《离散数学》第六章 集合代数上课讲义

合集下载

离散数学6课件

离散数学6课件
注:真子集的符号化:BA (BA)∧(B A)。
§6.1 集合的基本概念
5.空集(Def6.4):不含任何元素的集合称为空集,记为Ø 注: 1. 空集的符号化:Ø ={x|x x }。 2. Th6.1 空集是一切集合的子集。(证明见教材P85)。 3. Cor 空集是唯一的。(证明见教材P85)。
§6.3 有穷集的计数
集合间的关系与运算的表示:文氏图(Venn Diagrams)
E
B
A
E
AB
E
AB
E
AB
A∩B=
E
AB
A∩B
A∩B=A
E
A
~A
A-B
E
AB
AB
A={a,b,…,z}
Z={0,-1,1,-2,2,…}
D={a,{a},{a,b}}集合中的元素还可以是集合。
谓词表示法:用谓词来描述集合中元素的性质。
如:B={x | x∈R ∧(x-1=0)} 描述法
={x | F(x)∧G(x)}
谓词描述法
设F(x):x∈R ,G(x):x-1=0 .
集合的性质:
第六章Biblioteka 集合代数6.1 集合的基本概念 6.2 集合的运算 6.3 有穷集合的计数 6.4集合恒等式
§6.1 集合的基本概念
1.集合:将一些事物汇集到一起组成的整体,其中每个事物称为这个集合 的元素。
注:如果x是集合A的元素,则记为xA 。
集合的表示方法:列元素法和谓词表示法
列元素法:列出集合的所有元素或部分元素,可用于有限集和有一定 规律的无限集。如:
6.n元集:含有n个元素的集合。它共有2n个子集合。 例 6.1 设A={1,2,3},求A的所有子集合。 7.集合A的幂集(Def6.5):由A的所有子集作为元素形成的集合。记为P(A)或2A 。

《离散数学》课件_第6章

《离散数学》课件_第6章
a ≼ b∨d, c ≼ b∨d 这表明b∨d是a和c的一个上界, 而a∨c是a和c的最小上界,
a∨c ≼b∨d 类似地, 可以证明a∧c ≼ b∧d
推论 设〈L, ∨, ∧〉是由偏序格〈L, ≼ 〉诱导的 代数系统, 对于a, b, c∈L, 如果b ≼c, 则a∨b ≼a∨c , a∧b a∧c。≼
第6章 格与布尔代数
6.1 格的概念 6.2 子格和格同态 6.3 特殊的格 6.4 布尔代数 6.5 布尔代数的结构和布尔函数
6.1 格 的 概 念
6.1.1 格的定义
定义6.1.1 设〈 L , ≼ 〉是一个偏序集合, 若对任意 a, b∈L, {a, b} 均存在最小上界和最大下界, 则称〈 L , ≼ 〉为偏序格(lattice)
6.1.2
定理6.1.1 设〈L, ∨, ∧〉是代数格, 则∨和∧满足 等幂律, 即对于任何a∈L,
a∨a=a, a∧a=a 证明 任取a∈L, a∨a=a∨(a∧(a∨a))=a, a∧a=a∧(a∨(a∧a))=a
定义6.1.3 设〈L, ≼ 〉是一个偏序格, 在L上定义两 个二元运算∨和∧, 对于任何a, b∈L, a∨b= lub{a, b}, a∧b=glb{a, b}, 则称∨和∧分别为L上的并和交运算, 称 〈L, ∨, ∧ 是由偏序格〈L, ≼ 〉诱导的代数系统。
证毕
定理6.1.5 设〈L, ∨, ∧〉是代数格, 在L上定义
二元关系 ≼ : 对于任何a, b∈L, a ≼ba∨b=b, 则
〈L, ≼〉是一个偏序格, 并称〈L, ≼〉是由代数格〈L,
∨, ∧〉
证明
≼L
任取a∈L, 根据定理6.1.1可知, 〈L, ∨, ∧〉满足
等幂律, 有a∨a=a, 即a ≼a, 所以,在L

离散数学 第六章 集合代数

离散数学 第六章 集合代数

3、相对补集 1)定义3 设A和B是任何两个集合,B 对A的相对补集 A-B, 是由属于集合A的但不属于集合B的所有元素构成的集合 A - B = { x |(x∈A)∧(x ∉ B)} = { x |(x∈A)∧ ┐(x∈B)} 2)相对补集的文氏图表示 3)性质 ( a) A - ø = A (b)A ∩(B-A)= ø (c)A∪(B-A)= A∪B (d)A-(B∪C)=(A-B)∩(A- C) (e)A-(B∩C)=(A-B)∪(A-C) (f)A - (A∩B)= A - B (g) A ⊆ B的等价形式: ⇔ A ∩B=A ⇔ A-B =Ø ⇔ A∪B =B
证明:A-B =A 的充要条件是 A∩B = Ø 充分性: 必要性:
证明 A⊆B任取 x ∈ A 利用所给的性质 ⇒ x∈B 或采用谓词演算方法 ∀x(x∈A→x∈B )成立 例:已知 A⊆B ,证明 ~B ⊆ ~A 证:∀x x∈~B ⇔ ┐x∈B 因为∀x ( x ∈ A → x ∈ B ) ┐x∈B → ┐x∈A ⇔ x∈ ~B → x∈~ A
§6.3
集合恒等式
Байду номын сангаас
集合运算的恒等式与命题公式的等值式有非常类同地方 即将: ∩看成 ∧ 、∪看成 ∨ 、 ∼ 看成 ┓ 空集Ø 看成 F 、全集E看成 T 那么命题公式的等值式可表示为集合运算的恒等式
一、下面给出对照的公式: 1)等幂律 A∪A= A [P∨P ⇔ P] A∩A= A [P∧P ⇔ P] 2)结合律 (A∪B)∪C=A∪(B∪C) [(P∨Q)∨R ⇔ P∨(Q∨R)] (A∩ B)∩C=A∩(B∩C) [(P∧Q)∧R ⇔ P∧(Q∧R)] 3)交换律 A∪B=B∪A [P∨Q ⇔ Q∨P] A∩B=B∩A [P∧Q ⇔ Q∧P] 4)分配律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B)∪(A∩C) [P∨(Q∧R) ⇔ (P∨Q)∧(P∧R)] [P∧(Q∨R) ⇔ (P∧Q)∨(P∨R)]

离散数学课件-6-集合代数

离散数学课件-6-集合代数

第六章集合代数§1 集合的基本概念集合用大写英文字母标记,A,B,C,…特别地,分别用N、Z、Q、R、C标记全体自然数的集合、全体整数的集合、全体有理数的集合、全体实数的集合、全体复数的集合。

元素用小写英文字母标记,a,b,c,…x∈A:x是A的元素,称x属于A。

x∉A:x不是A的元素,称x不属于A。

列元素法:{a1, a2, …, a n, …}谓词表示法:{x| F(x)}注①集合中的元素每个只写一次②集合中的元素不计排列次序A⊆B:A是B的子集,称A被B包含A B:A不是B的子集,称A不被B包含A=B ⇔A⊆B∧B⊆A:A与B相等A⊂B ⇔A⊆B∧A≠B:A是B的真子集N⊆Z⊆Q⊆R⊆C空集:是任意集合的子集,记为∅。

有限集,无限集n元集,k元子集n元集有2n个子集集合A的幂集P(A)(或2A)全集:E§2 集合的运算并:A∪B ={x| x∈A∨x∈B}交:A∩B ={x| x∈A∧x∈B}差(B对A的相对补集):A-B ={x| x∈A∧x∉B} 对称差:A⊕B=(A-B)(∪B-A)=(A∪B)-(A∩B)绝对补集(简称A的补集):∼A=A=E-A,文氏图:大矩形表示全集E,内部的圆表示不同集合。

例已知24人中,会英语的有13人,会日语的有5人,会德语的有10人,会法语的有9人。

其中,同时会英语和日语的有2人,同时会英语和德语、同时会英语和法语、同时会德语和法语的各有4人;此外,会日语的人不会德语和法语。

求只会英语、日语、德语、法语中一种语言的人数和同时会三种语言的人数。

解:设同时会三种 语言有x 人,只会只会 英语、法语、德语中一 种语言的人数分别为y 1、y 2、y 3人,则根据文氏图可得1231232(4)2132(4)92(4)103(4)24519y x x y x x y x x y y y x x +−++=⎧⎪+−+=⎪⎨+−+=⎪⎪+++−+=−=⎩解出x =1,y 1=4,y 2=2,y 3=3。

最新06集合代数教学讲义PPT课件

最新06集合代数教学讲义PPT课件
相等的符号化表示为: A=B AB ∧ BA
如果A与B不相等,则记作A≠B。
真子集
定义6.3 设A,B为集合,如果 BA 且 B≠A,则称B是 A的真子集,记作BA。
真子集的符号化表示为 BA BA ∧ B≠A
如果B不是A的真子集,则记作B A。 例如:N N
空集(empty set)
定义6.5 设A为集合,把A的全部子集构成的集合叫做A的幂集, 记作P(A)(或PA,2A)。
P(A)={x | xA}
若A是n元集,则P(A)有 2n 个元素。
全集
定义6.6 在一个具体问题中,如果所涉及的集合都是某个集 合的子集,则称这个集合为全集,记作E。
特定对 象
–26个英文字母的集合;
–坐标平面上所有点的集合;
–… …
集合通常用大写的英文字母来标记。
常见的数的集合(固定的符号)
N
Z
Q
R
C
集合的表示方法
表示一个集合的方法主要有两种:列元素法和谓词表示法。
列元素法(roster)是列出集合的所有元素,元素之间用逗号 隔开,并把它们用花括号括起来。
隶属和包含的说明
隶属关系和包含关系都是两个集合之间的关系,对于某 些集合可以同时成立这两种关系。
例如 A={a,{a}}和{a} 既有{a}∈A,又有{a}A。 前者把它们看成是不同层次上的两个集合, 后者把它们看成是同一层次上的两个集合。
集合相等(equal)
定义6.2 设A,B为集合,如果 AB 且 BA,则称A与 B相等,记作A=B。
6.1 集合的基本概念
集合(Set)是不能精确定义的基本概念。
–所谓集合,是指我们无意中或思想中将一些确定的、彼 此完全不同的客体的总和而考虑为一个整体。这些客体

离散数学课件第六章(第2讲)

离散数学课件第六章(第2讲)

《定理》:设*是S上的二元运算,且x S,对任一m,n
I+有(1)xmxn=xm+n
(2)(xm)n=xmn
证明: (1) xmxn= (xm x) x… x = (xm+1 x) x… x
n

n-1
=….= xm+n
(2)(xm)n= xm … xm= xm+m xm … xm=…=xmn
n
例:设M= {0º,60º,120º,240º,300º,180º}表示平面上几何图形 顺时针旋转的六种位置,定义一个二元运算*,对M中任一 元素a,b有a*b=图形旋转(a+b)的角度,并规定当旋转到 360º时即为0º,试验证<M ,*>是一个群。
* 0º 60º 120º 180º 240º 300º 0º 0º 60º 120º 180º 240º 300º 60º 60º 120º 180º 240º 300º 0º 120º 120º 180º 240º 300º 0º 60º 180º 180º 240º 300º 0º 60º 120º 240º 240º 300º 0º 60º 120º 180º 300º 300º 0º 60º 120º 180º 240º
例: <I ,max>,其中max(x1,x2)取二者之大值;<I ,min>, 其中min(x1,x2)取二者之小值,均不为独异点(不存在幺 元)。<N ,max>则为独异点,其中 e =0
《定义》:设< S ,* >是一半群,TS,且*在T上是封闭的, 那么< T ,* >也是半群,称< T ,* >是< S ,* >的子半群。

离散数学讲义(第6章)

离散数学讲义(第6章)

18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f

c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26

离散数学课件第六章(第1讲)

离散数学课件第六章(第1讲)
,则称运算对是可分配的(或称对满足分配律)。
例:代数系统(N,+,×)。其中+,×分别代表数 的加法和乘法。 ×对+ 满足分配律 。
《定义》:设,是定义在集合S上的两个可交换二 元运算,如果对于任意的x,yS,都有:
x (x y)=x; x (xy)=x 则称运算和运算满足吸收律。
《定义》:设*是S上的二元运算,若对任一x S有x x=x, 则称满足等幂律。
讨论定义: 1) S上每一个元素均满足xx=x,才称在S上满足幂等律; 2) 若在S上存在某一元素x ,满足x x=x,则称x为S上的幂
等元素; 3) 若x是幂等元素,则有xn=x成立。
例:(1)在实数集合R中,+,×是可交换,可结合的,×对+是满足 分配律的,“0”对+是等幂元素,而其它不是等幂元素,在实数集 合R中,“-”法是不可交换,不可结合的; (2)在(Z)中, ∩,∪均是可交换,可结合的, ∩对∪, ∪对∩均满足分配律;
《定义》:设Z是一个集合,f是一个函数,f:ZnZ,则称f
为Z中的n元运算,整数n称为运算的阶(元,次)。 若n=1,则称f: ZZ为一元运算; 若n=2,则f: Z2Z为二元运算。
例:(1)在整数I和实数R中,+,-,×均为二元运算,而 对÷而言就不是二元运算 ;
(2)在集合Z的幂集(Z)中,,均为二元运算, 而“~”是一元运算;
∴x 若存在逆元,则x 的逆元一定是唯一的。
《推论》(x-1)-1 =x , e-1= e 例: 在实数集合R中,对“+”运算,对任一xR有 ∵x+(-x)=0,0为加法幺元 所以x-1 =-x , (x-1)-1 =x , 0-1 =0 对“×”运算,乘法幺元为1,∵x× 1x =1, 则对任一x R有x-1 =1x(x0) , (x-1)-1 =x , 1-1 =1

第六章-集合代数PPT课件

第六章-集合代数PPT课件
概括原理:集合{ x:P(x) }恰由那些满足性质谓词P(x) 的元素组成。即 x{ x:P(x) } (当且仅当) P(x)真 。
.
9
悖论(paradox): 所谓悖论是指这样一个所谓的命题P,由P真立即推
出P假;由P假立即推出P真;即 P真P假 。
理发师悖论: 某偏远小山村仅有一位理发师。这位理发师规定: 他只给那些不给自己刮脸的人刮脸。 那么要问:这位理发师的脸由谁来刮? 如果他给自己刮脸,那么,按他的规定,他不应该
.
20
定理2.空集是任一集合的子集。即 A 。
[证明].(采用逻辑法) x(x) (空集的定义)
x (x)
x(xxA) (由析取构成式及联结词归约有:
p( p q)(pq))
A 。
.
21
十.幂集(power set): 定义1.幂集
一个集合A的所有子集构成的集合称为A的幂集。 记为 2A(或P(A) ) ,即
x(xA xB)x(xB xA)
x((xA xB)(xB xA)) (量词对 的分配律: xA(x)xB(x)x(A(x)B(x)) )
x(xAxB)
A=B 所以包含关系是反对称的;
.
19
(3)ABBC x(xA xB)x(xB xC) x((xA xB) (xB xC))
(量词对 的分配律:xA(x)xB(x)x(A(x)B(x)) ) x(xA xC) ( (假言) 三段论原则:(pq)(q r) p r ) AC 所以包含关系是传递的。
即 AB x(xA xB) 。
X
AB
真子集(proper subset):
称A是B的真子集或者A真包含在B中(或者B真包含 A ),记为AB。即 AB ABAB。

离散数学第六章的课件

离散数学第六章的课件

05 离散随机变量
随机变量的定义与性质
随机变量定义
随机变量是从样本空间到实数的可测 函数,用于描述随机现象的结果。
随机变量性质
随机变量具有可测性、可加性和可数 性等性质,这些性质在概率论和统计 学中具有重要应用。
离散概率分布
离散概率分布定义
离散概率分布描述的是随机变量取离散值时的概率规律,通 常用概率质量函数或概率函数表示。
离散概率分布性质
离散概率分布具有非负性、归一性和可数性等性质,这些性 质是离散概率分布的基本要求。
期望与方差
期望定义
期望是随机变量所有可能取值 的概率加权和,是描述随机变 量取值“平均水平”的重要指
标。
期望性质
期望具有线性性、可加性和正 定性等性质,这些性质在概率 论和统计学中具有重要应用。
方差定义
感谢您的观看
THANKS
方差是描述随机变量取值分散 程度的重要指标,是随机变量 与期望之差的平方的期望。
方差性质
方差具有非负性、归一性和可 加性等性质,这些性质是方差
的基本要求。
06 离散概率论的应用
蒙提霍尔问题
总结词
蒙提霍尔问题是一个著名的概率论问题,涉 及到概率论中的独立性概念和组合数学。
详细描述
蒙提霍尔问题是一个经典的组合数学问题, 它涉及到概率论中的独立性概念。该问题问 的是,如果有n个盒子,每个盒子被选中的 概率是1/2,那么在最优策略下,选中至少 一个盒子的最有可能的盒子数是多少?这个 问题涉及到概率论中的独立性概念和组合数
学。
抓阉问题
要点一
总结词
抓阉问题是一个经典的离散概率论问题,涉及到概率论中 的随机性和独立性概念。
要点二

离散数学 第六章的课件ppt

离散数学 第六章的课件ppt


A(BC) =(AB)(AC)
-
25
集合算律
3.涉及补运算的算律: 德摩根律,双重否定律
德摩根律 双重否定律
A(BC)=(AB)(AC) A(BC)=(AB)(AC)
(BC) = BC (BC) = BC
A=A
-
26
集合算律
4.涉及全集和空集的算律: 补元律、零律、同一律、否定律
补元律 零律
| ABC|
= 1000(200+166+125)+(33+25+41)8 = 600
-
20
6.3 集合恒等式
下面的恒等式给出了集合运算的主要算律,其中A,B,C代表任意集合。
幂等律
A∪A=A
A∩A=A
结合律
(A∪B)∪C=A∪(B∪C)
交换律
(A∩B)∩C=A∩(B∩C) A∪B=B∪A
分配律
A∩B=B∩A A∪(B∩C)=(A∪B)∩(A∪C)
书本98页 第18题 的 第(1)、(3)两个小题
-
17
有穷集合元素的计数
1. 文氏图法 2. 包含排斥原理 定理6.2 设集合S上定义了n条性质,其中具有第 i 条性质的 元素构成子集Ai, 那么集合中不具有任何性质的元素数为
|A 1A2.. .An||S| |Ai| |AiAj|
1in
1ijn
∩A={a}
∪∪A=a∪b
∩∩A=a
∩∪A=a∩b
∪∩A=a
∩∪A∪(∪∪A-∪∩A)
=(a∩b)∪((a∪b)-a)
=(a∩b)∪(b-a)
=b
所以∪∪A=a∪b,∩∩A=a,∩∪A∪(∪- ∪A-∪∩A)=b。

离散数学 代数系统 ppt课件

离散数学 代数系统 ppt课件

1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;

集合代数学习课件

集合代数学习课件
集合由其元素完全确定, 集合中的元素是不考虑次序的, 而且也应是互不相同的。
§6.1 集合的基本概念
集合与元素之间的隶属关系 a是集合A的元素, 就称 a属于A, 记为 a A a不是集合A的元素, 就称 a不属于A, 记为a A 例: A={ a , {b,c} , d , {{d}} } 这里 aA, dA, { { d } } A , 但 b A 规定: A A 数集 用 N 表示自然数集, 用 Z 表示整数集, 用 Q 表示有理数集, 用 R 表示实数集, 用 C 表示复数集
®
§6.4 集合恒等式
同一律 A∪∅=A (6.9) A∩E=A (6.10) 零律 A∪E=E (6.11) A∩∅=∅ (6.12) 排中律 A∪~A=E (6.13) 矛盾律 A∩~A=∅ (6.14) 吸收律 A∪(A∩B)=A (6.15) A∩(A∪B)=A (6.16)
®
§6.2 集合的运算
定义6.10 设A为集合,A的元素的元素构成的集合 称为A的广义并 A的广义并记为∪A A的广义并符号化表示为 ∪A={ x | z ( z∈A ∧ x∈z ) } ∪ = 例如: A={ {a,b,c},{a,c,d},{a,e,f} } , 则 ∪A={a,b,c,d,e,f }
®
§6.1 集合的基本概念
定义 6.2 设A, B为两个集合, 若B A且 A B, 则称A与B相等, 记作 A = B 相等的符号化表示为 A B (B A) ( A B ) 定义 6.3 设A,B为集合,如果 B A 且B≠A 则称B为A的真子集或A真包含B, 记为B A 真子集的符号化表示为 A B (B A) ( A ≠ B )
®
§6.3 有穷集的计数
例6.4 对24名会外语的科技人员进行掌握外语情况的调查。其统计结果如下:会英、日、德和法语的人分别为13,5,10和9人,其中同时会英语和日语的有2人,会英、德和法语中任两种语言的都是4人。已知会日语的人既不懂法语也不懂德语,分别求只会一种语言(英、德、法、日)的人数和会三种语言的人数。

离散数学第六章PPT课件

离散数学第六章PPT课件
对任意e∈E(G) , 若G – e仍连通,则说明G中含
有回路,此与(4)矛盾,故G – e不连通。
2021/3/9
授课:XXX
10
少条边就会不连通的图是树
只须证G中无回路。 若G中含回路C,取e=xy∈E(C) ,则 C – e仍连 通,任取u,v∈V(G) ,因G连通,故G中有(u,v)––通 路P。若P不含e,则u,v在G – e中仍连通;若 P中 含e,则P中的e可以用C – e中的(x,y)––通路代替, 从而u,v在G – e中仍连通。总之,u与v在G – e中 连通,此与(5)矛盾。故G无回路,因此,G是树
(因为在树中,q = p–1) 此为矛盾,故结论成立。
2021/3/9
授课:XXX
14
§6.2 生成树
图的生成树
生成树:G是一个图,若G的生成子图T是 树, 则称T为G的生成树。(G的生成树可能 不唯一。) 一个图G的生成树是 ⑴G的生成子图,因此它包含了G的全部 顶点; ⑵无回路的连通图(树)。
2021/3/9
授课:XXX
9
树若减条边就会不连通
证明:任取u,v ∈V(G) , 若uv∈E(G) , 则u和v 是连通的;若uv E(G) , 则有(4)知,G+uv有
唯一的回路C。由于G中无回路,所以,u,v必 在回路C上,显然,C – uv是G的连通子图,从 而G中含(u,v)–通路,即uv,故G是连通图。
2021/3/9
授课:XXX
8
树若添条边就会有回路
证明:设G有k个连通分支,由于G无回路,所 以G的每个连通分支均是树,于是,
k
k
qi=pi-1(i=1,…,k) ,q =qi = (pi-1)= p – k

离散数学第六章课件

离散数学第六章课件
2018/11/12 4


2.格

定义6-1.1格:设<A,≤>是一个偏序集,如果 A中任意两个元素都存在着最大下界和最小上 界,则称<A,≤>是格。
以上5个图中,任何两个元素都有最小上界和最大下界
2018/11/12 5
格的判定
例6-1.1 判断下列偏序集是否是格?
e
e d
f b c
d
c
a b
2018/11/12 3
最小上界、最大下界

最小上界:设<A,≤>为一偏序集且BA,a为 B的任一上界,若对B的所有上界y均有a≤y,则 称a为B的最小上界(上确界),记作LUB B
最大下界:若b为B的任一下界,若对B的所有 下界z,均有z≤b,则称b为B的最大下界(下确 界),记作GLB B 把具有两个元素集合{a,b}的最小上界(最大 下界)称为元素a,b的最小上界(最大下界)
2018/11/12 15
6.格相关的性质定理
定理6-1.1 在一个格<A,≤>,对于任意的a,b 结论很有用!!! A,都有 a≤a∨b, b≤a∨b a∧b≤a, a∧b≤b

证明: a和b的并是a、b的最小上界,所以 a≤a∨b 同理 b≤a∨b 由对偶原理: a∧b≤a, a∧b≤b
子格判定
注意证明方法
例6-1.4:<s,≤>是一个格,任取a s,构造s的 子集:T={x|xs且x≤a},则<T,≤>是<s,≤>的 子格.

证明:对于任意的x,yT,必有x≤a,y≤a a是x,y的上界,最小上界≤任一上界 x∨y≤a x∧y≤x≤a 所以x∨yT, x∧yT <T,≤>是<s,≤>的子格

离散数学第六章集合-自然数与自然数集.ppt

离散数学第六章集合-自然数与自然数集.ppt
所以归纳得证S=N。
1908年Zermelo(蔡梅罗)定义的自然数
0=Ø 1={Ø } 2={{Ø }} 3={{{Ø }}} 4 ={{{{Ø }}}} ┅┅
显然,
0∊1∊2∊画出自然
数本身所固有的良好性质。
例 求证:对于任意自然数m和n, 若n∊m, 则n+∊m或者n+=m之一成立.
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
例1证(续)
若n∊S,要证n+=n+1∊S。 设有两个集合n1和n2,且 n1∊n2,n2∊n+=n∪{n}。 因n2∊n∪{n},所以n2∊n或者n2∊{n}。 若n2∊n,由于n∊S,所以n1∊n。 若n2∊{n},则n2=n,即n1∊n2=n。 综上所述n1∊n ⊆ n∪{n}=n+, 故 n+=n+1 ∊S。
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N,
使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元素a属于集合A,记作a∈A。 元素a不属于集合A ,记作a∉ A
(元素无次序、不重复)
集合的特征 ¾ 确定性 ¾ 互异性 {1,2,3,2,4} = {1,2,3,4} ¾ 无序性 {4,2,1,3 } = {1,2,3,4}
A
1 {2,3} {{4}}
本书规定: 1、集合元素都是集
2 3 {4}
A=B Ù A ⊆ B ∧ B ⊆ A
如果A和B不相等,则记作A≠B。
实例
判断A=B? 1.
2.{1,2,4}和{1,2,2,4} 3.{1,2,4}和{1,4,2} 4.{{1,2},4}和{1,4,2} 5.{1,3,5,…}和{x|x是正奇数}
真子集
定义6.3 设A,B为集合,如果B⊆A且B≠A,则称B是A 的真子集。记作B⊂ A。 真子集的符号化表示为:
例如:设A={{1,2,3},{1,3,4},{1,4,5}}, B={{0}}, C={1,{2,3}}
则∩A={1},∩B={0}和∩C=1∩{2,3}。 不难证明:若R ={A1,A2,… ,An},则
∩R = A1∩A2∩ … ∩An 特别强调: φ不可以进行广义交运算。
集合运算的优先级:
对称差
定义6.9 A与B的对称差是 A⊕B=(A∪B)-(A∩B) =(A-B)∪(B-A)
例: A={0,1,2},B={2,3}, 则有 A⊕B={0,1}∪{3}={0,1,3}
或A⊕B={0,1,2,3}-{2}= {0,1,3}
文氏图(John Venn)
E AB
A∩B=∅
E AB
E AB
空集是一切集合的子集
定理6.1 空集是一切集合的子集. 证明:对于任何集合A,有子集定义有
∅ ⊆A Ù∀x(x∈ ∅ → x∈A) 右边的蕴涵式为真,所以∅ ⊆A也为真。
空集是唯一的
推论 空集是唯一的。 证明 假设存在空集∅1和∅2,
∅1 ⊆ ∅2和∅2 ⊆ ∅1 根据集合相等的定义得∅1=∅2
C={1,{2,3}},
则∪A={1,2,3,4,5},∪B={0}和∪C=1∪{2,3}。
不难证明:若R ={A1,A2,… ,An},则 ∪R = =φ
定义6.11 设R为非空集合,R的所有元素的公共元素构成的
集合称为R的广义交,记作∩R ,符号化表示为: ∩R ={x| ∀z(z∈R → x∈z)}
若A是n元集,则P(A)有2n个元素。
实例
全集
定义6.6 在一个具体问题中,如果所涉及的 集合都是某个集合的子集,则称这个集合为 全集,记作E(或U)
3.2 集合的基本运算
定义6.7 设A与B为集合,A与B的并集∪ ,交集 ∩ ,B对A的相对补集-分别定义如下:
A∪B={x|(x ∈A) ∨(x ∈ B)} A∩B={X | (X ∈ A) ∧(X ∈ B)} A - B = {X | (X ∈ A) ∧(X ∉B)} 当两个集合的交集是空集时,称它们是不交的。
第六章 集合代数
厦门大学数学科学学院 金贤安
6.1 集合的基本概念
集合是不能精确定义的基本概念。直观的说,把一些 事物汇集到一起组成一个整体,就叫做集合,而这些 事物就是这个集合的元素或成员。 例:教室内的桌椅、图书馆的藏书、全国的高等学 校、自然数的全体、直线上的点、26个英文字母等 等。
元素
B⊂A Ù A ≠ B ∧ B ⊆ A 如果B不是A的真子集,记作B ⊄A 判断:{0,1}、 {1,3}、{0,1,2}是{0,1,2} 的真子集吗?
空集
定义6.4 不含任何元素的集合叫做空集,记作 ∅。空集可以符号化表示为
∅ Ù{x|x≠x }
空集是客观存在的,例如,
是方程 的实数解集,因为该方程没有实数解,所以A= ∅。
确定下列命题是否为真
(1),(3),(4)为真, (2)为假.
幂集
定义6.5 给定集合A,由集合A的所有子集为元素组 成的集合,称为集合A的幂集,记作P(A)。 设A={a,b,c},则 P(A)={ ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}
集合内的对象称为元素 集合通常用大写英文字母标记。例
如,N代表自然数集合(包括0),Z 代表整数集合,Q代表有理数集合,R 代表实数集合,C代表复数集合。
集合的表示
列举法: A={a,b,c,d} 描述法: B={X∣P(x)} P(x) 是谓词,概括集合中元素属性
B={x∣x∈Z∧3<X≤6} 即B={4,5,6}
A∪B A
E B
A⊂B
A∩B
文氏图(john Venn)
E A
A-B
A⊕B
~A
E AB
C
(A∩B)-C
定义6.10 设R为集合, R的元素的元素构成的集合称为R
的广义并,记作∪R ,符号化表示为: ∪R ={x| ∃z(z∈R ∧x∈z)}
例如:设A={{1,2,3},{1,3,4},{1,4,5}}, B={{0}},
合。 2、对于任何集合A,
都有A ∉ A。
4
根据规定1,元素和集合的隶属关系可以看作处于不同层 次的集合之间的关系。下面我们考虑同一层次上的集合 之间的关系。
同一层次集合之间的关系
定义6.1 设A ,B是集合,如果B中的每个元 素都是A中的元素,则称B是A的子集合,简称 子集。这时也称B被A包含,或A包含B。记作 B⊆A。 若集合 A 不包含集合B ,可表示成 包含的符号化表示为
n个集合的并集和交集
表示法
绝对补集
定义6.8 设E为全集,A⊆E,则称A对E 的相对补集为A的绝对补集,记作~A,即
~A=E-A={x⎜x∈E∧x∉A}. ~A={x⎜x∉A}.
例: E={0,1,2,3},A={0,1,2},B= {0,1,2,3},C=∅,则 ~A={3},~B= ∅,~C=E.
B ⊆ AÙ∀x(x∈B → x∈A) 对任何集合都有S,都有S ⊆ S。
从属关系与包含关系
从属关系:集合 S 的元素a 与集合 S 本身之间的 关系,
从属关系 a ∈S 包含关系:集合A与集合B之间的关系
包含关系A ⊆ B
集合相等
定义6.2 设A,B为集合,如果A ⊆ B且B ⊆ A,则称A与B相等,记作A=B,符号化表示 为
相关文档
最新文档