二阶非齐次线性常微分方程的通解公式

合集下载

二阶常系数非齐次线性微分方程讲解

二阶常系数非齐次线性微分方程讲解

y1 *
y2 *
1 2 x cos x Rm x sinx y* x k e x Rm


1 2 x , Rm x 都是 m 次多项式, m = max{ l , n },且 其中Rm
0
λ±iω不是特征根 λ±iω是特征根
9
k=
1
例 3 求方程 y' ' y x cos 2 x 的通解。 解 对应齐次方程的特征方程为 r 2 1 0 r1, 2 i 于是齐次方程的通解为 Y C1 cos x C 2 sinx 由于 f ( x ) x cos 2 x, ( 0, 2, Pl ( x ) x, Pn ( x ) 0即m 1) λ±iω=±2i不是特征方程的根,取 k 0, 故原方程特解设为: y* (ax b) cos2 x (cx d ) sin2 x 代入所给方程,得 y py qy e x [ pl ( x) cos x pn ( x) sin x]
第十节 二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微ຫໍສະໝຸດ 方程一般式是y" py' qy f x
(1)
其中p、q是常数。 由定理3,只要求出(1)的一个特解 y*及(1)对应的齐次方程
y" py' qy 0
* y Y y . 的通解Y, 即可求得(1)的通解 :
对 f(x) 的下面两种最常见形式, 采用待定系数法来求出 y*。
Q x Qm ( x) b0 x m b1 x m1 bm1 x bm
代入(3)式,比较两端同次幂的系数即可确定bi i 0,1,2 , m,
x y * Q ( x ) e . 进而得(1)的特解

二阶常系数非齐次线性微分方程解法及例题讲解

二阶常系数非齐次线性微分方程解法及例题讲解
把它代入所给方程 得
>>>
2b0x2b0b1=x
比较系数

b0
=

1 2

b1=1
故 y*= x( 1 x 1)e2x 2
提示 2b0=1 齐2次b0方b程1=y05y6y=0的通解为Y=C1e2xC2e3x
特解形式
例2 求微分方程y5y6y=xe2x的通解 解 齐次方程y5y6y=0的特征方程为r25r 6=0
下页
一、 f(x)=Pm(x)ex 型
设方程ypyqy=Pm(x)ex 特解形式为
y*=Q(x)ex
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
(1)如果不是特征方程r2prq=0的根 则 (2)如果是特征方程r2prq=0的单根 则
则得
Q(x)(2p)Q(x)(2pq)Q(x)=Pm(x) ——(*)
(1)如果不是特征方程r2prq=0的根 则
y*=Qm(x)ex
提示 此时2pq0 要使(*)式成立 Q(x)应设为m次多项式 Qm(x)=b0xmb1xm1 bm1xbm
y*=x2Qm(x)ex
提示 此时2pq=0 2p=0 要使(*)式成立 Q(x)应设为m2次多项式 Q(x)=x2Q下页
结论
二阶常系数非齐次线性微分方程
有形如
ypyqy=Pm(x)ex
y*=Qm(x)ex y*=xQm(x)ex
提示 此时2pq=0 但2p0 要使(*)式成立 Q(x)应设为m1次多项式 Q(x)=xQm(x)
其中Qm(x)=b0xm b1xm1 bm1xbm
下页
一、 f(x)=Pm(x)ex 型

二阶常系数非齐次微分方程

二阶常系数非齐次微分方程

f ( x) ex[P cosx P sinx] 利用欧拉公式
l
n
ex [Pl
eix eix
2
Pn
eix eix 2i
]
( Pl Pn)e( i) x ( Pl Pn)e(i) x
2 2i
2 2i
P( x)e(i)x P ( x)e(i) x ,
设 y py qy P(x)e( i)x ,
y* 2ixeix 2 x sin x (2 x cos x)i,
所求非齐方程特解为 y 2 x cos x, (取虚部)
原方程通解为 y C1 cos x C2 sin x 2 x cos x.
例3 求方程 y y x cos 2 x 的通解.
解 对应齐方通解 Y C1 cos x C2 sin x, 作辅助方程 y y xe2ix ,
设 y c1 ( x)cos x c2 ( x)sin x,
w( x) 1,
c1( x) c2( x)
sin x cos x
ln sec C2
x
tan
x
C1 ,
原方程通解为
y C1 cos x C2 sin x cos x ln sec x tan x .
三、小 结
(待定系数法)
y xk Q e(i)x ,
1
m
设 y py qy P( x)e(i)x ,
y
xkex[Q eix m
ix
Qme
]
y2
x kQ e(i) x m
,
xkex[R(1) ( x)cosx R(2) ( x)sinx],
m
m
其中 Rm(1) ( x), Rm(2) ( x)是m次多项式, m maxl,n

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题

例2 求微分方程y′′−5y′+6y=xe2x的通解. 解 齐次方程y′′−5y′+6y=0的特征方程为r2−5r +6=0, 其根为r1=2, r2=3. 因为f(x)=Pm(x)eλx=xe2x, λ=2是特征方程的单根, 所以非齐次方程的特解应设为 y*=x(b0x+b1)e2x. 把它代入所给方程, 得 >>> −2b0x+2b0−b1=x. 比较系数, 得b0 =− 1 , b1=−1, 故 y*= x(− 1 x−1 e2x . ) 2 2 提示: −2b0=1, 2b0−b1=0. 齐次方程y′′−5y′+6y=0的通解为Y=C1e2x+C2e3x .
首页 上页 返回 下页 结束 铃
一、 f(x)=Pm(x)eλx 型
设方程y′′+py′+qy=Pm(x)eλx 特解形式为y*=Q(x)eλx, 则得 Q′′(x)+(2λ+p)Q′(x)+(λ2+pλ+q)Q(x)=Pm(x). ——(*)
提示:
y*′′+py*′+qy* =[Q(x)eλx]′′+[Q(x)eλx]′+q[Q(x)eλx] =[Q′′(x)+2λQ′(x)+λ2Q(x)]eλx+p[Q′(x)+λQ(x)]eλx+qQ(x)eλx =[Q′′(x)+(2λ+p)Q′(x)+(λ2+pλ+q)Q(x)]eλx.
提示: 此时λ2+pλ+q≠0. 要使(*)式成立, Q(x)应设为m次多项式: Qm(x)=b0xm+b1xm−1+ ⋅ ⋅ ⋅ +bm−1x+bm.

微分方程求通解

微分方程求通解

微分方程求通解
1、微分方程的通解公式:y=y1+y* = 1/2 + ae^(-x) +be^(-2x),其中:a、b由初始条件确定,例:y''+3y'+2y = 1 ,其对应的齐次方程的特征方程为s^2+3s+2=0 ,因式分(s+1)(s+2)=0,两个根为:s1=-1 s2=-2。

2、y''+py'+qy=0,等式右边为零,为二阶常系数齐次线性方程;y''+py'+qy=f(x),等式右边为一个函数式,
为二阶常系数非齐次线性方程。

可见,后一个方程可以看为前一个方程添加了一个约束条件。

对于第一个微分方程,目标为求出y的表达式。

求解过程在课本中分门别类写得很清楚,由此得到的解,称为【通解】,
3、通解代表着这是解的集合。

我们中学就知道,M个变量,需要M个个约束条件才能全部解出。

例如,解三元一次方程组,需要三个方程。

由此,在变量相同的条件下,多一个约束条件f(y),就可以多确定一个解,此解就称为【特解】。

二阶常系数非齐次线性微分方程的解法及例题详解

二阶常系数非齐次线性微分方程的解法及例题详解
y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次 升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方 程的一个特解y(x)。
微分算子法:
微分算子法是求解不同类型常系数非齐次线性 微分方程特解的有效方法,使用微分算子法求 解二阶常系数非齐次线性微分方程的特解记忆 较为方便,计算难度也可降低。引入微分算子 d/dx=D,d^2/dx^2=D^2,
则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x), 令F(D)=D^2+pD+q,称为算子多项式, F(D)=D^2+pD+q即为F(D)y=f(x),其特解为 y=f(x)/F(D) 。
降阶法:
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an…… y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)! y^(n+2)+py^(n+1)+qy^(n)=a0n! 令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由
y*= xQk (x) ex
其中Q(x)是与p(x)同次的多项式,k按α不是特 征根、是单特征根或二重特征根,依次取0,1 或2.
将y*代入方程,比较方程两边x的同次幂的系 数(待定系数法),就可确定出Q(x)的系数而 得特解y*。

6.7二阶常系数非齐次线性微分方程

6.7二阶常系数非齐次线性微分方程
x x
2
e Pm ( x )
Pm ( x ) 为 m 次多项式 . 设特解为
其中
x
Q( x )
Q( x )
为待定多项式,
p y* e
y* e
[ p Q ( x ) p Q ( x )]
[ Q ( x ) 2 Q ( x ) Q ( x )]

代入原方程① , 得 (1) 若 不是特征方程的根, 则取 Q (x)为 m 次多项式 系数由②式确定, 从而得到 特解的形式为
(3). 上述结论也可推广到高阶方程的情形.
1
21
作业 36页习题6-7
1.(1),(3), 2. 4. 6.
作业本写上班级姓名
22
x x x (1 a b ) x e c e (2 a ) e (1 a b) e x x 对应齐次方程通解: Y C e C e x
1 2 x x
原方程通解为 y C 1 e C 2 e e x e 1 a1 b (0 C ex C 2 1) e x x e x 比较系数得 2 a cx x x y C e C e x e 即 1 1 a b0 2 其中 ( C 2 C 2 1)
是特征方程的根。 不是特征方程的根。 不是特征方程的根。
18
例9. 求微分方程 (其中 为实数 ) .
2
e
x
的通解
解: 特征方程 r 4r 4 0, 特征根: r1 对应齐次方程通解:
e
x
2 x
r2 2
1) 2 时, 令 y A e

1 , 代入原方程得 A ( 2)2
2 p 0 ,

3.非齐次微分方程

3.非齐次微分方程

有根
x ( d cos x k sin x )
目录 上页 下页 返回 结束
例7. 第六节例1 (P323)中, 若设物体只受弹性恢复力 f 和铅直干扰力 F h sin pt 的作用 , 求物体的运动规律. 解: 问题归结为求解无阻尼强迫振动方程
d x dt
2 2
k
2
x h sin p t
目录 上页 下页 返回 结束
Q ( x )
( p q ) Q ( x ) Pm ( x )
2
(2) 若 是特征方程的单根 , 即 为m 次多项式, 故特解形式为 (3) 若 是特征方程的重根 , 即
2 p 0 ,
则 Q ( x ) 是 m 次多项式, 故特解形式为 y * x Q m ( x ) e
于是求得一个特解
目录 上页 下页 返回 结束
例5. 解: 特征方程为 r 2 9 0 , 其根为
对应齐次方程的通解为
的通解.
为特征方程的单根 , 因此设非齐次方程特解为 代入方程:
6 b cos 3 x 6 a sin 3 x
比较系数, 得 因此特解为 y * x ( 5 cos 3 x 3 sin 3 x )
y* x
k
e
x
~ [ R m ( x ) cos x R m ( x ) sin x ]
3. 上述结论也可推广到高阶方程的情形.
目录 上页 下页 返回 结束
思考与练习
1 . (填空) 设
时可设特解为
y * x ( a x b ) cos x ( cx d ) sin x
Pm ( x ) e
( i ) x

常系数非齐次高阶线性微分方程

常系数非齐次高阶线性微分方程

整 个 链 条 滑 过 钉 子,即 x 8
2
代入上式得 t 3 ln(9 80) (秒)
g
9
2、 f (x) e x Pl (x) cos x P~n (x)sin x 型
分析思路: 第一步 将 f (x) 转化为
f (x) Pm (x) e(i) x Pm (x) e(i) x
解 设链条的线密度为,经过时间t, 链条下滑了x 米, 8m 10m
则由牛顿第二定律得
m d 2 x (10 x)g (8 x)g,
o
dt 2
即 x g x g , x(0) 0, x(0) 0.
x
99
解得 x(t)
1
(e
1 3
gt
1
e3
gt
) 1,
11
第二步 求如下两方程的特解
y py qy Pm (x) e(i) x

y p y q y Pm (x) e(i) x

设 i 是特征方程的 k 重根 ( k = 0, 1), 则 ② 有
特解:
y1 xkQm (x) e(i) x (Qm (x)为m次多项式)
6
例2.
的通解.
解: 本题 2, 特征方程为 r 2 5 r 6 0 , 其根为
对应齐次方程的通解为
设非齐次方程特解为 y* x (b0 x b1) e2 x
代入方程得 2b0 x b1 2b0 x
比较系数, 得
b0


1 2
,
b1

1
因此特解为
y*
形式e为xPym*(x)e xQm (x) . 3

二阶线性非齐次微分方程的特解

二阶线性非齐次微分方程的特解

二阶线性非齐次微分方程的特解二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如果f(x)=p (x),pn(x)为n阶多项式;2.如果f(x)=p(x)e^αx,pn(x)为n阶多项式。

二阶常系数齐次线性微分方程标准形式y″+py′+qy=0特征方程r^2+pr+q=0通解1.两个不相等的实根:y=c1e^(r1x)+c2e^(r2x)2.两根相等的实根:y=(c1+c2x)e^(r1x)3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(c1cosβx+c2sinβx)特解y*设法1、如果f(x)=p(x),pn(x)为n阶多项式。

若0不是特征值,在令特解y*=x^k*qm(x)*e^λx中,k=0,λ=0;因为qm(x)与pn(x)为同次的多项式,所以qm(x)设法要根据pn(x)的情况而定。

比如如果pn(x)=a(a为常数),则设qm(x)=a(a为另一个未知常数);如果pn(x)=x,则设qm(x)=ax+b;如果pn (x)=x^2,则设qm(x)=ax^2+bx+c。

若0是特征方程的单根,在令特解y*=x^k*qm(x)*e^λx中,k=1,λ=0,即y*=x*qm(x)。

若0是特征方程的重根,在令特解y*=x^k*qm(x)*e^λx中,k=2,λ=0,即y*=x^2*qm(x)。

2、如果f(x)=p(x)e^αx,pn(x)为n阶多项式。

若α不是特征值,在令特解y*=x^k*qm(x)*e^αx中,k=0,即y*=qm(x)*e^αx,qm(x)设法要根据pn(x)的情况而定。

若α是特征方程的单根,在令特解y*=x^k*qm(x)*e^αx中,k=1,即y*=x*qm(x)*e^αx。

若α是特征方程的重根,在令特解y*=x^k*qm(x)*e^λx中,k=2,即y*=x^2*qm(x)*e^αx。

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题在数学的领域中,二阶常系数非齐次线性微分方程是一个重要的研究对象。

它在物理学、工程学、经济学等众多学科中都有着广泛的应用。

接下来,让我们深入探讨一下二阶常系数非齐次线性微分方程的解法以及相关例题。

首先,我们来明确一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$ 是常数,$f(x)$是一个已知的函数。

为了求解这个方程,我们通常分为两个步骤:第一步,先求解对应的齐次方程:$y''+ py' + qy = 0$ 。

对于这个齐次方程,我们假设它的解为$y = e^{rx}$,代入方程中得到特征方程:$r^2 + pr + q = 0$ 。

通过求解这个特征方程,可以得到两个根$r_1$ 和$r_2$ 。

当$r_1$ 和$r_2$ 是两个不相等的实根时,齐次方程的通解为$y_c = C_1e^{r_1x} + C_2e^{r_2x}$;当$r_1 = r_2$ 是相等的实根时,齐次方程的通解为$y_c =(C_1 + C_2x)e^{r_1x}$;当$r_1$ 和$r_2$ 是一对共轭复根$r_{1,2} =\alpha \pm \beta i$ 时,齐次方程的通解为$y_c = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))$。

第二步,求出非齐次方程的一个特解$y_p$ 。

求特解的方法通常根据$f(x)$的形式来决定。

常见的形式有以下几种:1、当$f(x) = P_n(x)e^{\alpha x}$,其中$P_n(x)$是$n$ 次多项式。

如果$\alpha$ 不是特征根,设特解为$y_p = Q_n(x)e^{\alpha x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式;如果$\alpha$ 是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\alpha x}$;如果$\alpha$ 是特征方程的重根,设特解为$y_p =x^2Q_n(x)e^{\alpha x}$。

二阶常系数非齐次线性微分方程ppt课件

二阶常系数非齐次线性微分方程ppt课件

Q( x) 6Ax 2B 代入(*)式
6Ax 2B 5x A 5 , B 0
6
y 5 x3e3x 6
非齐通解为
y
(c1
c2 x
5 6
x3
)e3 x
6
二、f ( x) Pm ( x)ex cosx型
f ( x) Pm ( x)ex sinx型及其组合型
f ( x) Pm ( x)ex cosx f ( x) Pm ( x)ex sinx
二阶常系数非齐次线性微分方程
y py qy f ( x) 二阶常系数非齐次线性方程
对应齐次方程 y py qy 0, 通解结构 y Y y,
常见类型 自由项为 Pm ( x), Pm ( x)ex , Pm ( x)ex cos x, Pm ( x)ex sin x,
难点:如何求特解? 方法:待定系数法.
分别是 Pm ( x)e( j )x 的实部和虚部 考虑方程 y py qy Pm ( x)e( j )x , 辅助方程
可设 y xkQm ( x)e( j )x
Qm ( x)是m次复系数多项式
记Qm ( x) Q1( x) jQ2( x)
Q1( x),Q2 ( x)均是m次实系数多项式 7
解 相应齐方程 y y 0
特征方程 r 2 1 0 r1,2 j
齐通解 Y c1 cos x c2 sin x
y xk[Q1( x) jQ2( x)]ex (cosx j sinx) xkex[(Q1( x)cosx Q2( x)sinx) j(Q1( x)sinx Q2( x)cosx)]
k
0, 1,
j不是特征方程的根 j是特征方程的单根
由分解定理
Re y xkex[Q1( x)cosx Q2( x)sinx] Im y xkex[Q1( x)sinx Q2( x)cosx]

高数二阶常系数非齐次线性微分方程解法及例题详解

高数二阶常系数非齐次线性微分方程解法及例题详解

强迫振动问题例题
01
解题步骤
02 1. 将外力函数展开为傅里叶级数或三角级数。
03 2. 将展开后的级数代入原方程,得到一系列简单 的一阶或二阶常系数线性微分方程。
强迫振动问题例题
3. 分别求解这些简单方程,得到原方程的通解。
示例:考虑方程 $y'' + 4y = sin t$,首先将 $sin t$ 展开为三角级数,然后代入原方程进行求解,得到通解为 $y(t) = C_1 cos(2t) + C_2 sin(2t) + frac{1}{8} sin t$。
详细描述
自由振动问题通常可以通过求解特征方程得到,特征方程是一元二次方程,其根决定了 微分方程的解的形式。如果特征方程有两个不相等的实根,则微分方程的解为两个独立 的指数函数;如果特征方程有两个相等的实根,则微分方程的解为单一的指数函数;如
果特征方程有一对共轭复根,则微分方程的解为正弦和余弦函数。
强迫振动问题
方程形式与特点
01
02
03
04
05
二阶常系数非齐次线性 该方程具有以下特点 微分方程的一般形式为: $y'' + p(x)y' + q(x)y = f(x)$,其中$p(x)$、 $q(x)$和$f(x)$是已知函 数,$y$是未知函数。
未知函数$y$的最高阶导 系数是常数,不随$x$变 右边的函数$f(x)$是非齐
高数二阶常系数非齐次线 性微分方程解法及例题详 解
• 引言 • 二阶常系数非齐次线性微分方程的解
法 • 常见题型及解题技巧 • 例题详解 • 总结与思考
01
引言
背景介绍
二阶常系数非齐次线性微分方程在自 然科学、工程技术和社会科学等领域 有广泛应用,如物理学、化学、生物 学、经济学等。

7-7.二阶常系数非齐次线性微分方程

7-7.二阶常系数非齐次线性微分方程
难点:如何求特解? 方法:待定系数法. 难点:如何求特解? 方法:待定系数法
P (x)表示m次多项式 m
f ( x) = eλx P ( x) 型 m •一、
* λx 设非齐方程特解为 y = Q(x)e 代入原方程
y′′ + py′ + qy = f (x)
y = Q(x)e
*
(2)
猜想
λx
y*′ = eλ x λQ ( x ) + Q′ ( x )
y = xQm (x)e ;
*
λx
特解
Q′( X ) 是 次 项 m 多 式
(3) 若λ是特征方程的重根, Q′′( X ) 是m次多项式 是特征方程的重根,
λ + pλ + q = 0,
2
2λ + p = 0,
可设 Q ( x ) = x 2 Qm ( x ),
综上讨论
y = x Qm (x)e .
1 x 通解ϕ ( x) = C1 cos x + C2 sin x + e 2
1 x 特解ϕ ( x) = ( cos x + sin x + e ) . 2
布置作业
P347 习题 7-8
1. (8);2.(3). ;
P304------习题 习题7-2 习题
7.小船从河边 出发驶向对岸 小船从河边0出发驶向对岸 小船从河边 出发驶向对岸……. 解:设小船的航行路线C: 设小船的航行路线 : y h v 水流 0 x
dy cos x ( 3) + y cot x = 5e , y dx
x=
π
1 3 2 −x y = x − x + 2x + c1 + c2e 3

第九节 二阶常系数非齐次线性微分方程讲解

第九节 二阶常系数非齐次线性微分方程讲解

2 Aj 4,
y* 2 jxe jx 2 x sinx (2 x cos x) j ,
所求非齐方程特解为
(取虚部) y 2 x cos x ,
原方程通解为 y C1 cos x C2 sin x 2 x cos x .
例5 求方程 y y x cos 2 x 的通解. 解 对应齐方通解 Y C1 cos x C2 sin x ,
作辅助方程 y y xe 2 jx ,
2 j 不是特征方程的根 ,
设 y * ( Ax B)e 2 jx ,
代入辅助方程
4 Aj 3 B 0 3 A 1
*
1 4 A ,B j , 3 9
1 4 y ( x j )e 2 jx , 3 9
代入原方程
2 Q ( x ) ( 2 p)Q ( x ) ( p q )Q( x ) Pm ( x )
2 (1) 若不是特征方程的根, p q 0,
可设 Q( x ) Qm ( x ),
y Qm ( x )e ;
2 p 0,
思考题
写出微分方程 y 4 y 4 y 6 x 2 8e 2 x 的待定特解的形式.
思考题解答
* y 设 y 4 y 4 y 6 x 的特解为 1
2 2x y 4 y 4 y 8 e 设 的特解为 y2
*
* * * 则所求特解为 y y1 y2
第十章
微分方程
第九节 二阶常系数非齐次线性微 分方程
如果二阶线性微分方程为 y + py + qy = f(x) , 其中 p、 q 均为常数,则称该方程为二阶常系数线 性微分方程. f (x) 称为自由项,当 f (x) 不恒等于

二阶常系数齐次线性微分方程通解

二阶常系数齐次线性微分方程通解

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),特解
1、当p^2-4q大于等于0时,r和k都是实数,y*=y1是方程的特解。

2、当p^2-4q小于0时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。

扩展资料:
一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。

研究非齐次线性微分方程其实就是研究其解的问题,通解是由其对应的齐次方程的通解加上其一个特解组成。

一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为
y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为
y'+p(x)y=Q(x)。

齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。

对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。

就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题

二阶常系数非齐次线性微分方程解法及例题在学习高等数学的过程中,二阶常系数非齐次线性微分方程是一个重要的知识点。

理解和掌握它的解法,对于解决许多实际问题和理论研究都具有重要意义。

首先,我们来了解一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$是常数,$f(x)$是一个已知函数。

其解法的关键在于先求出对应的齐次方程的通解,然后再求出非齐次方程的一个特解,最终将两者相加得到非齐次方程的通解。

对于齐次方程$y''+ py' + qy = 0$,我们可以通过特征方程$r^2+ pr + q = 0$来求解。

特征方程的根有三种情况:1、两个不相等的实根$r_1$和$r_2$,此时齐次方程的通解为$y_c= C_1e^{r_1x} + C_2e^{r_2x}$。

2、两个相等的实根$r$,通解为$y_c =(C_1 +C_2x)e^{rx}$。

3、一对共轭复根$\alpha \pm \beta i$,通解为$y_c = e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$。

接下来,我们重点讨论如何求非齐次方程的特解。

根据$f(x)$的形式,通常使用待定系数法来求解。

常见的$f(x)$形式有以下几种:1、$f(x) = P_n(x)e^{\lambda x}$,其中$P_n(x)$是$x$的$n$次多项式。

若$\lambda$不是特征根,设特解为$y_p = Q_n(x)e^{\lambda x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式。

若$\lambda$是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\lambda x}$。

若$\lambda$是特征方程的重根,设特解为$y_p = x^2Q_n(x)e^{\lambda x}$。

2、$f(x) = e^{\lambda x}P_l(x)\cos\omega x + Q_m(x)\sin\omega x$若$\lambda \pm \omega i$不是特征根,设特解为$y_p = e^{\lambda x}R_{l+m}(x)\cos\omega x + S_{l+m}(x)\sin\omegax$,其中$R_{l+m}(x)$和$S_{l+m}(x)$是与$P_l(x)$和$Q_m(x)$同次的待定多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档