(完整版)高等代数第四章矩阵练习的题目参考问题详解
(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
(完整word)高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。
高等代数北大版4-4

§4.4 矩阵的逆
练 0 3 3 习 已知 A 1 1 0 , AB A 2 B, 求矩阵B. 1 2 3
解:由 AB A 2 B ,得 ( A 2 E ) B A ,又
1 3 3 1 1 A 2 E 可逆,且 ( A 2 E ) 1 1 3 2 1 1 1 0 3 3 B ( A 2 E ) 1 A 1 2 3 1 1 0
2 2
1 3 3 3
A23 (1) A32 (1)
1 2 2 3 3 4 1 3 2 1
A31 (1) A33 (1)
31
2 3 2 1 1 2 2 2
4 2
3 2
5
3 3
§4.4 矩阵的逆
A11 2, A12 3, A13 2, A21 6, A22 6 A23 2, A31 4, A32 5, A33 2, A 2
1
1 m
1 2
1 1
§4.4 矩阵的逆
4 若A可逆, 则A 亦可逆 , 且 A
T
T 1
A .
1 T
1
(5) 若A可逆,则 A 亦 可逆,且 A (6) 若A可逆,则 A 亦 可逆,且 A
k
k
A . A
1
A
1
k
.
注: 当 A 0 时,定义
d A.
立即可得,
a11 a21 * AA a n1
a12 a22 an 2
a1n A11 a2 n A12 ann A1n
矩阵论及其应用习题四答案

矩阵论及其应用习题四答案矩阵论及其应用习题四答案矩阵论是数学中重要的分支之一,它研究的是矩阵的性质、运算规律以及在各个学科中的应用。
在学习矩阵论的过程中,习题是不可或缺的一部分,通过解答习题可以加深对矩阵理论的理解和应用。
下面是习题四的答案,希望能对大家的学习有所帮助。
1. 设A、B、C为同阶矩阵,证明:(AB)C=A(BC)解答:我们需要证明(AB)C的每个元素与A(BC)的对应元素相等。
设(AB)C的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b,C的第k行第j列元素为c。
则有:x = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。
而A(BC)的第i行第j列元素为y,可表示为:y = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。
由于x和y的表达式相同,所以(AB)C=A(BC)。
2. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)A=A。
解答:我们需要证明(AB)A的每个元素与A的对应元素相等。
设(AB)A的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。
则有:x = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。
而A的第i行第j列元素为y,可表示为:y = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。
由于x和y的表达式相同,所以(AB)A=A。
3. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)B=B。
解答:我们需要证明(AB)B的每个元素与B的对应元素相等。
设(AB)B的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。
则有:x = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。
而B的第i行第j列元素为y,可表示为:y = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。
高等代数第四章及其习题答案

α b11
A1 0
= B1 0
β a11b11 a11β + α B1
A1 B1
,
为上三角形矩阵, 由归纳法假设知 A1 B1 为上三角形矩阵,故 AB 为上三 角形矩阵。 角形矩阵。
2)设 A = ( aij ) 为一可逆的上三角形矩阵,则 ) 为一可逆的上三角形矩阵, nn
= ε iT A j L 0 L L L 0 L a jn i 行 . L 0 L L L 0
0 M 0 a1i AEij = ( B1 , L , Bn ) ε j = Bi ε j = M ( 0, L , 0,1, 0, L , 0 ) a 0 ni M 0 0 0 = L 0 L L L 0 0 0 a1i a2 i L ani 0 L L 0 . L L L 0 L 0 0 L
T
y1 n T T 2 ( Ax) Ax = y y = ( y1 ,L, yn ) M = ∑ yi = 0, y i =1 n
从而 yi = 0, i = 1, L, n , 即 y = Ax = 0 ,由
x 的任意性知 Aε j = 0, j = 1,L , n ,其中
为数量矩阵. 为数量矩阵 级矩阵可交换, 注:因 A 与所有 n 级矩阵可交换,故 A 一定与 可交换, E i j ( i , j = 1, L , n ) 可交换,于是 AEij = Eij A.
10、已知 A为实对称矩阵 且 A2 = 0 , 不妨设 A = aij 、 为实对称矩阵, 阶矩阵, 为 n 阶矩阵, = x
T
( )
nn
矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。
通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。
下面给出一些矩阵练习题及其答案,供大家参考。
1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。
解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。
因此,A 的转置矩阵为 A^T = [4; 2]。
2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。
解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。
通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。
3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。
解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。
特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。
解方程可得特征值λ1 = 1 和λ2 = 3。
特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。
特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。
4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。
解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。
计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。
矩阵的秩表示矩阵中独立的行或列的最大个数。
对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。
高等代数(北大版)第4章习题参考答案

第四章 矩阵1.设1)311212123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111210101B -⎛⎫ ⎪=- ⎪ ⎪⎝⎭2)111a b c A c b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111a c B b b c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭计算AB ,AB BA -。
解 1)622610812AB -⎛⎫ ⎪= ⎪⎪-⎝⎭ ,400410434BA ⎛⎫ ⎪= ⎪ ⎪⎝⎭222200442AB BA -⎛⎫ ⎪-= ⎪ ⎪--⎝⎭ 2)22222222223a b c a b c ac b AB a b cac b a b c a b c a b c ⎛⎫+++++⎪=+++++ ⎪ ⎪++++⎝⎭222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ⎛⎫+++++ ⎪=+++++ ⎪ ⎪+++++⎝⎭33()ij AB BA a ⨯-=, 其中11a b ac =-, 22212a a b c b ab c =++---, 221322a b ac a c =+-- 21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++--- 23132a c a =--, 32a c bc =-, 33a b ab =-2.计算22111)310012⎛⎫ ⎪⎪ ⎪⎝⎭5322)42⎛⎫ ⎪--⎝⎭113)01n⎛⎫ ⎪⎝⎭ cos sin 4)sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭()15)2,3,111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭,()112,3,11⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ ()1112132122313132336),,11a a a x x y a a a y a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2111111117)11111111---⎛⎫ ⎪---⎪ ⎪--- ⎪ ⎪---⎝⎭,1111111111111111n---⎛⎫⎪--- ⎪ ⎪--- ⎪ ⎪---⎝⎭108)0100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解 22117441)310943012334⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
高等代数 矩阵.

a. A有n个线性无关的特征向量 A相似于对角形
b. A有n个不同的特征根,则A相似于对角形。
c.设n阶矩阵A有s个不同的特征根 1, 2 , , s ,A
s
的属于 i 的线性无关特征向量的个数为ni, ni n i 1
A相似于对角形。
d.A的初等因子都是一次因式 A相似于对角形.
(8)若
1
1
A
若AB=BA, 则B是A的多项式.
1
4.方阵的行列式
(1) 若A是 n 阶矩阵,AT 是 A的转置矩阵,则| AT || A |;
(2) 若A是n阶矩阵,则 | kA | k n | A |; (3) 若A, B都是n阶矩阵,则 | AB || A || B |;
(4) 若A是n阶矩阵,则 | A || A |n1; (5) 若A是n阶可逆矩阵,则 | A1 || A |1;
的特征向量是方程组 (I A)X 0 的所有非零解.
(1) n阶方阵A的特征多项式
f () | I A | n a1n1 an1 an ,
其中
ak (1) k 1i1i2 ik n Aii11
i2 i2
ik
ik
n
特别地, a1 aii , an (1)n | A | . i 1
e.若r(A)=r,则
A
P
Ir
0
00Q,其中| P | 0,| Q | 0.
f. A=TBT-1,其中B是上三角形矩阵且对角线上的元 素是A的特征根。
g. 若r(A)=r,则A=PR,R是上三角形的矩阵,其主 对角线上前r个元素为1,后n-r个元素为0而|P|≠0.
h. A=B·C,其中BT=B,CT=-C. i. 对任意n阶矩阵A有A=BU,其中B是半正定矩阵, U为酉矩阵。
矩阵理论第4章习题解答 (2)

矩阵理论第四章习题解答1. 习题1问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵C = A + B。
解答我们可以直接对A和B对应位置的元素进行相加,得到矩阵C。
A +B = [1+9, 2+8, 3+7][4+6, 5+5, 6+4][7+3, 8+2, 9+1]计算结果为:[10, 10, 10][10, 10, 10]2. 习题2问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵D = A - B。
解答我们可以直接对A和B对应位置的元素进行相减,得到矩阵D。
A -B = [1-9, 2-8, 3-7][4-6, 5-5, 6-4][7-3, 8-2, 9-1]计算结果为:[-2, 0, 2][4, 6, 8]3. 习题3问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [2, 0, 1][1, 2, 1][0, 1, 2]求矩阵E = A * B。
解答我们可以通过矩阵乘法的定义来计算E。
矩阵乘法的定义为:矩阵C的第i行第j列的元素等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
对于矩阵A和B,可以计算得到矩阵E。
E = [1*2+2*1+3*0, 1*0+2*2+3*1, 1*1+2*1+3*2][4*2+5*1+6*0, 4*0+5*2+6*1, 4*1+5*1+6*2][7*2+8*1+9*0, 7*0+8*2+9*1, 7*1+8*1+9*2]计算结果为:E = [4, 7, 8][10, 13, 16][16, 19, 22]4. 习题4问题描述已知矩阵A定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]求矩阵F = A^T,其中A^T表示A的转置矩阵。
北京大学数学系《高等代数》(第3版)(矩阵)笔记和课后习题(含考研真题)详解【圣才出品】

第4章矩阵4.1复习笔记一、矩阵的运算1.加法(1)定义设是两个s×n矩阵.则矩阵称为A和B的和.记为C=A+B 注意:相加的矩阵必须要有相同的行数和列数.(2)基本性质(1)A+(B+C)=(A+B)+C;(结合律)(2)A+B=B+A;(交换律)(3)A+0=A(4)A+(-A)=0(5)A-B=A+(-B)(6)秩(A+B)≤秩(A)+秩(B).2.乘法(1)定义设A=(a ik)sn,B=(b kj)nm,那么矩阵C=(c ij)sm,其中称为A与B的乘积,记为C=AB.(2)性质①在乘积的定义中,要求第二个矩阵的行数与第一个矩阵的列数相等;②矩阵的乘法适合结合律;即(AB)C=A(BC);③矩阵的乘法不适合交换律,即AB BA;④分配律:A(B+C)=AB+AC,(B+C)=BA+CA.(3)单位矩阵主对角线上的元素全是1,其余元素全是0的n×n矩阵称为n级单位矩阵,记为E n,或者在不致引起含混的时候简单写为E.3.数量乘法(1)定义矩阵称为矩阵A=(a ij)sn与数k的数量乘积,记为k A.换句话说,用数k乘矩阵就是把矩阵的每个元素都乘上k.(2)性质:①(k+l)A=k A+l A;②k(A+B)=k A+k B;③k(l A)=(kl)A;④1A=A;⑥k(AB)=(k A)B=A(k B);⑦k A=(k E)A=A(k E),k E+l E=(k+l)E,(k E)(l E)=(kl)E,其中k E是数量矩阵.4.转置(1)定义设A的转置就是指矩阵显然,s×n矩阵的转置是n×s矩阵.(2)性质:①(A')'=A,②(A+B)'=A'+B',③(AB)'=B'A',④(k B)'=k B'二、矩阵乘积的行列式与秩1.矩阵乘积的行列式(1)计算公式设A,B是数域P上的两个n×n矩阵,那么|AB|=|A||B|,即矩阵乘积的行列式等于它的因子的行列式的乘积.推论设A1,A2,…,A m是数域P上的n×n矩阵,于是|A1A2…A m|=|A1|A2|…|A m|.(2)退化的定义数域P上的n×n矩阵A称为非退化的,如果|A|≠0;否则称为退化的.一n×n矩阵是非退化的充分必要条件是它的秩等于n.推论设A,B是数域P上n×n矩阵,矩阵AB为退化的充分必要条件是A,B中至少有一个是退化的.2.矩阵的秩设A是数域P上n×m矩阵,B是数域P上m×s矩阵,于是秩(AB)≤min[秩(A),秩(B)],即乘积的秩不超过各因子的秩.三、矩阵的逆1.逆矩阵n级方阵A称为可逆的,如果有n级方阵B,使得AB=BA=E.这里E是n级单位矩阵,那么B就称为A的逆矩阵,记为A-1.2.伴随矩阵设A i j是矩阵中元素a ij的代数余子式,矩阵称为A的伴随矩阵.3.性质(1)矩阵A是可逆的充分必要条件是A非退化,而(2)如果矩阵A,B可逆,那么A'与AB也可逆,且(3)A是一个s×n矩阵,如果P是s×s可逆矩阵,Q是n×n可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)四、矩阵的分块1.定义。
高等代数第4章习题解

第四章习题解答习题4.11、计算(1)120313012410152(,,,)(,,,)(,,,)-+(2)15012101112(,,)(,,)(,,)+- 解:(1)15517203130124101532222(,,,)(,,,)(,,,)(,,,)-+=--- (2)195012101110922(,,)(,,)(,,)(,,)+-= 2、验证向量加法满足交换律、结合律。
证明:设121212(,,,),(,,,),(,,,),n n n a a a b b b c c c αβγ=== 则 12121122(,,,)(,,,)(,,,)n nnn a a a b b b a b a b a b αβ+=+=+++ 11221212(,,,)(,,,)(,,,)n n n n b a b a b a b b b a a a βα=+++=+=+ 121212()((,,,)(,,,))(,,,)n n n aa ab b bc c c αβγ++=++ 112212((,,,))(,,,)n n n a b a b a b c c c =++++111222(,,,)n n n a b c a b c a b c =++++++111222((),(),,())n n n a b c a b c a b c =++++++121122(,,,)((,,,))n n n a a a b c b c b c =++++121212(,,,)((,,,)(,,,))n n n a a a b b b c c c =++()αβγ=++3、证明性质4.1.5。
性质4.1.5的内容是:对任意n 维向量,αβ及数k ,有()()k k k ααα-=-=-,()k k k αβαβ-=-证明:设1212(,,,),(,,,)n n a a a b b b αβ==那么1212()()(,,,)((),(),,())n n k k a a a k a k a k a α-=-=---1212(,,,)((),(),,())n n ka ka ka k a k a k a =---=---1212((),(),,())((,,,))()n n k a a a k a a a k α=---=-=-其次1212()((,,,))(,,,)n n k k a a a k a a a k αα-=-=-=-最后:12121122112212121212()((,,,)(,,,))(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)n n n n n n n n n n k k a a a b b b k a b a b a b ka kb ka kb ka kb ka ka ka kb kb kb k a a a k b b b k k αβαβ-=-=---=---=-=-=-4、设123101010001(,,),(,,),(,,)εεε===,求证:对任意的3F α∈,在F 中都有唯一的一组数123,,a a a 使112233a a a αεεε=++ 解:设α的坐标为123(,,)a a a ,那么123123123000000(,,)(,,)(,,)(,,)a a a a a a a a a α==+++=+123123000000000000(,,)(,,)(,,)(,,)(,,)a a a a a a =++++=++ 123112233100010001(,,)(,,)(,,)a a a a a a εεε=++=++由于给定向量的坐标是唯一的,所以上面等式中的数123,,a a a 是唯一的。
高等数学课后习题答案--第四章

a11 0 0 a12 a22 a11 − a21 a12 a11 a32 a11 − a31 a12 a11 a23 a11 − a21 a13 , a11 a33 a11 − a31 a13 a11 a13
2 2 2 1 2. 设 A = 1 − 1 ,B = − 1 3 ,计算 2A-3B,5A+2B。 1 − 3 5 − 2 −2 1 12 14 2. 【答案】(1) 5 1 . − 11 ; (2) 3 − 13 0 15 − 19 2 1 2 1 −4 2 3. 设 A = −1 4 − 2 ,B = − 1 3 ,C = 1 5 − 2 1 A(2B-3C)。 4 −1 15 − 14 3 【答案】AB = − 15 14 ; BA = − 4 16 7 − 28 2 − 1 , 计算 AB,BA,AC,CA, − 3
~ ~ = 0 ,则 a a a + a a a + a a a − a a a − a a a − a a a = 0 , 于是, 若a 33 11 22 33 13 21 32 12 23 31 11 23 32 12 21 33 13 22 31
记 L1 , L2 , L3 分别表示第1,2,3个方程的左端, 有
第四章习题与复习题详细讲解(线性空间)----高等代数

习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题5.21.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=, 即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 101101111000111011101011010000111100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题5.3证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题5.41. 求向量()1,1,2,3α=- 的长度.解 α=.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=αβ-=3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,, (3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,6,αβ=,4πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,α==β==,αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题5.51. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪- ⎪⎝⎭ 132333122221122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123,,0βββ⎛⎛⎪=== ⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝则*1β,*2β,*3β为R3的一组基标准正交基.3.求齐次线性方程组12345123530x x x x xx x x x+-+-=⎧⎨+-+=⎩的解空间的一组标准正交基.分析因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪===⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎪ ⎪ ⎪⎪ ⎪ ⎪===+==-+=⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/3,,011/3004001βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪-⎪ ⎪⎪⎪⎪⎪===⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五(A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换, 所以123(,,)x x x = (33,-82,154). 4.()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4 解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关.故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 ) 11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫ ⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫ ⎪⎪⎛⎫⎪⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒=⎪ ⎪ ⎪⎪⎝⎭ ⎪++ ⎪⎝⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩;②121212a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩;③121212a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩. 6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TT T T T T T =-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()。
第4章-矩阵练习题

⎛ B ⎞
18.设 A 为 n 阶方阵,且 A = 1 ,则 r ( A) = ______________. 19. 设 n 维向量 α = ( a,0,",0, a ) , a < 0, E 为 n 阶单位矩阵 , A = E − αα , B = E +
T
T
逆矩阵为 B ,则 a = ______.
7. 设 n 阶阵 A 可逆,且 f ( A) = 0 ,其中 f ( x) = am x + am −1 x
m m −1
+ " + a1 x + a0 是一非零多项式,求 A−1 .
2
⎛1 0 1⎞ ⎜ ⎟ 8.设 X = AX − A + E , 其中 A = 0 2 0 ,求矩阵 X . ⎜ ⎟ ⎜1 0 1⎟ ⎝ ⎠
* *
⎛k ⎜ 1 15. 设矩阵 A = ⎜ ⎜1 ⎜ ⎝1
1 k 1 1
1 1 k 1
1⎞ ⎟ 1⎟ ,且 r ( A) = 3, 则 k = ______ . 1⎟ ⎟ k⎠
*
16. 设 A 是 n(≥ 3) 阶方阵, A 的各行元素之和为 0 ,而 A ≠ 0 ,则 r ( A) = _____ . 17. 设 A, B 是 n 阶方阵,且 r ( A) = r , r ( B ) = s 则 r ( A, AB ) = ________, r ⎜ ⎜ AB ⎟ ⎟ = _______ . ⎝ ⎠
⎛1 ⎜ 0 * 4. 设矩阵 A 的伴随矩阵 A = ⎜ ⎜0 ⎜ ⎝2
0 1 0 2
0 0 1 2
0⎞ ⎟ 0⎟ −1 −1 ,且 ABA = BA + 3E ,求矩阵 B 0⎟ ⎟ 8⎠
高等代数第四章矩阵练习题目参考问题详解

适用标准文案第四章矩阵习题参照答案一、判断题1.关于随意 n 阶矩阵A,B,有 A B A B .错 .2.假如 A20,则A 0.错.如A 110,但A 0. 1, A213.假如 A A2 E ,则 A 为可逆矩阵.正确. A A2E A( E A)E,所以A可逆,且A1 A E .4.设 A, B 都是n阶非零矩阵,且AB 0 ,则 A, B 的秩一个等于n,一个小于n.错.由AB0可得 r ( A)r (B)n .若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错.如A 112132AC,但B C. 11, B,C3,有 AB2126.A为m n矩阵,若r ( A)s, 则存在m阶可逆矩阵 P 及n阶可逆矩阵 Q ,使I s0PAQ.00正确 .右侧为矩阵 A 的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确.由A可逆可得|A| 0,又AA*A* A | A| E.所以 A* 也可逆,且(A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B* A * .正确 .(AB)(AB)*| AB |E | A||B| E.又(AB)(B* A*) A(BB*) A* A|B|EA* | B| AA* | A||B| E .所以 ( AB)( AB )* ( AB)( B * A*) .由 A, B 为n阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得 (AB)* B* A* .二、选择题1.设A是n阶对称矩阵, B 是n阶反对称矩阵(B T B) ,则以下矩阵中为反对称矩阵的是( B ).(A)AB BA(B)AB BA(C)( AB)2(D)BAB(A)(D) 为对称矩阵,(B)为反对称矩阵,( C)当A, B可互换时为对称矩阵.2.设 A 是随意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的选项是(C) .(A)假如 A 是上三角矩阵,则A2也是上三角矩阵;(B)假如 A 是对称矩阵,则A2也是对称矩阵;(C) 假如A是反对称矩阵,则A2也是反对称矩阵;(D)假如 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则以下结论正确的是(B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的选项是( D )(A)( A B)2 A 2 2AB B 2 (B)A 2B 2 (A B)( A B)(C)( AB)2 A 2B 2(D)A 2 E 2 (A E)(A E)6.以下命题正确的选项是( B ) . (A) 若AB AC ,则B C(B)若ABAC ,且 A 0,则BC(C) 若ABAC ,且A 0,则B C(D)若AB AC ,且B0,C0,则 BC7. A 是 m n 矩阵, B 是 n m 矩阵,则( B ) . (A) 当 mn 时,必有队列式 AB0 ;(B) 当 m n 时,必有队列式 AB 0 (C) 当 nm 时,必有队列式 AB0 ;(D) 当 n m 时,必有队列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 所以 r ( AB ) n m ,所以AB 0.8.以下结论正确的选项是( C )(A) 假如矩阵 A 的队列式A 0,则A 0 ;(B) 假如矩阵 A 知足 A 2 0,则A 0 ;(C) n 阶数目阵与任何一个 n 阶矩阵都是可互换的;(D) 对随意方阵 A,B ,有 (A B)(A B) A 2 B 29.设 1,2,3,4是非零的四维列向量, A ( 1 ,2 ,3, 4 ), A* 为 A 的陪伴矩阵,已知 Ax0 的基础解系为 (1,0,2,0) T ,则方程组 A * x0 的基础解系为( C ) .(A ) 1, 2,3 .(B ) 12 ,23,31.(C ) 2, 3, 4.(D ) 12 ,23 ,34 ,41 .1由 Ax 0 的基础解系为(1,0,2,0) T可得 ( 1 ,2, 3,4 )0 0,1 230 .2所以( A ),(B )中向量组均为线性有关的,而( D )明显为线性有关的,所以答案为(C ).由A* A A*( 1, 2, 3, 4)(A*1, A* 2, A* 3, A* 4)O可得 1 , 2 , 3 , 4 均为 A* x0 的解 .10. 设 A 是 n 阶矩阵, A 合适以下条件(C)时, I nA 必是可逆矩阵(A)A nA(B)A 是可逆矩阵(C)A n(B)A 主对角线上的元素全为零11 . n 阶矩阵 A 是可逆矩阵的充足必需条件是(D)(A)A 1(B)A 0(C)AA T (D)A12 . A, B, C 均是 n 阶矩阵,以下命题正确的选项是(A)(A) 若 A 是可逆矩阵,则从 ABAC 可推出 BACA(B) 若 A 是可逆矩阵,则必有 ABBA(C) 若A0,则从 AB AC 可推出 BC(D) 若 B C ,则必有 ABAC13. A, B, C 均是 n 阶矩阵, E 为 n 阶单位矩阵,若ABC E ,则有( C )(A) ACBE ( B ) BAC E (C ) BCA E(D) CBAE14. A 是 n 阶方阵, A * 是其陪伴矩阵,则以下结论错误的选项是( D)(A) 若 A 是可逆矩阵,则A * 也是可逆矩阵;(B) 若 A 是不行逆矩阵,则A * 也是不行逆矩阵;适用标准文案(C)若 A * 0 ,则 A 是可逆矩阵;(D) AA *A .AA *A EnA .15.设 A 是 5 阶方阵,且 A0,则 A *( D)(A)A(B)23(D)A 4A(C) A16.设 A * 是 A(a )n n 的陪伴阵,则 A * A 中位于 (i , j ) 的元素为(B)ijnnnn(A)a jkAki(B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11a1nA11A1n17.设 A, B, 此中 A 是 a 的代数余子式, 则( C )ijijan1annAn1Ann(A) A 是 B 的陪伴 (B)B 是 A 的陪伴(C)B 是 A 的陪伴(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0(C )0 ,则C*B(A)A *(B) CA A *C0 B *B B *(C) CB A *0 (D) ABA *A B *CA BB *利用 CC*|C |E 考证.4 6 1 35 19.已知 A2, B4 ,以下运算可行的是(C)12 6(A) A B(B)A B(C) AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A)C(A B) CA CB(B)( A T B T )C A T C B T CT()T TC C B(C)(D)(A B)C AC BC21.对随意一个n 阶矩阵A,若 n 阶矩阵B能知足AB BA ,那么 B 是一个(C)(A)对称阵(B)对角阵(C)数目矩阵(D) A 的逆矩阵与随意一个 n 阶矩阵均可互换的矩阵为数目矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)起码有一个为零( D)可能有零,也可能没有零23.设A 1 3,则A1( D)2001111 2332(A)( B)( C)( D)11111111 36362636a1b1c1a1c12b124.设Aa2b2c2,若 AP a2c22b2,则 P( B)a3b3c3a3c32b3100100001200(A)001( B )002(C)020(D)001020*********1 a a a a 1a a25.设 n(n 3) 阶矩阵 Aa a1a ,若矩阵 A 的秩为 1,则 a 必为( A )aa a1(A) 1(B )-1(C )111 n (D )n 1矩阵 A 的随意两行成比率 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A,B 的队列式相等 , 即 | A | |B |,则 A, B 为等价矩阵 ;③若 Ax0与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ;④若 A, B 为相像矩阵 , 则 Ax0 与 Bx 0 解空间的维数同样 .以上命题中正确的选项是( D ) (A) ①, ③. (B)②, ④.(C)②, ③.(D)③, ④.当 BP 1 AP 时, A, B 为相像矩阵。
高等代数第四章矩阵练习试题参考包括答案.docx

第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。
矩阵第4章答案

矩阵第4章答案第四章习题解答1.证明:实对称矩阵A的所有特征值在区间la,b 1上的充要条件是对任何 a ,A- o E是正定矩阵;而对任何,A- o E是负定矩阵.证:因为A为实对称矩阵,所以存在正交矩阵Q,使得A = Q T diag 丫i, 2川/Q,其中特征值i |a,b 1.A- ■■'"o E = Q diag “ - ■ o,腹-'o, IH ' n - ’ o * Q,所以对于-'o<a,.--o o知A为正定矩阵;「。
<o知A为负定矩阵.-o b, i2.设A,B都是实对称矩阵,A的一切特征值在区间la,b 1上,B的一切特征值在区间l.c,d上.证明: A+B 的特征值必在区间!a c, b d 1.证:设A,B的特征值分别为b— 1 A 一 2 A 川n A -a,d - i B「2 B 川n B -c,又因为A,B为实对称矩阵,所以A,B为Hermite 矩阵,由定理18知,A+B的特征值M A + B),k=1,2,i|l,n . 有乞k A B 乞k A 1 B .k A n B3设P 是酉矩阵,A = diag 印川帆,证明PA 的特征值 丿满足不等式m 勻円兰M ,其中, m = min { a j} , M = ma ^| a i}.证:因为P 是酉矩阵,所以P HP = E ,又因为(PAH (PA )=A H P HPA = A HA,所以由 Browne 定理知,PA 的特征值「满足不等式min { J A H A } = min Q pA , PA}勻円 < max Q( PA 「PA }= max{jA H A }m 兰卩兰M .9 1-214•用圆盘定理证明A= |010 4 1至少有两个 .1 0 0 1一实特征值.证:A 的4个盖尔圆为G ={z| z —9 兰4打 G2={Z | z —8 兰2打G 3=^z| z — 4 兰讣,G 4 =<z| z —1 兰 1打它们构成的两个连通区域部分为S =G1U G U G 3 , S 2=G 4,易知S 与S 2都关于实轴对称, 因为实矩阵的复特征值必成对共轭出现 ,所以 S 中含有A的一个特征值,而S i中至少含有A 的 一个实特征值,因此A 中至少有两个实特征值.5参见课本135页中的例1.min (J A H A 〉= min amax'、A H A , imax a ii6用圆盘定理估计7-16 8A= -16 7 —88-8 -5的特征值和A的谱半径,然后选取一组正数P l,P2,P3对A的特征值作更细的估计.解:A的3个特征值在它的2个盖尔圆z_7M24 ,z+5M16得并集中,且r(A)M31.因为矩阵A 有相同的主对角元素,所以,无法通过选取正数P1,P2,P3给出更精细的估计.14 14 14 147证明A= 1611615的谱半径“A)<1.J/7 1/7 1/7 3/7 一证:因为A不可约,且送a4^|<^|| C,所以由7定理15知r A :: 1.14 14 1.4 148.证明A=1爲鳥516的谱半径”A)=1.D/7 1/7 1/7 47 一证:因为r A 乞A二-1,且det 1 I -A =0,所以r A =1.9.举例说明:(1 )在有两个盖儿圆构成构成的连通部分中,可以在每一个盖儿圆中恰有一个特征值.(2)不一定每个盖尔圆中必有一个特征值.解:(1)女口A= 1 2,故p.E-A=h2-5 = 0,如2=±亦. <2 -1丿(2)女口A= 1 -0.8,故肛-A =k2 -九+0.4 = 0 ,'丿05 0 J ”‘‘1,2 =孑1二i 0.6 .10.应用Ostrowski定理(或推论),证明6 5 12A= 17020 4 7 5.2 0 1 5 一的谱半径r A :13.证:因为RT1 =14 9=126 ;P2T2 =10 16=160 ;PT3=16 9=144 ;P4T4=8 14=112 .所以有定理2的推论2可得1 ___________r A 乞max〔RT I2面::13.i11 .设A=⑻严C n,n,满足aj Q|a| (i=1,2, Ilin)则j式(1)A可逆;n ( \(2)det A 工口a^ —送a ij Ij式丿证:(1)因为A 为严格对角占优矩阵,由定理 4知,A 可逆。
高等代数第四章矩阵知识点复习与相关练习

6. 证明关于秩的不等式: 1) r(A) + r(B) − n ≤ r(AB) ≤ min{r(A), r(B)}, r(A + B) ≤ r(A) + r(B); 2) 设 A, B ∈ P n×n, 且 AB = 0, 证明:r(A) + r(B) ≤ n;
()
(
)
对方程 Y C = B, C −初−等−−列−变−换→
E
.
B
Y = BC−1
4.2 相关练习
一. 填空题
1.设 A ∈ P n×m, B ∈ P m×s,则 r(AB) ≤
。
2
2.对一个 s × n 矩阵 A 作一次初等列变换就相当于在 A 的
边乘上一个相应的
初等矩阵。
3.设 A ∈ P n×n,写出 A 可逆的充要条件:
14. 设 A, B 是 n 级可逆方阵, A 0
=
0A
,
=
.
0 B
B0
k111
15.
设矩阵 A =
1 1
k 1
1 k
1 1
,
且
r(A) = 3,则 k =
.
111k
16. 设 A 为 3 级方阵,若 |A| = 2, 则 |2A| =
.
17. 设 A 是实对称矩阵,若 A2 = 0, 则 A =
7. 证明:若 A, B 分别为 n × m, m × n 矩阵,则 |λEn − AB| = λn−m|λEm − BA|.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L , 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦LL L L L ,其中ij A 是ij a 的代数余子式,则(C )(A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a a a a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦LL L L L L L L L ,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。
相似矩阵的秩相等。
齐次线性方程组基础解系所含解的个数即为其解空间的维数。