南京数学全等三角形单元复习练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京数学全等三角形单元复习练习(Word 版 含答案)
一、八年级数学轴对称三角形填空题(难)
1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.
【答案】15CP ≤≤
【解析】
【分析】
根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.
【详解】
如图,当点E 与点B 重合时,CP 的值最小,
此时BP=AB=3,所以PC=BC-BP=4-3=1,
如图,当点F 与点C 重合时,CP 的值最大,
此时CP=AC ,
Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,
故答案为1≤CP≤5.
【点睛】
本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.
2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将
△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.
【答案】363
【解析】
【分析】
分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;
【详解】
解:①若AE=AM 则∠AME=∠AEM=45°
∵∠C=45°
∴∠AME=∠C
又∵∠AME>∠C
∴这种情况不成立;
②若AE=EM
∵∠B=∠AEM=45°
∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°
∴∠BAE=∠MEC
在△ABE和△ECM中,
B
BAE CEN
AE EII
C
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABE≌△ECM(AAS),
∴CE=AB6,
∵AC=BC=2AB=23,
∴BE=23﹣6;
③若MA=ME 则∠MAE=∠AEM=45°
∵∠BAC=90°,
∴∠BAE=45°
∴AE平分∠BAC
∵AB=AC,
∴BE=1
2
BC=3.
故答案为23﹣6或3.
【点睛】
本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.
3.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限
内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,1
2
),且
△ABP和△ABC的面积相等,则a=_____.
【答案】-8
3
.
【解析】
【分析】
先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的
面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=13
2
,故可得出a的值.
【详解】
∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,
∴22
3+213
AB==
∵△ABC是等腰直角三角形,∠BAC=90°,
∴
1113
•1313
222 ABC
S AB AC⨯⨯
===,
作PE⊥x轴于E,连接OP,
此时BE=2﹣a,
∵△ABP的面积与△ABC的面积相等,
∴
111
•••
222 ABP POA AOB BOP
S S S S OA OE OB OA OB PE ++
=﹣=﹣,
111113
3322
22222
a
⨯⨯+⨯⨯⨯⨯
=(﹣)﹣=,
解得a=﹣8
3
.
故答案为﹣8
3
.
【点睛】
本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.
4.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将
△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.
【答案】2.
【解析】
【分析】
【详解】
过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,
∵∠B=60°,BE=BD=4,
∴△BDE是等边三角形,
∵△B′DE≌△BDE,
∴B′F=1
2
B′E=BE=2,DF=23,
∴GD=B′F=2,
∴B′G=DF=23,
∵AB=10,
∴AG=10﹣6=4,
∴AB′=27.
考点:1轴对称;2等边三角形.
5.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.
【答案】30°.
【解析】
【分析】
如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,
∠AOB=1
2
∠P'O P''=30°.
【详解】
解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,
由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"
∴由两点之间线段最短可知,此时△PMN周长的最小
∴P'P"=5
由对称OP=OP'=OP"=5
∴△P'OP"为等边三角形
∴∠P'OP"=60
∵∠P'OB=∠POB,∠P"OA=∠POA
∴∠AOB=1
2
∠P'O P''=30°.
故答案为30°.
【点睛】
本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.
6.等腰三角形一边长等于4,一边长等于9,它的周长是__.
【答案】22
【解析】
【分析】
等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;
【详解】
解:因为4+4=8<9,0<4<9+9=18,
∴腰的不应为4,而应为9,
∴等腰三角形的周长=4+9+9=22.
故答案为22.
【点睛】
本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的
边长为_____.
【答案】2n .
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2…进而得出答案.
【详解】
解:∵△A 1B 1A 2是等边三角形,
∴A 1B 1=A 2B 1,
∵∠MON =30°,
∵OA 2=4,
∴OA 1=A 1B 1=2,
∴A 2B 1=2,
∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,
∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,
∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,
∴A 3B 3=4B 1A 2=8,
A 4
B 4=8B 1A 2=16,
A 5
B 5=16B 1A 2=32,
以此类推△A n B n A n +1的边长为 2n .
故答案为:2n .
【点睛】
本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到
OA 5=2OA 4=4OA 3=8OA 2=16OA 1是解题的关键.
8.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在
AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.
【答案】4.
【解析】
【分析】
连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.
【详解】
解:连接BE ,BF ,
∵△ABD 是△ABC 的轴对称图形,
∴△ABD ≌△ACB ,
∴DB=CB ,AD=AC ,∠D=∠BCA=90°,
∴∠BCF=90°,
∵点B 恰好在EF 的垂直平分线上,
∴BE=BF ,
在Rt △DBE 和Rt △CBF 中
BD BC EB FB =⎧⎨=⎩
,
∴Rt △DBE ≌Rt △CBF (HL ),
∴DE=CF ,
设DE=x ,则CF=x ,
∵AE=5,AF=13,
∴AC=AD=5+x ,
∴AF=5+2x ,
∴5+2x=13,
∴x=4,
∴DE=4,
故答案为:4.
【点睛】
此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.
9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一
腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.
【答案】①②③④
【解析】
【分析】
依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.
【详解】
有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.
故此题正确的是①②③④.
【点睛】
此题考查等边三角形的判定方法,熟记方法才能熟练运用.
10.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.
【答案】8
【解析】
试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为
BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.
故答案为8.
点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.
二、八年级数学轴对称三角形选择题(难)
11.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:
①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()
A .1
B .2
C .3
D .4
【答案】D
【解析】
【分析】 由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得
2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.
【详解】
∵等边△ABC 中,AD 是BC 边上的高,
∴BD=DC ,AB=AC ,∠B=∠C=60°,
在△ABD 与△ACD 中
90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩
, ∴△ABD ≌△ACD ,故①正确;
在△ADE 与△ADF 中
60EAD FAD AD AD
EDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
, ∴△ADE ≌△ADF ,故③正确;
∵在Rt △ADE 与Rt △ADF 中,
∠EAD=∠FAD=30°,
∴2DE=2DF=AD ,故②正确;
同理2BE=2CF=BD ,
∵AB=2BD ,
∴4BE=4CF=AB ,故④正确,
故选D .
【点睛】
本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.
12.如图,已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②连结AC 、BC ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④在射线AM 上截取AB =a ;以上画法正确的顺序是( )
A .①②③④
B .①④③②
C .①④②③
D .②①④③
【答案】B
【解析】
【分析】 根据尺规作等边三角形的过程逐项判断即可解答.
【详解】
解:已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:
①画射线AM ;
②在射线AM 上截取AB =a ;
③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;
④连结AC 、BC .
△ABC 即为所求作的三角形.
故选答案为B .
【点睛】 本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.
13.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )
A .90α+
B .1902α+
C .180α-
D .1802α-
【答案】D
【解析】
【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.
【详解】
解:
过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.
此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°
) 所以 x°
=180°-2α 【点睛】
求出M,N 在什么位子△PMN 周长最小是解此题的关键.
14.如图所示,把多块大小不同的30角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与x 轴重合且点A 的坐标为()2,0,30ABO ∠=︒,第二块三角板的斜边1BB 与第一块三角板的斜边AB 垂直且交x 轴于点1B ,第三块三角板的斜边12B B 与第二块三角板的斜边1BB 垂直且交y 轴于点2B ,第四块三角板斜边23B B 与第三块三角板的斜边12B B 垂直且交x 轴于点3B ,按此规律继续下去,则点2018B 的坐标为( )
A .()20182(3)
,0-⨯ B .()20180,2(3)-⨯ C .()20192(3),0⨯ D .()
20190,2(3)-⨯ 【答案】D
【解析】
【分析】 计算出OB 、OB 1、 OB 2的长度,根据题意和图象可以发现题目中的变化规律,从而可以求得点B 2018的坐标.
【详解】
解:由题意可得,
2242-3
OB 1= 3 OB= 233⨯ = 22(3)⨯,
OB 2= 3 OB 1= 32(3)⨯,
…
∵2018÷4=504…2,
∴点B 2018在y 轴的负半轴上,
∴点B 2018的坐标为()20190,2(3)
-⨯.
故答案为:D .
【点睛】
本题考查规律型:点的坐标规律及含30度角的直角三角形的性质,解答本题的关键是明确题意,找出题目中坐标的变化规律,求出相应的点的坐标.
15.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =
+;其中正确的结论有
( )
A .4个
B .3个
C .2个
D .1个
【答案】A
【解析】
【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =
12
∠ABC ,然后利用三角形的内角和定理整理即可得解;
②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;
③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;
④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据
即可得到DG GH =
+. 【详解】
解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,
∴∠ABP =
12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12
∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP ,
=180°−(45°+12∠ABC +90°−∠ABC )−12
∠ABC , =180°−45°−
12∠ABC−90°+∠ABC−12
∠ABC , =45°,故本小题正确;
②∵PF ⊥AD ,∠APB =45°(已证),
∴∠APB =∠FPB =45°,
∵∵PB 为∠ABC 的角平分线,
∴∠ABP =∠FBP ,
在△ABP 和△FBP 中, APB FPB PB PB
ABP FBP ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ABP ≌△FBP (ASA ),
∴AB =BF ,AP =PF ;
∴PB 垂直平分AF ,故②正确;
③∵∠ACB =90°,PF ⊥AD ,
∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,
∴∠AHP =∠FDP ,
∵PF ⊥AD ,
∴∠APH =∠FPD =90°,
在△AHP 与△FDP 中,
90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩
====,
∴△AHP ≌△FDP (AAS ),
∴DF =AH ,
∵BD =DF +BF ,
∴BD =AH +AB ,
∴BD−AH=AB,故③小题正确;
④∵AP=PF,PF⊥AD,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG,
∵∠PAF=45°,AG⊥DH,
∴△ADG与△FGH都是等腰直角三角形,
∴DG=AG,GH=GF,
∴DG=GH+AF,
∴FG=GH,AF=2PA
故2
=+.
DG PA GH
综上所述①②③④正确.
故选:A.
【点睛】
本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.
16.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )
A.15°B.40 C.15°或20°D.15°或40°
【答案】C
【解析】
【分析】
依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.
【详解】
如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,
所以,∠DBC=15°,∠ACB=30°+15°=45°;
故∠ABC=60°,∠C=80°;
如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,
∵△APB,△APC都是等腰三角形;
∴∠ABD=20°,∠ADC=∠ACD=40°,
如图3,当∠BAC=120°,以A 为顶点作∠BAD=80°,则∠DAC=40°,
∵△APB ,△APC 都是等腰三角形,
∴∠ABD=20°,∠ADC=100°,∠ACD=40°.
故选C .
【点睛】
本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.
17.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:
①∠ADC =15°;②AF =AG ;③AH =DF ;④△ADF ≌△BAH ;⑤DF =2EH .其中正确结论的个数为( )
A .5
B .4
C .3
D .2
【答案】B
【解析】
【分析】 ①根据△ABC 为等边三角形,△ABD 为等腰直角三角形,可以得出各角的度数以及DA=AC ,即可作出判断;②分别求出∠AFG 和∠AGD 的度数,即可作出判断;④根据三角形内角和定理求出∠HAB 的度数,求证EHG DFA ∠=∠,利用AAS 即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH ,又由③可知AH DF =,即可作出判断.
【详解】
①正确:∵ABC
△是等边三角形,
∴60
BAC︒
∠=,∴CA AB
=.
∵ABD
△是等腰直角三角形,∴DA AB
=.
又∵90
BAD︒
∠=,∴150
CAD BAD BAC︒
∠=∠+∠=,
∴DA CA
=,∴()
1
18015015
2
ADC ACD︒︒︒
∠=∠=-=;
②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴AF≠AG
③,④正确,由题意可得45
DAF ABH︒
∠=∠=,DA AB
=,
∵AE BD
⊥,AH CD
⊥.∴180
EHG EFG︒
∠+∠=.
又∵180?
DFA EFG
∠+∠=,∴EHG DFA
∠=∠,
在DAF
△和ABH中
()
AFD BHA
DAF ABH AAS
DA AB
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴DAF
△≌ABH.∴DF AH
=.
⑤正确:∵150
CAD︒
∠=,AH CD
⊥,
∴75
DAH︒
∠=,又∵45
DAF︒
∠=,∴754530
EAH︒︒︒
∠=-=
又∵AE DB
⊥,∴2
AH EH
=,又∵=
AH DF,∴2
DF EH
=
【点睛】
本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.
18.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()
A.12 B.16 C.24 D.32
【答案】A
【解析】
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段
AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.
【详解】
连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∵△CDM周长的最小值为8,
∴AD=8-1
2
BC=8-2=6
∴S△ABC=1
2
BC•AD=
1
2
×4×6=12,
故选A.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
19.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接
ED,EC,延长CE交AD于F点,下列结论:
①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.①③④
【答案】C
【解析】
【分析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;
②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;
③证明△AEF≌△BED即可;
④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知
S△BDE=S△ACE,所以S△BDE=S△ACE.
【详解】
①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°.
∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵
AE BE
DAE CBE
AD BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADE≌△BCE(SAS);故①正确;
②∵△ADE≌△BCE,∴∠EDA=∠ECB.
∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.
∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.
在△AEF和△BED中,∵
BDE AFE
BED AEF
AE BE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△AEF≌△BED(AAS),∴BD=AF;故③正
确;
④∵AD=BC,BD=AF,∴CD=DF.
∵AD⊥BC,∴△FDC是等腰直角三角形.
∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.
∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.
故选C.
【点睛】
本题考查了全等三角形的判定与性质,本题中求证△BFE≌△CDE是解题的关键.20.如图,ABC
△中,60
BAC
∠=︒,ABC
∠、ACB
∠的平分线交于E,D是AE延长线上一点,且120
BDC
∠=︒.下列结论:
①120
BEC
∠=︒;②DB DE
=;③2
BDE BCE
∠=∠.其中所有正确结论的序号有().
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴18060120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =, ∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。