罐结构设计球壳球瓣结构尺寸计算 设计计算参数:球罐内径:D=12450mm []23341-表P几何容积:V=974m 3 公称容积:V 1=1000m 3球壳分带数:N=3 支柱根数:F=8各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7图 2-1混合式排板结构球罐混合式结构排板的计算:1.符号说明:R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16)0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:图2-2弧长L )=1800βR π =18070622514.3⨯⨯=弦长L =2Rsin(20β)=2x6225×sin(270)=7141mm弧长1B )=N R π2cos(20β)=1614.362252⨯x ×cos 270=弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 25.22=弧长2B )=N R π2=1614.362252⨯x =弦长2B =2Rsin 2α=2x6225×sin(25.22)=弦长D =2R )2(cos )2(cos 1202αβ- =2x6225x )25.22(cos )270(cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62257413.0) =极板(图2-3)尺寸计算:图2-3对角线弧长与弦长最大间距: H=)2(sin 1212ββ++=)11244(sin 12++ = 弦长1B =H R )2sin(221ββ+=139.1)11244sin(62252+x x =弧长1B )=90R πarcsin(2R B 1)=90622514.3x arcsin(2x62253.5953)=弦长0D =21B )=2×=弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62258774)=弦长2B =2Rsin(212ββ+)=2x6225xsin(11244+)=弧长2B )=180)2(21ββ+R π=1802x11)(44622514.3+⨯⨯=(1)极中板(图2-4)尺寸计算:图2-4对角线弦长与弧长的最大间距:A=)2(sin )2(sin 121212βββ+-=弧长2B )=1801βR π=弦长2B =2Rsin(21β)= 弧长2L )=180)2(R 21ββ+π=弦长2L =2Rsin(212ββ+)=弦长1L =A )2sin()2cos(2R 211βββ+= 弧长1L )=90R πarcsin(R L 21)=弦长1B =AR )2cos()2sin(2211βββ+=弧长1B )=90R πarcsin(2RB 1)=弦长D =2211B +L =弧长D )=90R πarcsin(2R D )=(2)侧极板(图2-5)尺寸计算:图2-5弦长1L =2Rcos(21β)sin(212ββ+)/A= 弧长1L )=90R πarcsin (R L 21)=弦长 2L =2Rsin(212ββ+)/H=弧长 2L =90Rπarcsin(R L 22)=K=2Rsin(21β)cos(212ββ+)/A= 式中 同前1ε=arcsin(R L 22)-arcsin (2RK )=弧长2B )=1802βR π=弦长2B =2Rsin(22β)=弧长1B )=1801επR =弦长D =21L L 1+B =弧长D )=90R πarcsin(2R D)=4.极边板(图2-6)尺寸计算:图2-6弧长1L )=2R πcos(2β)=弦长1L =2Rcos(2β)=弦长3L =2Rsin(222ββ+)/H=弧长3L )=90R πarcsin(2R L 3)=弧长2B )=1802βR π=弦长2B =2Rsin(22β)=式中 2α=21800β--arcsin(R 2D 0)= M=22Rsin(212ββ+)/H=3α=90°-2β+arcsin(RM2)= 4α=2 arcsin[22sin(23α)]=弧长1B =1802αR π=弦长1B =2Rsin(22α)=弦长D =3112L L B +=弧长D )=90R πarcsin(2R D )=弧长2L =1804απR = 弦长2L =2Rsin(23α)=第四章 强度计算球壳计算设计压力:设计温度:-20 — 40℃试验压力: + H*ρ*g*10-6 = 壳壁厚度球壳材料采用1Gr17,σb =450MPa,常温下许用应力为[σ]t=150MPa.[]14143-表P取焊缝系数:φ=[1]P110腐蚀裕量C2=2mm,钢板厚度负偏差C1=0mm,故厚度附加量C=C1+C2=2mm.[]1363-表P液柱高度H: H=K1R=*6225=9960mm液体的静压力P=ρgH = 6225**9960*10-9 =计算压力:Pc = + =球壳所需壁厚:δ1=CPDPctc+-ϕσ][4[]84691-式P= + 2 =圆整可取δ=38mm4.2接管和法兰的选择接管根据JBM0503-08选用DN25 DN40 DN50接管。

球罐计算书

球罐计算书

软件批准号:CSBTS/TC40/SC5-D01-1999DATA SHEET OF PROCESSEQUIPMENT DESIGN工程名:湖北三宁化工股份有限公司PROJECT设备位号:ITEM设备名称:1000m3液氨球罐EQUIPMENT图号: Q06-502-00DWG NO。

设计单位:江西江联能源环保股份有限公司DESIGNER钢制球形储罐计算单位江西江联能源环保股份有限公司计算条件简图拉杆与支柱连接形式相邻球壳形式混和式近震还是远震近震地震设防烈度7场地土类别2球壳分带数3支柱数目n8一根支柱上地脚螺栓个数 n d2压力试验类型液压地面粗糙度类别B充装系数 k 0.90公称容积1000.0m3球罐中心至支柱底板底面的距离 H08150.0mm拉杆与支柱交点至基础的距离 l6080.3mma点(支柱与球壳连接最低点)至2021.3mm球罐中心水平面的距离 L a支柱类型轧制钢管支柱外直径 d o426.0mm支柱厚度 10.0mm拉杆直径 48.0mm支柱底板直径785.1 mm耳板和支柱单边焊缝长 L1380.0mm拉杆和翼板单边焊缝长 L2 200.0mm支柱和球壳焊缝焊脚尺寸 S10.0mm耳板和支柱焊缝焊脚尺寸 S110.0mm拉杆和翼板焊缝焊脚尺寸 S210.0mm球壳钢板负偏差C1 0.0mm球壳腐蚀裕量 C2 2.0mm拉杆腐蚀裕量 C T 2.0 mm地脚螺栓腐蚀裕量 C B 3.0mm支柱底板腐蚀裕量 C b 3.0mm保温层厚度无保温mm保温层密度无保温 kg/m3设计压力 p 2.26MPa 试验压力 p T 2.83MPa 设计温度 50.0︒基本风压值 q0400.0 N/m2基本雪压值 q350.0 N/m2物料密度ρ2586.0kg/m3附件质量 m78000.0 kg焊接接头系数φ 1.00支柱底板与基础的摩擦系数 f S0.3球壳内径D i 12300.0mm螺栓连接圆形平盖计算单位江西江联能源环保股份有限公司设计条件简图计算压力p c 2.350MPa设计温度t50.0︒ C设备壳体内径D i 500.0 mm螺栓连接平盖型式N o13计算直径D c549.0mm径向截面上各开孔直径之和D156.0mm材料名称16Mn许用应力 [σ]t150.0MPa中心圆直径D b615.0mm螺公称直径d B24.0mm栓数量n24个材料名称35CrMoA垫外径D外565.0mm 内径D内525.0mm m 2.50y69.0MPa片压紧面形状1a,1b材料类型软垫片厚度设计系数K (取大值) 预紧时A m=4176.0A b =8117.5W = 0.5( A m + A b )[σ]b = 1401450.5==378.1CCGDpWLK0.21操作时W=718424.8=+=378.13.0CCGDpWLK0.41开孔削弱系数ν= 0.72 计算厚度δp = D c []φσtpKc⋅= 51.91 mm 计算结果名义厚度54.0mm 校核合格DN500 凸缘补强计算Calculations for DN500 Flange Reinforcement材质:16Mn锻件,JB 4726-2000,Ⅲ级合格,正火状态。

混合式球罐极带板尺寸及重量计算

混合式球罐极带板尺寸及重量计算

混合式球罐极带板尺寸及重量计算冉谦1,王永清1(1.扬州惠通化工技术有限公司,江苏.扬州225000)摘要:球形储罐是大型承压储存容器,在我国石油、化工、冶金、城镇燃气等行业中得到了广泛应用,球罐的制造难度大,技术要求严格,在《容规》中被划为第三类压力容器。

在球罐设计中,球壳板的几何参数和面积计算是件繁琐的工作,运算步骤繁多,容易出现错误。

本文以高等数学方法推出计算公式,可根据公式计算出极带板中极中板、极侧板及极边板的几何尺寸和重量。

关键词:混合式球罐球壳板尺寸及重量计算Calculation on dimension and weight of polar plate ofmixed-type spherical tankRan Qian1, Wang Yongqing1Abstract:Spherical tank is a kind of pressure vessel, which is widely used in the field of petroleum, chemical, metallurgy, and city fuel. It is classified as “Ⅲ”vessel in “Supervision Regulation on Safety Technology for Stationary Pressure Vessel” for its complex fabrication process and strict technology requirements. During the design of tank, the determining of dimension and area of spherical shell have been a fussy task for its various calculation step and more probability of error. In this paper, a calculation formula based on principle of Advanced mathematics is put forward. By the formula, the dimension and area of center polar plate, side polar plate and edge polar plate can all be obtained.Key word: Mixed-type spherical tank,polar plate,Dimension weight,calculation球形储罐是大型承压储存容器,在我国石油、化工、冶金、城镇燃气等行业中得到了广泛应用,球形储罐与筒形容器相比,相同容积的球罐所需的钢材用量少;在同等压力等级,相同直径,使用相同材料进行制造,球罐的钢材用量只需筒形容器用量的一半;占地面积小;以及容器能够大型化的特点,因此在我国石油、化工、冶金、城镇燃气等行业中的到了广泛应用[1]。

储罐计算

储罐计算
0
D1 15.75
(°) 24.62432 (°) 2.902293 球面拱顶展开计算是按"球罐 展开长L1(mm) 7163.132 和大型储罐"内的有关内容编 大弧长AB(mm) 4163.34 的有关符号和简图请参看本书 小弧长CD(mm) 542.6548 217、218和219页。 大半径R1(mm) 8665.302 小半径R2(mm) 961.2329 大弦长L1(mm) 4123.411 小弦长L2(mm) 535.4773
0 -14.6314 -11.0951 -11.0951
549.5628 35746.65
储罐保温表面积,体积和重量 保温厚度 保温密度 罐壁厚度 表面积 体积 重量 2 3 mm kg/m3 mm m m kg 100 200 10 558.6443 55.86443 11172.89
2) 焊缝系数 φ 0.9 h
间距(mm)
经向的面积折算系数
经向的组合截面形心 距离(mm)
间距(mm) 经向的面积折算系数
经向的组合截面形心 距离(mm)
பைடு நூலகம்
Pa 650 输入数据 te-球壳顶板有效厚度(mm) h1-纬向肋宽度(mm) b1-纬向肋厚度(mm) L1-纬向肋在经向的间距(mm) n1-纬向肋与顶板在经向的面积折算系数 e1-纬向肋与顶板在经向的组合截面形心 (0点)到顶板中面的距离(mm) h2-经向肋宽度(mm) b2-经向肋厚度(mm) L2-经向肋在经向的间距(mm) n2-经向肋与顶板在经向的面积折算系数 e2-经向肋与顶板在经向的组合截面形心 (0点)到顶板中面的距离(mm)
带肋球壳
罐顶厚度初算 拱顶半径 Rn (m) 18.96 拱顶厚度 t (mm) 7.9632 初算名度厚度 t (mm) 10 拱顶体积 m3 2.054067 拱顶重 kg 16124.43 Gk Pa 1012.315 附加载荷 Pa 1250 设计外压 Pa 3261.256 自支锥顶厚度 t (mm) 11.22522 自支拱顶厚度 t (mm) 9.814122 拱顶名度厚度 t (mm) 10 球面拱顶展开计算 输入数据 顶板块数n 系数a 系数b 中心顶板孔D2 12 25 30 1.92 φ φ

球罐计算书

球罐计算书

软件批准号:CSBTS/TC40/SC5-D01-1999DATA SHEET OF PROCESSEQUIPMENT DESIGN工程名:湖北三宁化工股份有限公司PROJECT设备位号:ITEM设备名称:1000m3液氨球罐EQUIPMENT图号: Q06-502-00DWG NO。

设计单位:江西江联能源环保股份有限公司DESIGNER钢制球形储罐计算单位江西江联能源环保股份有限公司计算条件简图拉杆与支柱连接形式相邻球壳形式混和式近震还是远震近震地震设防烈度7场地土类别2球壳分带数3支柱数目n8一根支柱上地脚螺栓个数 n d2压力试验类型液压地面粗糙度类别B充装系数 k 0.90公称容积1000.0m3球罐中心至支柱底板底面的距离 H08150.0mm拉杆与支柱交点至基础的距离 l6080.3mma点(支柱与球壳连接最低点)至2021.3mm球罐中心水平面的距离 L a支柱类型轧制钢管支柱外直径 d o426.0mm支柱厚度 10.0mm拉杆直径 48.0mm支柱底板直径785.1 mm耳板和支柱单边焊缝长 L1380.0mm拉杆和翼板单边焊缝长 L2 200.0mm支柱和球壳焊缝焊脚尺寸 S10.0mm耳板和支柱焊缝焊脚尺寸 S110.0mm拉杆和翼板焊缝焊脚尺寸 S210.0mm球壳钢板负偏差C1 0.0mm球壳腐蚀裕量 C2 2.0mm拉杆腐蚀裕量 C T 2.0 mm地脚螺栓腐蚀裕量 C B 3.0mm支柱底板腐蚀裕量 C b 3.0mm保温层厚度无保温mm保温层密度无保温 kg/m3设计压力 p 2.26MPa 试验压力 p T 2.83MPa 设计温度 50.0︒基本风压值 q0400.0 N/m2基本雪压值 q350.0 N/m2物料密度ρ2586.0kg/m3附件质量 m78000.0 kg焊接接头系数φ 1.00支柱底板与基础的摩擦系数 f S0.3球壳内径D i 12300.0mm螺栓连接圆形平盖计算单位江西江联能源环保股份有限公司设计条件简图计算压力p c 2.350MPa设计温度t50.0︒ C设备壳体内径D i 500.0 mm螺栓连接平盖型式N o13计算直径D c549.0mm径向截面上各开孔直径之和D156.0mm材料名称16Mn许用应力 [σ]t150.0MPa中心圆直径D b615.0mm螺公称直径d B24.0mm栓数量n24个材料名称35CrMoA垫外径D外565.0mm 内径D内525.0mm m 2.50y69.0MPa片压紧面形状1a,1b材料类型软垫片厚度设计系数K (取大值) 预紧时A m=4176.0A b =8117.5W = 0.5( A m + A b )[σ]b = 1401450.5==378.1CCGDpWLK0.21操作时W=718424.8=+=378.13.0CCGDpWLK0.41开孔削弱系数ν= 0.72 计算厚度δp = D c []φσtpKc⋅= 51.91 mm 计算结果名义厚度54.0mm 校核合格DN500 凸缘补强计算Calculations for DN500 Flange Reinforcement材质:16Mn锻件,JB 4726-2000,Ⅲ级合格,正火状态。

甲醇储槽设计计算书

甲醇储槽设计计算书

甲醇储槽设计计算书.(1000M3)11M直径,罐壁高10.8m的储罐:常温(20)常压(+1.8Kpa,-0.3Kpa)则设计压力P为+2Kpa/-0.5Kpa.1.底板名义厚度取S=6,8mm.2.罐壁的计算厚度:γ---贮液重度T/m3γ= 0.76<1, 则取γ=1Di---贮罐内直径mmDi=11000mH---所计算的那一圈壁板底边至罐壁顶端的垂直高度10.8,9,7.2,5.4,3.6,1.8m 相应各液位高度的PC为0.11,0.092,0.074,0.056,0.038,0.02MPa. [σ] t --设计温度下罐壁钢板Q235-A的许用应力MPa[σ]20=135 MPa--焊缝系数=0.9C—厚度附加量腐蚀裕度C2=2mm材料厚度负偏差C1=0.8mm(7.5-25) C1=0.6mm(5.5-7.5)钢材厚度负偏差C1=0.8mm腐蚀裕度C2=2mm壁板设计厚度为4.98+0.8+2=7.78mm取壁板名义厚度壁板设计厚度为4.16+0.8+2=6.96mm壁板名义厚度壁板设计厚度为3.35+0.8+2=6.15mm壁板名义厚度壁板设计厚度为2.53+0.6+2=5.13mm壁板名义厚度壁板名义厚度壁板名义厚度3. 罐壁是否要设置加强圈的计算:(1)罐壁设计外压的计算:P=2.25KZq0+p1P--贮罐罐壁设计外压MPap--贮罐操作负压,取呼吸阀的吸阀开启压力的1.2倍呼吸阀开启压力是30mmH2O=0.0003MPaKZ--风压高度变化系数,大城市郊区取KZ=1.38W0--上海地区基本风压值,W0=0.0006 MPa (吴泾黄浦江边)P=2.25KZW0+p=2.25x1.38x0.0006+1.2x0.0003=0.00222 MPa (2)罐壁的许用临界压力按下式计算:--最薄壁板的有效厚度8-2.8=5.2mm.Hn--罐壁的总当量高度mmHn=ΣHeiHei=Hn--各圈壁板当量高度mh---各圈壁板的实际高度mm---各圈壁板的有效厚度mm壁板的圈数h(mm)(mm)Hei (mm)1800 5.21800 1(顶圈)1800 5.21800 21800 5.21800 31800 5.21800 41800 5.21800518007.27986Hn=ΣHei=9798mm因为pcr>p所以不需设置加强圈.4.罐顶的设计:设计内压为1.2倍呼吸阀的排放开启压力减去罐顶单位面积的重力.设计外压为罐顶自重与附加载荷之和. 附加载荷为1200N/m2罐顶单位面积重= =72.3Kgf/m2=723N/m2设计内压为1.2x1800-723=1437N/m2设计外压为723+1200=1923N/m2考虑到接管和加强筋等的重量,取设计外压PO为2000 N/m2即2Kpa.设计内压小于设计外压,故罐顶设计压力p为2Kpa.(1)顶板的计算:瓜形板的厚度计算(GB 50341-2003 P41):ths=0.42xRS=0.42x11=4.62mmths---罐顶板的计算厚度mmRS--- 罐顶球面的曲率半径mC---壁厚附加量C=2+0.8=2.8mm则瓜形板的厚度t=4.62+2.8=7.42mm取顶板名义厚度为8mm.其有效厚度8-2.8=5.2>4.5mm.满足要求.取中心顶板的厚度t1=8mm,中心顶板的直径D1=2000mm. (2)拱顶的稳定验算需满足下式:Po≤[Pcr]Po---拱顶的设计外压为2KPa[Pcr]- 拱顶的许用临界压力KPa不带肋拱顶的许用临界压力的计算:[Pcr]=0.1Et =0.1x1.92x105x =0.00429MPa=4.29KPa因为[Pcr]>o=2所以此拱顶能满足稳定的要求.(3)包边角钢的验算:包边角钢截面积和包边角钢相连接的罐顶和罐壁各16倍板厚范围内的截面积之和应满足下式A≥A---包边角钢截面积和包边角钢相连接的罐顶和罐壁各16倍板厚范围内的截面积之和p---固定顶的设计压力p=2Kpa=0.002MPaD---贮罐内直径D=11000mmθ---罐顶起始角θ=30°---焊缝系数=0.9[σ] t—包边角钢在设计温度下的许用应力,135MPa. = =431 mm2A包括三部分:角钢用80x80x8(A)包边角钢的截面积A1=2x80x6=960mm2(B)罐壁16倍板厚范围内的截面积A2=16x4x4=256cm2 (C)罐顶16倍板厚范围内的截面积A3=16x6x6=576cm2 A=A1+A2+A3=960+256+576=1792cm2因为A=1792>431所以此包边角钢能满足要求.5.常压立式贮罐的抗震验算:(A)罐壁底部水平地震剪力Q0=10-6CZαY1mgCZ---综合影响系数,对于常压立式贮罐,CZ =0.4α—地震影响系数,1000m3,当基本烈度为7时,查得α=αmax=0.23m---产生地震作用的储液等效重量kg,m=m1FrHW---贮罐底面到贮罐液面的高度HW=10.8mR---自下往上数第一圈罐壁的内半径R=550cmFr---动液系数,由= =1.02比值按附表查得Fr=0.782m1---贮罐内贮液重量πR2Hγ=πx5.52x10.8x1000=1026358Kgm= m1Fr=0.782x1026358=802612KgQ0=10-6CZαY1mg=10-6x0.4x0.23x1.1x802612x9.81=0.797MN (B)贮罐底部的地震弯矩:水平地震载荷对贮罐底面的弯矩M1= 0.45xQ0xHW=0.45x0.797x10.8=3.873MN.m(C)底圈罐壁底部的最大压应力:σ1=CV---竖向地震影响系数,7度为1.N1---底层罐壁底部所承受的垂直载荷MN,一般取罐体金属总重力的80%,与储罐保温体重之和.N1=10-6x1.2x40000x0.8x9.81=0.3768 MNA1---底圈罐壁的截面积,A1=πD1δ1=πx11.01x0.01=0.3459m2δ1---底圈罐壁的实际壁厚δ1=0.01mD1---底圈罐壁的平均直径D1=11.01mZ1---底圈罐壁的截面抵抗矩, Z1=0.785D2t=0.785x11.012x0.01=0.951578m3σ1= = =6.78MPa(D)底圈罐壁的容许临界应力[σcr]=0.15E =0.15X1.92X105X0.0072/11=18.85MPaσ1=5.16<[σcr]= 18.85故底圈罐壁满足抗震要求.计算参考书:1.JB/T 4735-1997 <<钢制焊接常压容器>>2.GB 50341-2003 <<立式圆筒形钢制焊接油罐设计规范>>3.<<大型贮罐设计>>4.CD 130A2-84 <<立式圆筒形钢制焊接贮罐设计技术规定>>。

xx工程200m3氮气球罐设计计算书

xx工程200m3氮气球罐设计计算书

xx 工程200m 3氮气球罐设计计算书D1 设计条件设计压力: p= 1.68 M Pa 设计温度: t= -19~80 ℃水压试验压力: P T = 1.25p = 1.25x1.68 M Pa =2.1 MPa 球壳内直径:D i = 7100 mm ( 200 m 3 ) 储存物料:氮气 充装系数: K = 1 地震设防烈度:7 度10m高度处的基本风压值: q0= 350 N/m2支柱数目: n=6支柱选用 φ 219 x8 无缝钢管 拉杆选用 φ 32 圆钢球罐建造场地:III 类场地土D2 球壳计算D2.1 计算压力 设计压力: p= 1.68 Mpa球壳各带的物料液柱高度: (储存介质为气体,不计算物料液柱高度) 物料密度: ρ0 =1.251kg/m 3 (标准状态下) 重力加速度:=9.81m/s 2球壳各带的计算压力:(储存介质为气体, 各带的计算压力相等)D2.2 球壳各带的厚度计算: (储存介质为气体, 各带的计算厚度相等) 球壳内直径: D i = 7100 mm设计温度下球壳材料16MnR 的许用应力:[]σt=163 Mpa焊缝系数: ϕ = 1厚度附加量: c =c 1 +c 2 = 0 + 1 = 1 mm[]mm c p D p ctid 34.19134.18168.111634710068.1411=+=+-⨯⨯⨯=+-=φσδ取球壳名义厚度δ n = 22 mm. 有效厚度δe = δn -C = 22 - 1 = 21mm 。

设计温度下球壳的最大允许工作压力 p w =4δe[σ]t Ф/(Di+δe)=4*21*163*1/(7100+21)=1.92MPa设计温度下球壳的计算应力 σt = p c (Di+δe)/4δe = 1.68*(7100+21)/(4*21)=142.4<[σ]t Ф=163(MPa)D3 球罐质量计算球壳平均直径: D c p = 7122 mm 球壳材料密度: ρ 1 = 7850 kg / m 3物料密度: ρ 0 = 1.251 kg / m 3 气体密度: ρρ2000=⨯T T P P =3/9.231.01.068.119273273251.1m kg =+⨯- 充装系数: K = 1水的密度: ρ 3 = 1000 kg / m 3 球壳外直径: D 0 = 7144 mm 基本雪压值: q = 250 N / m 2; 球面的积雪系数: C s = 0.4 球壳质量:m 1 =π D 2c p δη ρ1 ×10-9 = π×71222 ×22×7850×10 -9 =27520 kg . 物料质量: m 2 =kg K D i 5.44781019.237100610693923=⨯⨯⨯⨯=⨯--πρπ液压试验时液体的质量: m 3 =⨯⨯=⨯-393371006106πρπi D 1000×10 - 9 = 187402 kg积雪质量: m 4 =ππ4104981026gD qC s ⨯=⨯⨯-.71442× 250 ×0.4 ×10 -6 = 408.6 kg保温层质量 m 5 = 0支柱和拉杆的质量:m 6 = ~2020 kg 附件质量:m 7 = ~3000 kg (包括盘梯、人孔、接管、安全阀等) 操作状态下的球罐质量:m 0 =m 1 + m 2 + m 4 + m 5 + m 6 + m 7 = 27520 + 4478.5 + 408.6+ 0 +2020 + 3000 = 37427.1 kg液压试验状态下的球罐质量:m T =m 1 + m 3 + m 6 + m 7 = 27520 + 187402 + 2020 +3000 = 219942 kg 球罐最小质量:m min = m 1 + m 6 + m 7 = 27520 + 2020 + 3000 = 32540 kgD4 地震载荷计算 D4.1 自震周期支柱底板底面至球壳中心的距离: H 0 = 5030 mm 支柱数目: n= 6支柱材料10号钢的常温弹性模量: E s = 192×103 Mpa 支柱外直径: d 0 = 219 mm 支柱内直径: d i = 203 mm 支柱横截面的惯性矩: I=()ππ6464044d d i-=( 219 4-203 4 )= 2.955×10 7 mm 4支柱底板底面至上支耳销子中心的距离: 3530=l mm 拉杆影响系数:ξ=21375.050303530235030353012312020=⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-H l H l 球罐的基本自振周期:7333330010955.210192*********.050302.33491310⨯⨯⨯⨯⨯⨯⨯⨯=⨯=--πξπInE H m T s=0.2967 s . D4.2 地震力综合影响系数: C Z = 0.45地震影响系数的最大值: αmax = 0.23 (查表15) 对应于自振周期T 的地震影响系数: αα==max .023球罐的水平地震力:F C e Z = α m 0 g = 0.45 × 0.23 × 37427.1× 9.81 =38001 ND5 风载荷计算风载体形系数: K 1 =0.4系数ζ1 : ζ1 = 1.0747 (按表17选取)风振系数: K 2 =1+0.35ζ1 = 1+0.35×1.0747 = 1.376 10m 高度处的基本风压值: q 0 = 350 N/m 2支柱底板底面至球壳中心的距离: H 0 = 5.03 m 风压高度变化系数: f 1 =0.8012 (按表18选取) 球罐附件增大系数: f 2 =1.1 球罐的水平风力: F w =6262102120101.18012.0350376.14.071444104--⨯⨯⨯⨯⨯⨯⨯=⨯ππf f q K K D= 6805 ND 6 弯矩计算(F e +0.25F w )与F w 的较大值 F max :F e +0.25F w = 38001 +0.25×6805= 39702 NF w = 6805 N F max =39702N力臂: L =H 0 - l = 5030 - 3530 =1500 mm 由水平地震力和水平风力引起的最大弯矩:M max =F max L = 39702 × 1500 = 5.96×10 7 N ·mmD7 支柱计算D7.1单个支柱的垂直载荷 D7.1.1 重力载荷操作状态下的重力载荷 G 0 =681.91.374270⨯=n g m = 61193N液压试验状态下的重力载荷 G T =681.9219942⨯=ng m T = 359605 ND7.1.2 支柱的最大垂直载荷支柱中心圆半径: R=R i = 3550 mm最大弯矩对支柱产生的垂直载荷的最大值(按表19计算) : α=Mmax/R=5.96x107/3550=16789 b=lFmax/R=3530x39702/3550=39478 (Fi)max=0.333 3a= 5596 N拉杆作用在支柱上的垂直载荷的最大值 (Pi-j)max=0.333 3b= 13158 N据表19. (Fi+Pi-j)max=0.333 3a+0.333 3b=18754 ND7.2 组合载荷操作状态下支柱的最大垂直载荷:W 0 =G 0 +(F i +P i - j )max =61193 +18754= 79947 N 液压试验状态下支柱的最大垂直载荷: W T =G T +0.3(F i +P i - j )max397026805187543.0359605max ⨯⨯+=F F w = 360569ND7.3 单个支柱弯矩 D7.3.1 偏心弯矩操作状态下赤道线的液柱高度: h 0e = 0 mm;液压试验状态下赤道线的液柱高度: h Te = 3550 mm; 操作状态下物料在赤道线的液柱静压力:p 0 e =h 0 e ρ2 g ×10-9 = 0 × ×9.81×10-9 = 0 MPa; 液压试验状态下液体在赤道线的液柱静压力:p Te =h Te ρ3 g ×10-9 = 3550×1000×9.81×10-9 = 0.0348 MPa; 球壳的有效厚度: δ e =δ n - C = 22 - 1= 21 mm; 操作状态下物料在球壳赤道线的薄膜应力: ()()()()4.142214217100068.1400=⨯+⨯+=++=ee i e e D p p δδσ MPa ;液压试验状态下液体在球壳赤道线的薄膜应力: ()()()()1812142171000348.01.24=⨯+⨯+=++=ee i Te T Te D P p δδσ MPa ;球壳内半径: R i = 3550 mm 球壳材料的泊松比: μ = 0.3球壳材料16MnR 的弹性模量: E = 206×103 MPa ; 操作状态下支柱的偏心弯矩 : ()()3.01102067994735504.142130001-⨯⨯⨯⨯=-=μσEW R M i e= 1.37×105 N . mm液压试验状态下支柱的偏心弯矩 : ()()3.01102063605693550181131-⨯⨯⨯⨯=-=μσEW R M Ti Te T = 7.87×105 N .mmD 7.3.2 附加弯矩操作状态下支柱的附加弯矩 :()()3.0110206503035504.14210955.210192616327320002-⨯⨯⨯⨯⨯⨯⨯⨯⨯=-=μσEH R I E M i e s = 2.31×106 N .mm液压试验状态下支柱的附加弯矩 :()()3.01102065030355018110955.2101926163273202-⨯⨯⨯⨯⨯⨯⨯⨯⨯=-=μσEH R I E M i Te s T = 2.94×106 N .mmD7.3.3 总弯矩操作状态下支柱的总弯矩:M 0=M 01 +M 02 = 1.37×105 +2.31×106 =2.447×106 N.mm . 液压试验状态下支柱的总弯矩:M T =M T 1 +M T 2 = 7.87×105 +2.94×106 =3.727×106 N.mm .D 7.4 支柱稳定性校核单个支柱的横截面积 : ()()222220530320321944mm d d A i =-=-=ππ单个支柱的截面系数 : ()()354444010699.22193220321932mm d d d Z i ⨯=⨯-=-=ππ计算长度系数 : K 3 = 1 ; 支柱的惯性半径 : mm A I r i 65.74530310955.27=⨯==支柱长细比 : 38.6765.745030103=⨯==i r H K λ 支柱材料10 , σs =205 MPa支柱换算长细比70.01019220538.673=⨯==-πσπλλS s E >0.215对于轧制钢管 α1 =0.41, α2 =0.986, α3 =0.152弯矩作用平面内的轴心受压柱稳定系数()()⎥⎦⎤⎢⎣⎡-++-++=222322322421λλλααλλααλφp =()()⎥⎦⎤⎢⎣⎡⨯-+⨯+-+⨯+⨯222227.047.07.0152.0986.07.07.0152.0986.07.021=0.862等效弯矩系数:βm =1截面塑性发展系数:γ=1.15欧拉临界力:W EX =л2E S A/λ2=л2x192x103x5303/67.382 =2.2134x106 N支柱材料的许用应力 : []σσc sMPa ===1520515137..操作状态下支柱的稳定性校核 :MPaW W z M A W EX m p6.25102134.2799478.0110699.215.110447.21862.05303799478.0165600=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯+⨯=⎪⎪⎭⎫ ⎝⎛-+γβφ< [σ] c ;液压试验状态下支柱的稳定性校核 :MPaW W z M A W EX T Tm pT69.92102134.23605698.0110699.215.110727.31862.0530********.01656=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯+⨯=⎪⎪⎭⎫ ⎝⎛-+γβφ< [σ] c ;稳定性校核通过。

球罐计算书

球罐计算书

摘要:介绍了液化烃的性质及发生火灾的特点,对液化烃储罐火灾的危险性及水喷雾冷却、灭火机理进行了分析,列举了液化烃球罐水喷雾系统的设计计算实例,提出了设计中应注意的问题。

关键词:液化烃球罐火灾水喷雾灭火系统报警消防冷却1、概述液化轻烃的主要成分是:乙烷、丙烷、丁烷、戊烷等烃类组成,在气态时比重比空气重,(是空气的1.5~2.0倍)。

液化烃储罐发生火灾的根源是液化烃泄漏。

液化烃一旦泄漏,迅速汽化且难以控制。

汽化时,从周围环境吸收大量的热量,使空气中的水份冷却成为细小雾滴,形成液化烃的蒸气云。

液化烃的蒸气云从泄漏点沿地面向下风向或低洼处漂移、积聚。

液化轻烃爆炸极限低(2%~10%体积比),如大量泄漏遇明火可造成大面积的火灾或可燃蒸气云爆炸事故。

液化轻烃的燃烧热值高,爆炸迅速、威力大,破坏性强,其火焰温度达200℃以上,极易引起邻罐的爆炸。

液化轻烃的体积膨胀系数比水大,过量超装十分危险。

液化轻烃生产出来,为了便于储存和运输,通常进行加压和冷却使其汽化,储存在密闭的压力储罐内,由于球罐耐压大且受力均匀,储存量大,因而石化企业普遍采用球罐和卧式罐做为储存液化气的压力容器。

液化轻烃球罐发生火灾时,若球罐内尚有剩余可燃气体时就将火扑灭,剩余的可燃气体泄漏出来与空气混合到一定的浓度,遇明火就会发生爆炸,产生更大的危害。

因此,控制液化气球罐火灾的根本措施是切断气源和紧急排空。

在完成放空之前应维持其稳定燃烧,同时对着火罐及相邻罐进行喷水冷却保护,使球罐不会因受热发生破坏。

因为液化烃会吸收热量而大量蒸发,导致罐内温度、压力升高。

罐壁的热量不能及时的传出,温度迅速升高,强度急剧下降。

如果不及时供给冷却水,一般在火灾持续10min 左右将出现热塑裂口,储罐破裂。

因此对储罐壁进行及时有效的冷却,是防止球罐发生破裂而引起灾难性火灾事故的重要措施。

笔者在春晓气田群建设开发项目陆上终端的轻烃球罐区采用水喷雾冷却系统,对液化烃球罐实施了固定式消防冷却水系统。

储罐计算书模板

储罐计算书模板

1600m3储罐设计计算书一 . 产品要求湖北新裕有限公司施工图设计, 需1600m3拱顶储罐, 按下述技术条件进行设计计算。

二 . 设计技术条件:1. 储罐编号: T-2109 ;2. 使用压力: 常压 (正压6550Pa, 负压150Pa);3. 储罐容积: 1600 m3;4. 储罐尺寸:储罐内径: 11.5m;罐壁高度: 15.5m;5. 储存介质: 食用油;6. 介质设计密度: 0.857. 设计温度: 50℃;8. 设计压力: Pa;9. 腐蚀裕量: 1.58mm; ;10. 储罐形式: 立式拱顶金属结构;11. 制造材料: Q235-A;12. 地震设防烈度: 7度;13.基本风压: 302Pa;14.基本雪压: 150Pa;三 . 设计计算: (一). 罐壁设计计算:1. 罐壁设计厚度按下列公式计算: Φ=][t 2D P i c σδ (JB/T4735—1997, 式5-1)δ 储罐罐壁的计算厚度( mm);cP 储罐的计算压力(MPa ),根据《钢制焊接常压容器》,其值为设计压力与容器各部位或元件所承受得液柱压力之和。

i D储罐内直径(mm), 11500mm;[]σt 设计温度下罐壁钢板的许用应力(MPa),查JB/T4735—1997表4-1根据中间插值法得130MPa;ϕ焊缝系数, 取0.9;C 1 钢板厚度负偏差(mm), 08mm; C 2 腐蚀裕量(mm), 取1.58mm;2. 先计算底圈罐壁板的壁厚,故Pc =Pi +ρg H ,其中Pi 为储罐设计压力,ρ为储液密度,Hi 为储罐高度,Pc =750+1500×9.8×6.6=0.09777MPa ;δ=9.01302500009777.0⨯⨯⨯ =2.09mm根据JB/T4735—1997中3.5中规定,罐壁的最小厚度为6mm ,故设计厚度为最小厚度和腐蚀裕量之和,取为8mm 。

由于JB/T4735—1997 12.2.1条 规 定 的 D <16m 罐 壁 钢 板 厚 度 应 不 小 于5mm, 所 以底圈 罐 壁 钢 板 厚 度取8mm 。

球罐计算公式

球罐计算公式

球形容器充液高度准确计算假设球形容器的几何体积为V,内直径为D,内半径为r,在充装系数为k的情况下液相空间高度为H,气相空间的高度为h,见图1,则可得:图1 计算模型πh2(r-h/3)=V(1-k),即πh2r-πh3/3=V(1-k) (1)H+h=D (2)式(1)为一元三次方程。

由于引入充装系数k后,式中的系数将有多位小数,因此很难用常规的分解因式来准确求解该方程,多数情况下只能采用试算法。

对式(1)进行化简,得:(3)式(3)仍不是一个容易求解的公式,等式右端的代数式中含有未知数h,但可以采用迭代法进行计算,层层逼近,最后求得真值[2]。

2 框图及程序程序框图见图2,计算程序如下。

图2 程序框图10 INPUT “球罐内半径r=(m)?”;r20 V = 4 * 3.1415926#*r^3 / 330 INPUT “充装系数k=?”; k40 INPUT “气相空间高度初试值h0=(m)?”; h50 FOR i = 1 TO 99960 IF r - h/ 3 <= 0 THEN 11070 A = SQR [V*(1 - k)/3.1415926#/(r- h/3)]80 IF ABS (A - h) <=10^(-5) THEN 14090 h= A100 NEXT i110 PRINT “数值超界,请重新输值”120 PRINT “------------------”130 GOTO 40140 hh=2*r- h150 PRINT “液相高度为H=”;hh;“m”160 PRINT “气相空间高度为h=”;A;“m”170 PRINT “共迭代计算了”; i; “次.”180 PRINT “计算结束! ”999 END3 使用说明①该程序仅适用于盛装介质为液体或液化气体的球形容器。

②在输入“气相空间高度初试值h0”时,必须满足0≤h≤D。

否则,计算式中将有可能出现负值开平方的情况,导致计算无法正常进行。

储罐计算书

储罐计算书

1设计基本参数:设计规范:设计压力P:常压Pa设计温度T:常温℃设计风压ω0:550Pa 设计雪压Px:200Pa 附加载荷Ph:27.44Pa 罐壁内径D: 6.76m 罐壁高度H1: 2.8m 充液高度HW: 2.8m 液体比重ρ:1焊缝系数Φ:0.9腐蚀裕量C2:1mm 钢板负偏差C1:0.3mm 2罐壁分段及假设壁厚罐壁尺寸、材料及许用应力如下:从下至上分段号高度(m)名义厚度tn(mm)材料1 1.45Q235B2 1.45Q235B3罐壁计算1) 设计厚度计算 ( 储存介质) : t=4.9ρ(H-0.3)D/[σ]D φ+C1+C2计算结果从下至上计算液位高度差H(m) 计算壁厚td(mm)1 2.8 1.802 1.4 1.524.风载荷计算:1)风载荷标准值ωk = βz μs μs ω0 =0.6875Kpaω0—基本风压值(<300时取300Pa)0.55βz—高度Z处的风振系数,油罐取1μs —风荷载体型系数,取驻点值1μz—风压高度变化系数, 1.25罐壁迎风面投影面积:18.928m 2球缺受风力面积:0m 2作用于圆柱体投影面上的风压:687.5Pa 作用于罐壁上的风载荷:P1 =13013N 作用于拱顶投影面上的风压:687.50Pa作用于顶部上的风载荷:P 2 =0.00N拱顶高度:h =0m风弯矩:M f= P 1×H/2+P 2×(H+h/2)=18218.20m100立方圆形储罐设计计算书GB50341-2003《立式圆筒形钢制焊接油罐设计规范》 按6.4.5-1的规定选用。

2)中间抗风圈计算:罐壁筒体的临界压力:8.82Kpatmin =3.7mm H E = ∑H ei =2.80mH ei ——罐壁各段当量高度,m ;H ei = H i (t min /t i )2.5罐壁各段当量高度如下:罐壁段号实际高度Hi (m )有效壁厚ti (mm )当量高度Hei (m )1 1.4 3.7 1.421.43.71.4罐壁设计外压:P 0 = 2.25ωk +q = 1.55Kpa q---罐顶呼吸阀负压设定值的1.2倍0.00KPa ∵[Pcr]>P0,故不需要设置中间抗风圈。

常压立式圆筒锥顶储罐设计计算书

常压立式圆筒锥顶储罐设计计算书

弹性模量Mpa Pa Pa °C Pa Pa m m mmm mm 地震烈度:7度g 类mm mm mm满足最小厚度和计算厚度要求,设计合格罐壁不包括腐蚀裕量等最小厚度要求4钢板负偏差为0.3储罐壁板的有效厚度t e4.70.1Ⅲ类第二组场面粗糙度类别:B2. 罐壁计算:罐顶板冲蚀裕量:C 21罐壁板冲蚀裕量:C 21介质比重:ρ 1.5焊缝系数:Φ 0.9罐壁高度: H 16充液高度:H 5.7设计雪压P x 350罐壁内径: D3.2设计温度:T 60基本风压:ω0450设计内压:P 0设计外压:P'-490大罐形式固定顶储罐材质S30408E t 193000储罐设计计算书1.设计基本参数:设计规范:SH3046-1992《石油化工立式圆筒形钢制焊接储罐设计规范》灌顶形式锥顶3.1灌顶计算:罐顶形式支撑形式锥顶内径m °KPa KPakg kg kpa kpa kpa mm mm mm 3.2灌底计算:mm mm mm mm最终取:mm mm mm mm罐壁内表面至边缘板和中幅板连接焊缝的距离600底圈罐壁至边缘板外缘的距离50底圈罐壁至边缘板外缘的最小距离50罐底中幅板厚度6罐底环形边缘板厚度6满足最小厚度和计算厚度要求,设计合格罐底中幅板所需的最小厚度4罐底环形边缘板所需的最小厚度6罐壁内表面至边缘板和中幅板连接焊缝的最小距离600取锥顶的名义厚度6罐顶钢板负偏差0.3锥顶的有效厚度 4.7固定顶的设计外载荷 2.70自支撑罐顶板的计算厚度t 顶3.23罐顶板不包括腐蚀裕量最小要求厚度4.5罐壁罐顶和它们所支撑附件的重量7000固定顶的固定载荷 1.500附加外载荷 1.20μs —风荷载体型系数,取驻点值 1.00μz—风压高度变化系数, 1.38罐顶板和附件的重量1200风载荷计算ωk =βz μs μs ω00.621ω0—基本风压值(<300时取300Pa)0.450βz—高度Z处的风振系数,油罐取 1.003. 罐顶和罐底计算:锥顶自支撑3.16锥顶和水平方向夹角15注:红色字底部分为数据输入部分,粉色为数据查表输入部分蓝色子底部分为自动计算结果部分此外设计标准可该改为JB/T4735-1997打印格式已设置好,直接打印即可。

储罐基础设计计算书(修改)1

储罐基础设计计算书(修改)1
环墙单位高度环向钢筋的截面集计算经计算2000m3储罐as
储罐基础设计计算书(修改)1
储罐基础设计计算书
工程项目名称:奎屯恒新仓储基地工程
1、环墙厚度计算
2000m3储罐基础宽度=(53934+1758)/(500+(1.2-0)9.8-1.2*1.8)
=109.29mm
根据实际情况考虑,将2000m3储罐基础宽度设计为500mm
1000m3储罐基础宽度=(33398+879)/(500+(1.2-0)9.8-1.2*1.8)
=67.26mm
根据实际情况考虑,将1000m3储罐基础宽度设计为500mm
2、环墙单位高度环向力计算值FT
经计算2000m3储罐Ft=566.923
1000m3储罐Ft=576.281
3、环墙地基承载力PK的计算
地基承载力fa=500kpa
经计算1000m?储罐PK=9.449≤500
2000m?储罐Pபைடு நூலகம்=8.791≤500
4、环墙单位高度环向钢筋的截面集计算
经计算2000m3储罐AS=566.923/400=1.42mm2
1000m3储罐AS=576.281/400=1.44mm2
本工程采用钢筋最小截面面积为28.3 mm2,采用的钢筋大小符合要求。

大型储罐计算书

大型储罐计算书

4000m³储罐计算书一、 计算个圈壁板厚度1、计算罐壁板厚度,确定罐底板、罐顶板厚度: 用GB50341-2003中公式(6.3.1-1)计算罐壁厚度ϕσρd d ][0.3)-(H 9.4t D =式中:d t —储存介质条件下管壁板的计算厚度,mm D —油罐内径(m )(21m )H —计算液位高度(m ),从所计算的那圈管壁板底端到罐壁包边角钢顶部的高度,或到溢流口下沿(有溢流口时)的高度(12.7m ) ρ—储液相对密度(1.0)d ][σ—设计温度下钢板的许用应力,查表4.2.2(157MPa ) ϕ—焊接接头系数(0.9) 第1圈: mm 7.89.0163.010.3)-(12.7219.4t d =⨯⨯⨯⨯=n δ=8.7+2.3=11mm 取12mm 第2圈: mm 38.79.0163.011.88)-0.3-(12.7219.4t d =⨯⨯⨯⨯=n δ=7.38+2.3=9.68mm 取12mm 第3圈: mm 06.69.0163.011.88)2-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=6.06+2.3=8.36mm 取10mm 第4圈: mm 74.49.0163.011.88)3-0.3-(12.7219.4t d =⨯⨯⨯⨯⨯=n δ=4.74+2.3=7.04mm 取8mm根据表6.4.4,罐壁最小厚度得最小厚度为6+2=8mm ,故第5、6、7圈取8mm 。

二、罐底、罐顶厚度、表边角钢选择(按GB50341规定) 罐底板厚度:查表5.1.1,不包括腐蚀余量的最小公称直径为6mm ,加上腐蚀余量2mm ,中幅板厚度为8mm查表5.1.2,不包括腐蚀余量的最小公称直径为11mm ,加上腐蚀余量2mm ,取边缘板厚度为14mm 罐顶板厚度:查7.1.3,罐顶板不包括腐蚀余量的公称厚度不小于4.5mm ,加上1mm 的腐蚀余量后取6mm包边角钢:按GB50341表6.2.2-1,选∠75×10 罐顶加强筋:-60×8 三、罐顶板数据计算:①分片板中心角(半角)55.2425200302/21000arcsin 302/arcsini 1︒=-=-=)()(SR D α ②顶板开孔(φ2200)中心角(半角)5.2252001100arcsin r arcsin2︒===SR α 顶板开孔直径参照《球罐和大型储罐》中表5-1来选取注:中心顶板与拱顶扇形顶板的搭接宽度一般取50mm ,考虑到分片板最小弧长不小于180mm ,故取φ2200mm③分片板展开半径mm 1151144.25tg 25200tg 11=︒⨯==αSR R mm 1100.52tg 25200tg 22=︒⨯==αSR R④分片板展开弧长:⌒AD =mm 96985.255.24360252002360221=-⨯⨯⨯=-⨯)()(πααπSR ⑤分片板大小头弧长:大头:⌒ABmm 1535446021000n302i =∆+-⨯=∆+⨯-=)()(ππD 小头:⌒CDmm 1974411002n r 2=∆+⨯⨯=∆+=ππ ⑥中心顶板展开弧长⌒L mm 22995023605.22520022502360222=⨯+⨯⨯⨯=⨯+⋅⋅=)()(παπSR四、拱顶高度计算内侧拱顶高:mm 227830)-(21000/2252002520030)-/2(D h 222i 2n =--=--=SR SR外侧拱顶高:m m 228462278h w =+=五、盘梯计算计算参数:g H —罐壁高度,mm (12700) i R —罐内半径,mm (10500)W SR —拱顶半径,mm (25206) α—内侧板升角(45°)n R —内侧板半径,mm (n R =10500+12+150=10662mm )B —盘梯宽度(内外板中心距)取656mm ,板宽150mm ,板厚6mm 1、平台高度WW SR SR --+=2i 2w 1L)-(R h h425mm 252061000)-(1050025206228422=--+=mm 3125142512700=+=H式中:1h —平台支撑角钢上表面至包边角钢上表面的距离,mmL —平台端部至罐内表面的距离,一般取800-1000mm ,取L=1000mm2、内侧板展开长度mm 184202100)-(1312523n =⨯=-=)(H H L式中:3H —盘梯下端至罐底上表面的距离,mm ,≮50mm ,取100mm3、外侧板展开长度mm 189951066265611184207071.0117071.022n n w =++⨯⨯=++=•R B L L )()( 4、三角架个数个)(717001225)-(13125x n 3==-=L H式中:x —第一个三角架到罐底上表面的距离,mm 取1225mm 3L —相邻三角架的垂直距离,mm 一般1500-2000mm5、三角架在罐壁上的水平位置a n =n01n 2b h R R)(- 式中:1b —内侧板及外侧板的宽度,mm ,一般取150mm —n h 第n 个三角架平台表面的距离,n ×1700mm0R —底圈壁板外半径,mm (10500+12=10512mm ) n R —内侧板半径mm (10662)a 1=mm 1467106621051221507001=-)( a 2=mm 31431066210512215070012=-⨯)( a 3=mm 48191066210512215070013=-⨯)( a 4=mm 64951066210512215070014=-⨯)( a 5=mm 81711066210512215070015=-⨯)( a 6=mm 98471066210512215070016=-⨯)( a 7=mm 115231066210512215070017=-⨯)( 6、盘梯包角︒=⋅-=⋅-=96.691801066210013119180n 3b ππαR H H ≈70° 六、带肋球壳稳定性验算21mn 2s m t t t 0001.0][)()(⋅=R E P (C.2.1-1) 式中: ][P —带肋求壳的许用外载荷,KPaE —设计温度下钢材的弹性模量,MPa 查表4.1.6得192×103 MPaS R —球壳的曲率半径,mm S R =SR=25200mm n t —罐顶板有效厚度,mm n t =6-C=6-1-0.6=4.4mmm t —带肋球壳的折算厚度,mm332m3n 31m m 4t t 2t t ++= (C.2.1-2)式中:]e t n 12t 4t 2t h 3h b h [12t 21n 13n 2nn 121s 11131m-+++⨯=)(L (C.2.1-3)]e t n 12t 4t 2t h 3h b h [12t22n 23n 2nn 222s 22232m-+++⨯=)(L (C.2.1-4) S L 1n 111t b h 1n += (C.2.1-5)SL 2n 222t b h 1n += (C.2.1-6) 式中:31m t —纬向肋与顶板组合截面的折算厚度,mm1h —纬向肋宽度,mm (高度60)1b —纬向肋有效厚度mm (8-(2×1+0.8)=5.2) 1s L —纬向肋在径向的间距,mm (1228) 1n —纬向肋与顶板在径向的面积折算系数058.112284.42.5061t b h 1n 1n 111=⨯⨯+=+=S L 1e —纬向肋与顶板在径向组合截面的形心到顶板中面的距离,mm(按CD130A6-86《钢制低压湿式气柜设计规定》算出下面公式)78.1)602.54.41214(2)4.460(602.5)(2)(e 1111111=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n32m t —径向肋与顶板组合截面的折算厚度,mm 2h —径向肋宽度,mm (高度60)2b —径向肋有效厚度mm (8-(2×1+0.8)=5.2)2s L —径向肋在纬向的间距,mm 下面求2s L :a) 先求第1圈纬向肋的展开半径3R 先求第圈纬向肋处的角度(半角3α) ∵600360/252002=⋅⋅∆πα ∴364.1=∆α° ︒=︒-︒=∆-=186.23364.155.2413ααα 再求第1圈纬向肋处展开半径3Rm m 10793186.23tg 25200tg R 33=︒⨯==αSRb) 求第1圈纬向肋的每块分片板肋板的弧长2s Lmm 14152]186.23cos 10790244360sin[L 2s =⨯︒⨯⨯⨯=)( 2n —径向肋与顶板在径向的面积折算系数05.114154.4602.51t b h 1n 2n 222=⨯⨯+=+=S L 2e —径向肋与顶板在纬向组合截面的形心到顶板中面的距离,mm537.1)602.54.41415(2)4.460(602.5)(2)(e 2222222=⨯+⨯⨯+⨯⨯=++=h b t l t h h b n s n带肋球壳按下图布置把上面各参数代入C.2.1-3中求31m t4082]78.14.4058.1124.444.424.40636012152.506[12t232231m=⨯⨯-++⨯+⨯⨯⨯=)(把上面各参数代入C.2.1-4中求32m t3492]4537.14.405.1124.444.424.40636014152.506[12t232232m=⨯⨯-++⨯+⨯⨯⨯=)(c) 把31m t ,31m t 代入C.2.1-2中,求m tmm 46.12492434.424082t 33m =+⨯+=d) 把m t 代入C.2.1-1中求[P]78.246.124.42.2546.12101920001.0][2123=⋅⨯⨯⨯=)()(P KPae) 验算:设计外载荷(外压)L P 按7.1.2条规定取1.7KPaL P <[P] 即1.7<2.78 ∴ 本带肋球壳是稳定的 (L P 是外载荷,按7.1.2条规定,取1.7MPa )七、 加强圈计算1、设计外压,按6.5.3-3q 25.2P k o +=W (6.5.3-3)式中:o P —罐壁筒体的设计外压(KPa ) •W k —风载荷标准值(KPa )见式6.4.7q —罐顶呼吸阀负压设定压力的1.2倍(KPa ),取1.2(按SYJ1016 5.2.2条规定)风载荷标准值:按式6.4.7o z s z k w μμβ=•W (6.4.7)式中:•z β——高Z 处见风振系数,油罐取1s μ—风载体系形数,取驻点值,o w —基本风压(取0.4KPa )z μ—风压高度变化系数z μ风压高度变化系数,查表6.4.9.1,建罐地区属于B 类(指田野、乡村,丛林及房屋计较稀疏的乡镇和城市郊区,本储罐高度为12.7m ,介于10和15中间,要用内插法求x=z μ=1.08 (15m —1.14 10—1.0 12.7—x )风载荷标准值:432.04.008.111k =⨯⨯⨯=•W KPa 把k w =0.432KPa 代入6.5.3-3中a 2.22.1432.025.2P o KP =+⨯=2、计算罐壁筒体许用临界压力 2.5min cr )Dt (48.16][P E H D = (6.5.2-1)∑=ei H H E5.2imin iei t t h )(=H 式中:][P cr —核算区间罐壁筒体的需用临界压力,KPa E H —核算区间罐壁筒体的当量高度,mm in t —核算区间最薄板的有效厚度,mm(8-2.3=5.7) i t —第i 圈罐壁板的有效厚度,mmi h —第i 圈罐壁板的实际高度,mm (1880) ei H —第i 圈壁板的当量高度E H 表∑==95.8ei H H E m把E H 代入(6.5.2-1)中48.1)215.7(95.82148.16][P 2.5cr =⨯⨯=KPa ∵o P =2.3>1.48MPa ∴需要加强圈 具体用几个加强圈依据6.5.4的规定 ∵22.3][P 2.3 cr ≥> ∴应设1个加强圈,其位置在1/2E 处 根据6.5.5规定,在最薄板上,不需要换算,到包边角钢的实际距离就是4.5m (距包边角钢上表面4.5m )根据表6.5.6选取加强圈规格,本设计选∠125×80×8八、 抗震计算(CD130A 2-84) 1、水平地震载荷W a Q max 0Z C =式中:0Q —水平地震载荷 kgfZ C —综合影响系数 0.4m ax a —地震影响系数,按附表A 选0.45W —产生地震荷载的储液等效重量(波动液体)’w F W f =式中:f F —动液系数,由R H W /的比值,按附表A 2选取,如遇中间值则用插值法求。

储罐设计计算范文

储罐设计计算范文

储罐设计计算范文1.结构设计:储罐的结构设计主要涉及到罐体材料的选择和尺寸的确定。

常用的储罐材料有碳钢、不锈钢和玻璃钢等。

罐体的尺寸一般由存储物质的体积和特性以及工艺要求来确定。

2.底部设计:储罐的底部通常分为平底和锥底两种形式。

底板的设计计算主要包括底板的厚度、支撑方式以及底板中心压力的计算。

3.壁板设计:储罐的壁板一般为圆筒形或球形。

壁板的设计计算需要考虑外部载荷和内部压力对壁板的影响,包括应力、变形和屈曲等方面的计算。

4.连接方式:储罐的连接方式通常包括焊接、螺栓连接和法兰连接等。

连接方式的选择需要考虑到其强度和可靠性,同时还需满足相关的安全要求。

5.泄漏防护:储罐设计中需要考虑泄漏防护措施,如罐体顶部的风力防护罩、底部的泄漏检测和泄漏报警系统等。

在储罐设计计算中,常用的数值方法有有限元分析和应力应变分析等。

有限元分析是一种数值计算方法,通过将结构分割成许多小单元,将结构的连续性问题转化为有限个离散问题,并建立有限元方程进行求解。

应力应变分析则是通过应力应变关系的计算与分析,得出结构的应力和变形情况。

除了这些基本的设计计算之外,储罐在设计过程中还需要考虑到温度变化、储存物质的腐蚀性和燃烧性等因素,并根据相关的设计规范和标准进行计算和分析。

综上所述,储罐设计计算是储罐结构设计中重要的一环,其目的是为了确保储罐在使用过程中的安全和可靠。

在设计计算中,需要考虑罐体结构、底部设计、壁板设计、连接方式和泄漏防护等方面的因素,并结合数值方法进行计算和分析。

这些设计计算的结果将为储罐的制造和使用提供重要的参考依据。

储罐设计计算

储罐设计计算

Ph
D H1 H ρ Rs Φ C2 C1
1200 Pa 8度 24 m 13 m 13 m
1.5 24 m 0.9 0 mm 0.8 mm
0.2g
Ⅱ类第一组
2. 罐壁分段及假设壁厚: 罐壁尺寸
、材料及
从下至上 分段号
高度(m)
1
2
2
2
3
2
4
2
5
2
6
1.5
7
1.5
厚度 (mm)
24
材料
设计[σ]d (MPa)
PQ=1.6P-0.047th= 3.20 KPa
其中:
g= 9.81 m/s2
满足连接要求
6. 风载荷及地震载荷计算 6.1.风载荷计算: 6.1.1.顶部抗风圈计算
顶部抗风圈所需的最小截面模数 Wz=0.083D2H1ωk
463.1 cm3 第4页
风载荷标准值
ωk=βzμsμsω0 ω0—基本风压值(<300时取300Pa) βz—高度Z处的风振系数,油罐 取 μs—风荷载体型系数,取驻点值
0.17
4
2
15.2
0.31
5
2
13.2
0.44
6
1.5
9.2
0.81
7
1.5
罐壁设计
外压:
P0=2.25ωk+q=
7.2
1.50
2.2767 KPa
q---罐顶呼吸阀负压设定值的1.2倍 0.60 KPa
∵[Pcr]>P0,故不需要设置中间抗风圈。 如果: P 0 > [P Cr ] ≥ P 0 /2 应设置 1 个中间抗风圈于 H E /2 处。 P 0 /2 > [P Cr ] ≥ P 0 /3 应设置 2 个中间抗风圈于 H E /3 , 2HE/3 处。 P 0 /3 > [P Cr ] ≥ P 0 /4 应设置 3 个中间抗风圈于 HE/4 , 2HE/4 , 3HE/4 处。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3
根据日历小时平衡量计算
3座转炉吹氧重叠 由于制氧连续生产,而炼钢作业时间只有 7200h,有可能集中安排抢产等集中生产繁忙期
Vc1 Vc2 nc Vc Va Ve P1 P2 V
Og*(TL-Tc) Vda-Vc1 Vc2*nc Vs*Ob Vda+Va+Vc
8121 3856 2.5 9641 否 0 21618.00 2.60 1.70
3
根据日历小时平衡量计算
第 1 页,共 2 页
正常操作时波动吸收总量 考虑1个冶炼周期内充罐差额 单个非溅渣期内充罐量 充罐差额 充罐差额持续周期 总的充罐差额 考虑保安量 1炉钢水冶炼完成用量 所需球罐有效储量 球罐充气压力 球罐排气压力 所需球罐水容积 氮气球罐规格、数量 (3) 氩气球罐 转炉出钢量 炼钢氩气单耗 转炉底吹用氩单耗 平均冶炼时间 转炉底吹用氩时间 转炉底吹用氩强度 氩气平衡供氮量 正常操作时波动吸收量(单座) 炉数 正常操作时波动吸收总量 考虑保安量 1炉溅渣完成用量 所需球罐有效储量 球罐充气压力 球罐排气压力 所需球罐水容积 氩气球罐规格、数量
100 2 0.8 38 12 16.67 5.26 136.84 4 547.37 否
t钢水/炉 m3/t钢水 m /t钢水 min min m /min炉 m /min炉 m /炉 座 m
3 3 3 3 3
单座炼钢转炉
Va Ve P1 P2 V
0 547.37 2.90 1.90
m3 m MPa MPa m
青钢 球罐容积计算书
序号 名称 一 球罐容积计算 100t炼钢转炉5座 (1) 氧气球罐 年产钢水量 转炉出钢量 氧气单耗 平均冶炼时间 平均吹氧时间 吹氧强度 氧气平衡供氧量 同时吹氧炉数 正常操作时波动吸收总量 考虑1个冶炼周期内充罐差额 单个非吹氧期内充罐量 充罐差额 充罐差额持续周期 总的充罐差额 考虑保安量 1炉钢水冶炼完成用量 所需球罐有效储量 球罐充气压力 球罐排气压力 所需球罐水容积 氧气球罐规格、数量 (2) 氮气球罐 年产钢水量 转炉出钢量 氮气单耗 平均冶炼时间 溅渣护炉用氮时间 溅渣护炉用氮强度 氮气平衡供氧量 同时溅渣炉数 S Vs Nb TL Tc Nc Ng n Vs*Nb/Tc S*Nb/8760/60 322.2 100 16 38 3 533.33 94.17 2
Vda Vc1 Vc2 nc Vc Va Ve P1 P2 V
(Oc*n-Og)*Tc Og*(TL-Tc) Vda-Vc1 Vc2*nc Vs*Ob Vda+Va+Vc
2917.50 是 3296 -378 3 -946 否 0 1971.67 2.50 1.80
m m
3
3
m3 m3 m
3 3
m MPa MPa m
3 3
代号
主要计算公式
确定值
单位
附注
S Vs Ob TL Tc Oc Og n Vda (Oc*n-Og)*Tc Vs*Ob/Tc S*Ob/8760/60
322.2 100 54 38 13 415.38 324.83 3 11977.17 是
3
万t t钢水/炉 m /t钢水 min min m3/min炉 m /min 座 m
3
绝对压力 绝对压力 充气压力2.8MPa,排气压力1.8MPa
0.1147*Ve/(P1/(P1/P2)
3
0.1
-P2)
365.22 1.00
1000m 2.5MPa氮气球罐2座
Vs Ab1 Ab2 TL Tc Ac Ag Vd n Vda Vd*n Vs*Ob Vda+Va Vs*Ab2/Tc Vs*Ab1/TL (Ac-Ag)*Tc
m m m m
3 3
连续冶炼3.5个周期
3
3 3
m MPa MPa m3
绝对压力 绝对压力 充气压力2.5MPa,排气压力1.6MPa
0.1147*Ve/(P1/(P1/P2)
3
0.1
-P2)
3131.40 4.00
1000m 2.5MPa氧气球罐4座
万t t钢水/炉 m /t钢水 min min m /min炉 m /min 座
3 3
绝对压力 绝对压力 充气压力2.8MPa,排气压力1.8MPa
0.1147*Ve/(P1/(P1/P2)
3
0.1
-P2)
71.35 1
0m 3.0MPa氩气球罐1座
考虑LF、RH及连铸用氩
第 2 页,共 2 页
相关文档
最新文档