两直线垂直PPT教学课件

合集下载

直线与直线的垂直 课件 共22张PPT

直线与直线的垂直 课件 共22张PPT

C
所以AC//A′C′,于是 BAC 为
异面直线BA′与AC所成的角.
A
B
连接BC′,已知 ABC 是等边三角
形,所以BAC 60
从而异面直线BA′与AC所成的角 等于 60
由以上的例题,可发现求异面直线所成角的一般步骤是: ①构造:恰当地选择点,用平移法构造异面直线所成的角; ②证明:证明①中所作出的角就是所求异面直线所成的角; ③计算:通过解三角形等知识,求出①中所构造的角的大小; ④结论:假如所构造的角的大小为α,若 0°<α≤90°,则α即
的角时,O点常选在其中
的一条直线上 (如线段
的端点,线段的中点等
b
b′
a″
a
a′
O
思想方法 : 研究异面直线所 成的角,即通过平移转化为
相交直线,即把空间图形问题
转化为平面图形问题
2.异面直线所成角的范围:
b
如果两条异面直线所成的角是直角,
a
• 那么我们就说这两条直线互相垂直。
• 直线a与b垂直,记作 a⊥b
8.6空间直线、平面的垂直
8.6.1 直线与直线的垂直
学习目标:
1.掌握异面直线所成角的定义,会求两异面 直线所成的角 2.掌握直线与直线垂直的定义
重点关注:
1.异面直线所成角的定义,直线与直线垂直的 定义, 2.求异面直线所成的角
平面内,两条直线相交形成4个角,其中不大于90。的角称为这两 条直线所成的角(或夹角),夹角刻画了一条直线相对于另一条 直线倾斜的程度。
点,那么异面直线EF与SA所成的角等于( B)
(A)90°(B)45°(C)60°(D)30°
S
E
M
C A
B F

中职教育数学《两条直线垂直》课件

中职教育数学《两条直线垂直》课件

例题讲解 垂直关系
例2、已知A(5,-1),B(1,1),C(2,3) 三点,试判断△ABC是否是Rt△。

:


形ABC是Rt△






y
k AB
1 (1) 15
1 2
C
kBC
3 1 21
2
k AB • kBC 1
AB BC 即ABC 900
B
O
x
A
因 此ABC是 直 角 三 角 形.
两条直线垂直
结论:
两条直线 l ,不l 重合, 且 均k ,存k 在时,有
1
2
1
2
l // l k k
1
2
1
2
注意:1.两条直线不重合;
2.两条直线斜率均存在。
另外,当k1,k2都不存在时也有l1∥l2
思考:l1 l2时,k1与k2满足什么关系?
设两条直线l1与l2的倾斜角分别为1与2 1,2 90o ,
Байду номын сангаас
率之积等于-1吗?
有可能一条直线斜率为0,另一条直线斜率
不存在
y
l2
若一条直线的倾斜角90°,
l1 另一条直线的倾斜角0°
o
x 则两直线互相垂直.
思考2、如果两条直线的斜率之积等于-1,
它们垂直吗?
一定垂直
试一试
1.求直线x+2y+1=0与直线y=x-2交 点的坐标。
2.判断直线y=
2 3
x 与直线6x+4y+1=0
斜率分别为k1与k2 , 则
y
l2
l1

直线与平面垂直的判定PPT课件

直线与平面垂直的判定PPT课件

例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;

两条直线的平行与垂直ppt课件

两条直线的平行与垂直ppt课件

C.垂直
D.重合
3.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程是( C ) A.2x-3y+5=0 B.2x-3y+8=0 C.3x+2y-1=0 D.3x+2y+7=0
根据今天所学,回答下列问题: 1.怎样根据直线方程的特征判断两条直线的平行或垂直关系呢? 2.判断两条直线是否平行的步骤是哪些? 3.判断两条直线是否垂直的方法有哪些?
1.直线l1与l2为两条不重合的直线,则下列命题正确的是( BCD ) A.若l1∥l2,则斜率k1=k2 B.若斜率k1=k2,则l1∥l2 C.若倾斜角α1=α2,则l1∥l2 D.若l1∥l2,则倾斜角α1=α2
2.已知直线l1的倾斜角为60°,直线l2经过点A(1, 3),B(-2,-2 3),则 直线l1,l2的位置关系是( A ) A.平行或重合 B.平行
解:(1)由题意知,直线
<m>l1</m>的斜率
<m>k1
=
5−1 −3−2
=

45</m>,
直线
<m>l2</m>的斜率
<m>k2
=
−7+3 8−3
=

45</m>,
所以直线 <m>l1</m>与直线 <m>l2</m>平行或重合,

<mk>BC
=
5− −3 −3−3
=

4 3


45</m>,所以
所以 <m>l1//l2</m>.

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)
在同一条直线上,确定常数a的值.
2
复习回顾
复习2:平面上两条直线位置关系
y
o
x
有平行,相交两种
我们设想如何通过直线的斜率
来判定这两种位置关系.
3
学习新知 两条直线平行的判定
思考1:若两条不同直线的倾斜角相等,这两条直线
的位置关系如何?反之成立吗?
y
l1
α1
O
l2
α2
x
4
学习新知

思考2:若两条不同直线的斜率相等,这两
在两种情况求解.
两直线垂直的判定方法
3.两条直线垂直需判定k1k2=-1,使用它的前提条件
是两条直线斜率都存在,若其中一条直线斜率不存
在,另一条直线斜率为零,此时两直线也垂直.
9
例题讲解
例2:已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若
AB∥MN,则m的值为
.
解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存
D.若两条直线的斜率不相等,则两直线不平行
3.若经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相
垂直,则m的值是________.
14
5 [由题意知,直线 MN 的斜率存在,因为 MN⊥l,
m-3 1
14
所以 kMN=
=4,解得 m= 5 .]
2-m
14
学完一节课或一个内容,
应当及时小结,梳理知识
1
即 1-3k=0,∴k=3.]
7
例题讲解
例1 已知A、B、C、D四点的坐标,试判断直线AB与CD
的位置关系.
(1)A(2,3), B(-4,0), C(-3,l), D(-l,2); 平行

直线与平面垂直课件(共17张PPT)

直线与平面垂直课件(共17张PPT)

线与平面垂直吗?
(2)如果一条直线与一个平面内的 无数条直线 都垂直,那么这条
直线与平面垂直吗?
l
任意一条直线
α P. …
线不在多, 所有直线 相交则灵
4.概念辨析,巩固新知
小结:证明线面垂直的方法:线线垂直 线面垂直
1.定义: 任意一条直线
所有直线 无限
2.判定定理: 两条相交直线
有限
线不在多, 相交则灵
3.操作确认,探究定理
当且仅当 折痕 AD 是 BC 边上的高时,AD 所在直线与桌面所在平面垂直.
二、直线与平面垂直的判定定理
文字语言:一条直线与一个平面内的 两条相交直线 都垂直,则该
直线与此平面垂直.
线线垂直 线面垂直
图形语言:
符号语言:
4.概念辨析,巩固新知
思考:
两条相交直线
(1)如果一条直线与一个平面内的 两条直线 垂直,那么这条直

m ∩ n=P,
∴ b⊥α .
5.推理论证,定理应用
练习 如图,在三棱锥 S-ABC 中,∠ACB = 90°, SA⊥平面ABC .
求证:BC⊥平面SAC .
S
证明:
线面垂直 线线垂直 A来自B C线线垂直 线面垂直
6.渗透文化,拓展延申
刘徽,是魏晋期间伟大的数学家,中国 古典数学理论的奠基人之一。
4.数学文化 的渗透
7.课堂小结,课后思考
1.如果要检验一根新旗杆与地面是否垂直, 你有什么好方法吗? 2.我们通过直观感知和操作确认,已经 从直观上得出了线面垂直的判定定理, 你能从理论上用所学的知识解释它吗?
谢谢观看,再见!
8.6.2 直线与平面垂直
1.复习引入,类比研究

直线平行与垂直课件PPT课件

直线平行与垂直课件PPT课件
直线平行与垂直课件ppt课件
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义

两条直线平行和垂直的判定ppt课件

两条直线平行和垂直的判定ppt课件

6. 过 Am,1 与 B(1, m) 的 直 线 与 过 点 P(1,3) , Q(5,0) 的 直 线 垂 直 , 则
-3 m _____________.
解析:过点
Am,1

B(1,
m)
的直线的斜率为
m 1 1 m
,
过点 P(1,3) , Q(5,0) 的直线的斜率为 3 0 1 , 15 2
l1 l2 k1k2 1 .
直线斜率 对应关系
图示
k1,k2 都存在 若 l1⊥l2 ⇔ k1·k2 = – 1
y
l1
l2
x
O
一条斜率不存在,另一条斜率为零
l1与l2的位置关系是 l1⊥l2
y
l2
l1
O
x
注意:“两条直线的斜率之积等于–1”是“这两条直线垂直”的充 分不必要条件;因为两条直线垂直时,除了斜率之积等于 –1,还有 可能一条直线的斜率不存在,另一条直线的斜率为 0.
值范围及正切函数的单调性可知,1 2 ,因此l1 l2 .
y l1 l2
α2 α1
O
x
对于斜率分别为 k1 , k2 的两条直线l1 ,l2 ,有 l1 l2 k1 k2 .
注意:当1 2 90 时,直线的斜率不存在,此时l1 l2 . 若直线 l1 ,l2 重合,此时仍然有 k1 k2 .用斜率证明三点共线时,常常用到这个结论.
不存在,下面对 a 进行讨论:当 a 2 3 ,即 a 5 时,l1 的斜率不存在,l2 的斜率
为 0,此时满足 l1 l2 .当 a 2 3,即 a 5 时,直线l1 ,l2 的斜率均存在.设直线l1 ,
l2
的斜率分别为 k1
,k 2

8.6.1 直线与直线垂直PPT课件(人教版)

8.6.1 直线与直线垂直PPT课件(人教版)

【训练3】 在四棱柱ABCD-A1B1C1D1中,侧面都是矩形, 底面四边形ABCD是菱形,且AB=BC=2,∠ABC=120°, 若 异 面 直 线 A1B 和 AD1 所 成 的 角 是 90° , 则 AA1 的 长 度 是 ________. 6
解析 连接CD1,AC,
在四棱柱 ABCD-A1B1C1D1 中,A1D1 綉 BC. 所以四边形A1BCD1是平行四边形, 所以A1B∥CD1, 所以∠AD1C(或其补角)为A1B和AD1所成的角. 因为异面直线A1B和AD1所成的角为90°,
第八章
8.6 空间直线、平面的垂直 8.6.1 直线与直线垂直
课标要求
1.借助长方体,通过直观感知,了解空间中直线与直线垂直的关系. 2.掌握两异面直线所成的角的求法.
素养要求
在计算两异面直线所成的角及证明直线与直线垂直的过程中,发展学 生的逻辑推理素养、数学运算素养和直观想象素养.
1
课前预习
知识探究
如果两条异面直线所成的角是直角,那么我们就说这两条异面直线互相垂直. 直线a与直线b互相垂直,记作___a_⊥__b__.
1.思考辨析,判断正误
(1)异面直线所成的角的大小与O点的位置有关,即O点位置不同时,这一角的大 小也不同.( × ) (2)与一条直线都垂直的两条直线平行.( × ) (3)分别与两条异面直线平行的两条直线是异面直线.( × ) (4) 若 ∠AOB = 110° , 则 分 别 和 边 OA , OB 平 行 的 两 条 异 面 直 线 所 成 的 角 为 110°.( × ) 提示 (1)异面直线所成的角的大小与O点的位置无关. (2)与一条直线都垂直的两条直线位置不确定. (3)两直线可能相交. (4)两条异面直线所成的角为70°.

两条直线平行和垂直判定PPT课件

两条直线平行和垂直判定PPT课件

B. 1 的斜率为1, 2 经过点A(1,1),B(2,2)
C. 1 经过点A(0,1),B(1,0), 2 经过点M(-1,3),N(2,0)
D. 1 经过点A(-3,2),B(-3,10), 2 经过点M(5,-2),N(5,5)
答案:BCD
能力提升
2. 若过点P(3,2m)和点Q(-m,2)的直线与方向向量为 = (−5,5)的直线
1

2
典例分析
例3 已知A(-6,0),B(3,6),P(0,3),Q(6,-6),试判断直线AB与PQ的位置关系。
解:由已知可得:直线AB的斜率 =
直线PQ的斜率 =
2
3
因为 × = ×
所以直线AB⊥PQ
3

2
3

2
=-1
2
3
典例分析
例4 已知A(5,-1),B(1,1),C(2,3)三点,试判断△ABC的形状。
解:边AB所在直线的斜率 =
1

2
边BC所在直线的斜率 = 2
因为 × =-1,所以AB⊥BC,即∠ABC=90 0
所以△ABC为直角三角形。
能力提升
1. (多选题)下列各对不重合的直线中,一定满足平行关系的有( )
A. 1 经过点A(-1,-2),B(2,1), 2 经过点M(3,4),N(-1,-1)
系,并证明你的结论。
解:如图,由已知可得:直线BA的斜率 =
直线PQ的斜率 =
2−1
−1−(−3)
=
1
2
因为 = ,所以直线AB//PQ
3−0
2−(−4)
=
1

2-1-2两条直线平行和垂直的判定 课件(共35张PPT)

2-1-2两条直线平行和垂直的判定 课件(共35张PPT)
则直线 l 的倾斜角为__1_3_5_°___. 解析 ∵tanα=1-+43=-1,∴α=135°.
4.已知 A(2,3),B(1,-1),C(-1,-2),点 D 在 x 轴上,
则当点 D 的坐标为__-__12_,_0__时,AB∥CD,当点 D 的坐标为 __(-__9_,_0_)_时,AB⊥CD.
题型三 两条直线平行条件的应用
例 3 已知▱ABCD 的三个顶点的坐标分别是 A(0,1),B(1, 0),C(4,3),求顶点 D 的坐标.
【思路分析】 本题主要考查两直线平行的性质以及综合应 用.思路一,利用平行四边形的对角线互相平分求得 D 点的坐标; 思路二,利用平行四边形的对边平行求得 D 的坐标.
(2)在遇到两条直线的平行或垂直的问题时,一定要注意直线 的斜率不存在时的情形,如本例中的 CD 作为直角腰时,其斜率 便不存在.
思考题 4 已知点 A(-2,-5),B(6,6),点 P 在 y 轴上,
且∠APB=90°,则 P 点坐标为___(0_,__-_6_)_或_(_0_,_7_)__. 【解析】 由∠APB=90°,可知 AP⊥PB,且 AP 与 PB 的斜率
都存在. 设 P(0,y),则有 kAP=y+2 5,kBP=y--66. 由 kAP·kBP=-1,得y+2 5·y--66=-1. 解得 y=-6 或 y=7.即点 P 的坐标为(0,-6)或(0,7).
课后巩固
1.已知直线 l1 的斜率为 0,且直线 l1⊥l2,则直线 l2 的倾斜
角 α 为( C )
(2)若 l1⊥l2, ①当 k2=0 时,a=0,此时 k1=-12,不符合题意; ②当 k2≠0 时,l2 的斜率存在, 此时 k1=2a--4a. 由 k2k1=-1,可得 a=3 或 a=-4.

两条直线平行和垂直的判定ppt课件

两条直线平行和垂直的判定ppt课件
(3)由题意知,l1 的斜率不存在,且不是 y 轴,l2 的斜率也不存在,恰好是 y 轴,
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.

3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)

两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 变式2:已知直线ax+(1-a)y-3=0与直线 (a-1)x+(2a+3)y-2=0互相垂直,求a的值.
课堂练习
1.如果直线ax+y+1=0与直线x+y-2=0互相垂直,则a=------------.
2.如果两直线x+ysin -1=0和2xsin +y+1=0互相垂
直,则 =-----------------.

S1h1
h S
平行于平面α的任一平面去截

Sh11
截面面积始终相等
h

两个锥体体积相等
S
α
定理一、等底面积等高的两个锥体体积相等。
S1 h1
S1h1
h
h
S
S
α
证明:取任意两个锥体,设它们的底面积为S,高都是h。 把这两个锥体 放在同一个平面α上,这是它们的顶点都在和平面α平行的同一个平 面内,用平行于平面α的任一平面去截它们, 截面分别与底面相似,
C
B’ C
B
B
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’ A’ A’ A’来自V三棱锥=A’ A’ A’
1Sh
3
A’
A’

3
C’
2
2B’
B’
2
B’ B’
22
B’
2
B’
2
B’
2
2
B’
B’
1
A
C
C C C C C C C CC
三棱B锥2、3B的底B △BBCBB’、B △BC’B’BC的B面B积相等。 高也相等(顶点都是A’)。
3.若直线L1,L2的倾斜角分别为a1,a2,且L1⊥L2, 则a1与a2的关系是----------------.
课堂小结
1.填表
两直线方程 平行
垂直
l1:y=k1x+b1 l2:y=k2x+b2
l1:A1x+B1y+C1=0 l2:A2x+B2y+C2=0
K1=k2且b1≠b2 K1k2=-1
定理三:如果一个锥体(棱锥、圆锥)的底面积
是S,高是h,那么它的体积是
1
V锥体= 3 Sh 推论:如果圆锥的底面半径是r,高是h,
那么它的体积是
V圆锥=
1 3
πr2h
作业:
1、四面体O-ABC中,除OC外其余的棱长均为1,且OC与 平面ABC所成的角的余弦值为,求此四面体的体积。
2、三棱锥P-ABC中,已知PA⊥BC,PA=BC=a,PA,BC的 公垂线段为EF(E、F分别在PA、BC上),且EF=h,求 三棱锥的体积。
3
定理三:如果一个锥体(棱锥、圆锥)的底面积 是S,高是h,那么它的体积是 V锥体= 1 Sh
推论:如果圆锥的底面半3径是r,高是h, 那么它的体积是 V圆锥= 1 πr2h
3
例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底
面BCD,侧面ABC与底面所成的角为θ 求证:V三棱锥= 1 S△ABC·ADcosθ
A’ A’ A’ A’ A’ A’ A’ A’ A’ A’ A’
C’ C’ C’ C’ C’ C’
B’ B’ B’ B’ B’ B’
A A A A AA
C C C C CC C C C C C
B B B B BB
与三棱柱相对照,请猜想三棱锥体积公式。
定理二:如果三棱锥的底面积是S,高是h,那么 它的体积是 V三棱锥= 1 Sh
证明:当B1B2 0时,把直线l1和l2化成
l1
:
y
A1 B1
x
C1 B1
, l2
:
y
A2 B2
x
C2 B2
.
l1
l2
A1 B1
(
) A2
B2
1
A1 A2
B1B2
0。
当B1,B2中有一个为零时,即有一条直线
斜率不存在;如B1 0,则l1斜率不存在,
那么直线l2的斜率为零,即A2 0,此时,
C
结论: V三棱锥=VC-AE D+VB-AE D
练习1:
将长方体沿相邻三个面的对角线截去一个三棱锥, 这个三棱锥的体积是长方体体积几分之几?(请 列出三棱锥体积表达式)
D’
C’
问问题题12、、你如能果有这几是种一
个解平法行?六面
A’
B’
体呢?或者
四棱柱呢?
C
D
A
B
练习2:
从一个正方体中,如图那样截去四个三棱锥,得到
1、锥体体积公式的证明体现了从整体上掌握知识的思想,形 象具体地在立体几何中运用“割补”进行解题的技巧。
2、三棱锥体积的证明分两步进行: ⑴、证明底面积相等、高也相等的任意两个锥体体积相等: (一个锥体的体积计算可以间接求得) ⑵、证明三棱锥的体积等于其底面积与高的积的三分之一: (它充分揭示了一个三棱锥的独特性质,可根据需要重 新安排底面,这样也为点到面的距离、线到面的距离计 算提供了新的思考方法。这一点以后再学习。)
3
证明:在平面BCD内,作DE ⊥BC,垂足为E,
A 连接AE, DE就是AE在平面BCD上的射影。
根据三垂线定理,AE ⊥ BC。
∴ ∠AED=θ。
B θ
E
V三棱锥=
1 3
S△B CD ·AD
D
=13
1
×2
BC
· ED
· AD

1 3
×1
2
BC
· AEcosθ· AD
C

1 3
S△AB C
· ADcosθ
B’

1 11 1
A
AA A
C
C CC C
CC
C
三棱B锥1、B2的B 底B△ABBA’、△BB’A’BB的面积相等, 高也相等(顶点都是C)。
定理二:如果三棱锥的底面积是S,高是h,那么
A’
它的体积是
A’
V三棱锥=
1Sh
3
A’
C’
3
1
A
B’
2
C
三棱锥2、3的底 △BCB’、△C’B’C 的面积相等。
它的体积是
V三棱锥=
1 3
Sh
A’ A’ A’ A’ A’ AA’’ A’ A’ A’ A’ A’
C’ C’ C’ C’ C’ C’
3

A A A AAA
2 BB’’ B’ B’ B’ B’ B’ 就是三棱锥1 和另两个三棱
C C C C C CC C C C C C 锥2、3。
B B B B B BB
柱,然后把这个三棱柱分割成三个三棱锥,就是三
A’

A
3 2 B’
B
棱锥1和另两个三棱锥2、3。 C’ 三棱锥1、2的底△ABA1、△B1A1B的面积相等,
高也相等(顶点都是C);三棱锥2、3的底
△BCB1、△C1B1C 的面积相等,高也相等
C(顶∵点V三都棱柱是=A1)13
∵V1=V2=V3= Sh。
两直线的位置关系(2)
创设情境
已知向量a=3,-4,b=2,x,c 2,y
且a // b, a c,求b • c
探索研究
问题一:设直线L1和直线L2有斜截式方程 L1:y=k1x+b1, L2:y=k2x+b2,
求证:L1⊥L2 k1. k2=-1.
设问:若有一条直线斜率不存在时,则如何 判断两条直线互相垂直?
1 3
V三棱锥。
∴V三棱锥=
1 3
Sh。
任意锥体的体积公式:
定理三:如果一个锥体(棱锥、圆锥)的底面积
是S,高是h,那么它的体积是
V锥体=
1 3
Sh
推论:如果圆锥的底面半径是r,高是h,
那么它的体积是
V圆锥=
1 3
πr2h
小结: 定理一、等底面积等高的两个锥体体积相等。
定理二:如果三棱锥的底面积是S,高是h,那么 它的体积是 V三棱锥= 1 Sh
3
A’
C’ 把三棱锥1以
△ABC为底面、
B’
AA1为侧棱补成 一个三棱柱。
A
C
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是 V三棱锥= 1 Sh
3
连接B’C,然后
A’
C’ 把这个三棱柱
3
分割成三个三
B’
2
棱锥。 就是三棱锥1

和另两个三棱
A
C
锥2、3。
B
定理二:如果三棱锥的底面积是S,高是h,那么
总结:
(1)如果两条直线的斜率都存在,且分别为k1,k2, 那么这两条直线平行的充要条件是k1k2=-1. (2)若两条直线中有一条直线的斜率不存在,另
一条直线的斜率为零,那么这两条直线也互 相垂直.
问题二:
已知直线L1,L2的一般式方程为 L1:A1x+B1y+C1=0, L2:A2x+B2y+C2=0. 求证:L1⊥L2的充要条件是:A1A2+B1B2=0.
设截面和顶点的距离是h1,截面面积分别是S1、S2, 那么
∵ S1
h2 1
,S
2
h2 1
S1 S2,S1 S2
S h2 S h2 S S
根据祖搄原理,这两个锥体的体积相等。
与三棱柱相对照,请猜想三棱锥体积公式。
A’
C’
B’
A
C
B
与三棱柱相对照,请猜想三棱锥体积公式。
相关文档
最新文档