图像增强技术综述
基于深度学习的图像数据增强研究综述
基于深度学习的图像数据增强研究综述摘要:近年来,深度学习在计算机视觉领域取得了重大突破。
图像数据增强作为一种提高神经网络性能的有效方法,在图像分类、目标检测等任务中被广泛应用。
本文综述了基于深度学习的图像数据增强技术的研究现状和发展趋势,包括数据扩增方法、生成对抗网络、自监督学习等。
通过对这些方法的分析和比较,整理出图像数据增强在深度学习中的应用场景和优势。
最后,对未来进行了展望,并提出了一些可能的研究方向。
1. 引言深度学习技术的发展为图像数据增强提供了新的空间。
在深度神经网络训练过程中,数据增强不仅能提高模型的鲁棒性,还可以有效缓解因样本不平衡和过拟合而引发的问题。
因此,基于深度学习的图像数据增强引起了广泛的研究兴趣。
2. 数据扩增方法数据扩增是图像数据增强的基础。
在深度学习中,数据扩增方法主要包括平移、旋转、缩放、镜像等。
这些方法能够生成一系列变换后的图像,从而增加训练集的多样性。
此外,还有一些特定领域的数据扩增方法,如遮挡、光照变化等,能够模拟真实世界中的更多情况。
3. 生成对抗网络生成对抗网络(GANs)是近年来深度学习中的一个热门研究方向。
它由一个生成器和一个判别器组成,通过博弈过程使生成器生成更逼真的样本。
在图像数据增强中,GANs可以用来生成与原始图像相似但不同的图像,从而扩展训练集。
此外,GANs还可以用于图像修复、图像超分辨率等任务。
4. 自监督学习自监督学习是一种无监督学习的方式,它通过设计自身监督任务来学习图像的特征表示。
在图像数据增强中,自监督学习可以用来生成图像的旋转、遮挡等数据扩增。
通过自身监督任务的引导,神经网络能够学习到更鲁棒的特征表示,提高模型的泛化能力。
5. 应用场景与优势基于深度学习的图像数据增强在多个领域中被广泛应用。
在图像分类任务中,数据增强能够提高模型的分类准确率。
在目标检测任务中,数据增强能够增加目标的尺度和视角变化,提高模型的检测性能。
此外,数据增强还可以应用于图像生成、图像分割等任务。
图像处理技术综述
图像处理技术综述图像处理是指对数字图像进行计算机处理的一系列技术。
其目的是识别、理解和改善图像的质量、更好地表示图像中的信息。
图像处理技术通过对图像进行数字处理,对图像进行增强、去燥、去模糊、变形、特征提取等操作,使得图像可以被更好地利用。
图像处理技术的应用广泛,包括医学、航空航天、军事、计算机视觉、娱乐等诸多领域。
下面将简要介绍图像处理技术的几个关键方面。
图像增强图像增强是一种通过对图像进行计算机处理来提高其质量的技术。
增强可以包括调整图像的亮度、对比度或色彩饱和度,或应用锐化技术。
增强可以明显提高图像的质量,以便于人类或计算机视觉系统更好地分析图像。
图像去燥图像去燥是通过对图像进行滤波以减少噪声的技术。
噪声可能是由于图像传感器、图像采集过程或图像处理造成的。
去噪可以提高图像质量,使得信息更加清晰。
图像去模糊是通过计算从模糊的图像中恢复尽可能多的信息的技术。
模糊可能是由于摄像机移动、光照不足、散焦模糊等造成的。
去模糊可以使得模糊的图像清晰化,以便于人类或计算机视觉系统更好地分析图像。
图像变形图像变形是一种改变图像形状、大小、方向等的技术。
变形技术可以用于图像增强、建模、图像贴合等应用中。
特征提取特征提取是从图像中提取关键信息的技术。
这些信息可以包括对象形状、边缘、纹理、颜色等。
经过特征提取处理的图像可以更好地用于对象检测、跟踪、分类等应用。
特征提取是计算机视觉领域中广泛应用的一项技术。
总之,图像处理技术在很多应用领域中都具有重要的作用。
随着计算机技术的发展,图像处理技术的应用将会越来越广泛,对于提高人们的生活质量、推动人类社会进步都将有着重要的意义。
遥感图像处理与分析算法综述
遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
图像处理技术综述
图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。
在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。
一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。
例如,用专业摄像机或手机或扫描仪捕获图像。
另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。
2、预处理图像在采集到图像数据后,需要对图像进行预处理。
这主要是为了去除噪声和畸变,以便更好地处理图像数据。
一些常见的操作包括滤波、均衡化、归一化和旋转等。
3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。
分割可以基于颜色、亮度、纹理、图像特征、形状等进行。
4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。
这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。
5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。
应用某些算法,通过获取的特征和结构信息来分析图像。
根据分析的结果,可以识别物体、建立模型、人机交互等等。
图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。
常见的滤波方法有平均滤波、高斯滤波、中值滤波等。
图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。
图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。
最常用的压缩方式是JPEG和PNG。
图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。
常用而有效的算法包括K均值聚类、分水岭算法等。
特征提取是将图像中的信息抽象化作为特定可识别模式。
从图像中提取特征通常需要使用泛函分析和模式识别技术。
6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。
低光照图像增强算法综述
低光照图像增强算法综述一、本文概述随着计算机视觉技术的快速发展,图像增强技术成为了研究的重要领域之一。
其中,低光照图像增强算法是处理低质量、低亮度图像的关键技术,对于提高图像质量、增强图像细节、提升图像识别精度等方面具有重要的应用价值。
本文旨在对低光照图像增强算法进行全面的综述,介绍其研究背景、发展历程、主要算法及其优缺点,并探讨未来的发展趋势。
本文将对低光照图像增强的研究背景进行介绍,阐述低光照图像增强技术在视频监控、医学影像分析、军事侦察、航空航天等领域的应用需求。
本文将回顾低光照图像增强技术的发展历程,分析不同算法在不同历史阶段的发展特点和主要贡献。
接着,本文将重点介绍当前主流的低光照图像增强算法,包括基于直方图均衡化的算法、基于Retinex理论的算法、基于深度学习的算法等,并详细阐述其原理、实现方法、优缺点等。
本文将展望低光照图像增强技术的未来发展趋势,探讨新技术、新算法在提升图像质量、提高识别精度等方面的潜在应用。
通过本文的综述,读者可以全面了解低光照图像增强算法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考和借鉴。
二、低光照图像增强的基本原理低光照图像增强算法的核心目标是在保持图像细节和色彩信息的提高图像的亮度和对比度,从而改善图像的视觉效果。
这通常涉及到对图像像素值的调整,以及对图像局部或全局特性的分析和优化。
基本的低光照图像增强算法可以分为两类:直方图均衡化和伽马校正。
直方图均衡化是一种通过拉伸像素强度分布来增强图像对比度的方法。
这种方法假设图像的可用数据跨度大,即图像包含从暗到亮的所有像素值。
然而,对于低光照图像,由于大部分像素值集中在较低的亮度范围内,直方图均衡化可能会过度增强噪声,导致图像质量下降。
伽马校正则是一种更为柔和的增强方法,它通过调整图像的伽马曲线来改变图像的亮度。
伽马曲线描述了输入像素值与输出像素值之间的关系,通过调整这个关系,可以改变图像的亮度分布。
数字图像处理论文
数字图像处理论文数字图像处理论文篇一:数字图像增强技术摘要:数字图像处理是指利用计算机技术对图像进行各种操作和处理的过程。
图像增强是数字图像处理中的一项重要技术,旨在改善图像的质量和视觉效果。
本文针对数字图像增强技术进行了综述,包括直方图均衡化、滤波和锐化等常用方法。
此外,还介绍了一些新近提出的图像增强算法,如基于深度学习的方法。
最后,对数字图像增强技术的发展趋势进行了展望。
关键词:数字图像处理;图像增强;直方图均衡化;滤波;锐化;深度学习1.引言数字图像处理是计算机科学和图像处理领域的重要研究方向。
随着数字图像在各个领域的广泛应用,对图像质量和视觉效果的要求也越来越高。
图像增强是数字图像处理的一项基础技术,通过改善图像的对比度、亮度和细节等特征,提高图像的可视化效果。
图像增强技术已被广泛应用于医学影像、无人驾驶、图像识别等领域。
2.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过调整图像的像素值分布,提高图像的对比度和显示效果。
其基本思想是将原始图像的像素值映射到一个新的像素值域,使得新图像具有均匀分布的像素值。
直方图均衡化可以有效地增强图像的细节和纹理特征,但在一些情况下会导致图像过度增强或噪声增加。
3.滤波技术滤波是图像处理中常用的一种方法,通过对图像进行平滑或者锐化处理,改善图像的质量和视觉效果。
常用的滤波方法有均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算像素点周围邻域像素的平均值来更新像素的值,可用于图像的平滑处理。
中值滤波通过计算像素点周围邻域像素的中值来更新像素的值,可有效地去除图像中的椒盐噪声。
高斯滤波通过对图像进行加权平均处理,对图像进行平滑和去噪。
4.锐化技术锐化是图像处理中常用的一种技术,通过增加图像中的高频成分,提高图像的边缘和细节等特征。
常用的锐化方法有拉普拉斯算子、Sobel算子和Canny算子等。
拉普拉斯算子通过计算图像的二阶导数来增强图像的边缘和细节。
Sobel算子通过计算图像的一阶导数来提取图像的边缘特征。
微弱红外目标图像增强技术研究
微弱红外目标图像增强技术研究微弱红外目标图像增强技术研究引言:红外图像技术在军事、安防、医学等领域具有重要的应用价值。
然而,由于红外图像的特殊性质,即目标低热性、低对比度和低分辨率等问题,使得微弱红外目标的检测和识别成为一项具有挑战性的任务。
为了克服这些问题,研究人员提出了各种微弱红外目标图像增强技术。
本文将对几种常见的微弱红外目标图像增强技术进行综述,并对各种技术的优缺点进行评述。
一、微弱红外目标图像增强技术综述1. 直方图均衡化技术:直方图均衡化是一种常见的图像增强技术,通过将图像的灰度级分布均匀化,增强图像的对比度和细节。
然而,直方图均衡化容易导致图像的亮度和对比度过度增强,同时在图像局部细节的增强方面效果较差。
2. 基于滤波的增强技术:滤波技术被广泛应用于红外图像增强中,包括中值滤波、高斯滤波和自适应滤波等。
这些滤波方法可以有效去噪,但在增强微弱红外目标方面存在一定局限性,容易产生边缘模糊等不可逆失真。
3. 空域增强技术:空域增强技术是基于图像局部统计特性进行增强的方法,包括维纳滤波、谱偏移、算子滤波等。
这些技术能够提高图像的对比度和边缘信息,但对于微弱红外目标的增强效果有限。
4. 基于光谱特征的增强技术:利用红外图像的光谱特征进行增强是一种有效的策略,包括基于小波多尺度分析的增强方法、多尺度Retinex增强方法等。
这些方法将图像分解为不同尺度的子带,通过增强各个子带的细节信息,提高了微弱红外目标的可见度。
二、微弱红外目标图像增强技术优缺点评价1. 直方图均衡化技术:优点:简单易行,适用于快速增强红外图像的场景。
缺点:容易造成过度增强和细节信息丢失。
2. 基于滤波的增强技术:优点:能够有效去噪,提高图像的清晰度。
缺点:容易造成边缘模糊和不可逆失真。
3. 空域增强技术:优点:能够提高图像的边缘信息和对比度。
缺点:对微弱红外目标的增强效果有限。
4. 基于光谱特征的增强技术:优点:提高了微弱红外目标的可见度。
图像增强算法综述
图像增强算法综述①靳阳阳, 韩现伟, 周书宁, 张世超(河南大学 物理与电子学院, 开封 475001)通讯作者: 韩现伟摘 要: 图像增强算法主要是对成像设备采集的图像进行一系列的加工处理, 增强图像的整体效果或是局部细节,从而提高整体与部分的对比度, 抑制不必要的细节信息, 改善图像的质量, 使其符合人眼的视觉特性. 首先, 本文从图像增强算法的基本原理出发, 归纳了直方图均衡图像增强、小波变换图像增强、偏微分方程图像增强、分数阶微分的图像增强、基于Retinex 理论的图像增强和基于深度学习的图像增强算法, 并讨论了它们的改进算法. 然后,从视觉效果、对比度、信息熵等方面对几种算法进行了定性和定量的对比, 分析了它们的优势和劣势. 最后, 对图像增强算法的未来发展趋势作了简单的展望.关键词: 图像增强; 直方图均衡; 小波变换; 微分方程; Retinex 理论; 深度学习引用格式: 靳阳阳,韩现伟,周书宁,张世超.图像增强算法综述.计算机系统应用,2021,30(6):18–27. /1003-3254/7956.htmlReview on Image Enhancement AlgorithmsJIN Yang-Yang, HAN Xian-Wei, ZHOU Shu-Ning, ZHANG Shi-Chao(School of Physics and Electronics, Henan University, Kaifeng 475001, China)Abstract : Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details,increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms.Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.Key words : image enhancement; histogram equalization; wavelet transform; differential equation; Retinex theory; deep learning在全球信息化大幅发展的时代, 对于这个世界的认识越来越依靠于信息的爆炸性传递. 大部分人认识世界的主要途径还是眼睛的可视性, 人眼所看到的一切都可以化作图像的形式. 图像的获取、生成、压缩、存储、变换过程自然会受到各种状况的影响, 例如获取图像时会因为天气原因, 不同光照条件, 图像亮度也有着细微的变化, 同样由于仪器设备的质量, 参数的设置, 人员的操作都会使图像质量在一定程度上的损伤, 影响图像的质量. 图像增强算法的出现, 无疑是对受损的图像做一个“修补”的工作, 以此来满足各样的需求. 图像增强的目的是为了适应人眼的视觉特性,且易于让机器来进行识别. 近些年来, 图像增强的发展计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2021,30(6):18−27 [doi: 10.15888/ki.csa.007956] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 收稿时间: 2020-10-12; 修改时间: 2020-11-05; 采用时间: 2020-11-17; csa 在线出版时间: 2021-06-01涉及了很多领域, 其中包括了遥感卫星成像领域、医学影像领域、影视摄影等各领域[1].要想真正地实现图像增强的效果, 首先对于整个图像来讲, 要提高图像部分和整体的对比度, 细节也不能忽略; 其次应提高图像的信噪比, 抑制噪声的产生,对“降质”的图像处理; 然后是对于增强过的图像来讲,避免出现局部增强不适, 影响人眼的观看模式.下面我们将列出几类典型的且应用范围比较广的图像增强算法以及改进的算法. 直方图均衡(HE)技术原理是对原图像的灰度直方图从比较集中的某个灰度区间转换为全部灰度区域内的均匀分布[2]; 由此算法进行转化的局部直方图均衡化[3], 符合图像局部特性; Kim 等提出的保持亮度的双直方图均衡算法(BBHE)[4],最大亮度双直方图均衡(MMBEBHE)算法有效地保持图像亮度[5]; 迭代阈值的双直方图均衡算法(IBBHE)[6]用迭代的方法达到增强对比度和亮度保持的效果; 彩色图像直方图均衡算法[7], 运算复杂度很低, 合并图像的视觉效果很好. 基于偏微分方程(PDE)的增强方法是把图像作为水平集或高维空间中的曲面, 再根据曲线和曲面演化逐步来增强图像的对比度[8]; 基于全变分模型插值的图像增强方法[9], 保留原图像的细节, 提高了对比度; 基于HE的偏微分方程增强方法, 在梯度域增强对比度基础上[10]提出新梯度变换函数. 小波变换中增强本质是图像信号分解为不同频段图像分量[11]; 小波变换图像多聚集模糊增强方法[12], 增强后的图像较为清晰; 基于离散余弦变换(DCT)和离散小波变换(DWT)的图像增强方法, 提高图像的质量, 同时减少计算复杂度和内存使用量[13]; 基于小波分析和伪彩色处理的图像增强方法[14], 在降噪增强的同时进一步提高图像分辨率. 基于量子力学偏微分方程的缺陷图像增强的研究[15]. 基于PDE的红外图像增强, 很好改进了传统对比度增强方法的不足[16]; 基于PDE平滑技术是一种新兴的图像增强滤波技术, 实质性、开创性的研究在图像增强滤波中引入的尺度空间理论[17]. 基于LBPV (Local Binary Pattern Variance)的分数阶微分图像增强算法[18],在图像纹理和细节方面处理效果比现有分数阶算法效果更好; 自适应分数阶微分理论指纹图像增强算法改进了传统分数阶微分形式, 提高了计算精度[19]. 基于多尺度Retinex的HSV彩色快速图像增强算法, 在HSV 颜色模型中有与Multi-Scale Retinex (MSR)等同的结果, 处理时间短[20]; 基于多尺度Retinex的数字射线照相增强算法, 改善对比度, 抑制噪声[21]; MSR与颜色恢复(MSRCR)算法增强的图像在复杂的情况下进行识别物体[22]; 基于变分Retinex方法的图像增强, 良好结合了MSRCR和变分方法的优点, 保证图像自然度[23].近年来, 基于深度学习的图像处理算法迎来了一个新的时代[24]. Hu等利用超分辨卷积神经网络(SRCNN)方法提高了风云卫星亮温图像的峰值信噪比, 结果较传统方法更精细[25]; Li等利用深度学习来增强低光图像, 提出利用深度的卷积神经网络进行学习, 提高图像质量[26].1 图像增强算法的介绍1.1 直方图均衡算法直方图均衡化算法, 简言之就是对图像直方图的每个灰度级来进行统计[3]. 实现归一化的处理, 再对每一灰度值求累积分布的结果, 可求得它的灰度映射表,由灰度映射表, 可对原始图像中的对应像素来进行修正, 生成一个修正后的图像.1.1.1 传统标准直方图均衡算法f HE传统直方图均衡算法是通过图像灰度级的映射,在变换函数作用下, 呈现出相对均匀分布的输出图像灰度级, 增强了图像的对比度. 该算法是相对于图1中n=1, 均衡函数为的简化模型[27], 即:f HEX k= {X0,X1,···,X L−1}其中, 函数代表直方图均衡过程, 其大致过程为: 已知输入和输出图像为X和Y, 总灰度级为L, 则存在, 均衡后输出和输入图之间有如下变换关系:c(X k)其中, 展现的累积概率分布表示函数输入图像灰度级.图1 全局均衡算法的模型L=∞如果输入图像看作一个连续随机变量, 即,则输出图像自然是一个随机变量, 输出图像灰度级均衡后的概率分布将趋于均匀, 则输出图像的亮度均值为:2021 年 第 30 卷 第 6 期计算机系统应用得到均衡后图像的均值分布与原图像无关, 由此可知其不能有效保持原始图像的亮度, 由于原图像各灰度级概率密度的差异, 简并现象的产生明显变多.1.1.2 保持亮度的双直方图均衡算法BBHE 实质是利用两个独立的子图像的直方图等价性[4]. 两个子图像的直方图等价性是根据输入图像的均值对其进行分解得到, 其约束条件是得到均衡化后的子图像在输入均值附近彼此有界作为基于图像均值进行的分割, 均衡后图像均值偏离原始图像均值的现象不会出现, 达到了亮度保持的目的, 其算法流程如下:G mean 1)计算输入图像均值, 根据均值将原始直方图分为左右两个子直方图.P L (i )P R (i )2)分别计算左右两个子直方图的灰度分布概率直方图和, 即:N L N R 其中, 和分别表示左右两个子直方图的总像素数,L 表示图像总灰度级数.cd f L (i )cd f R (i )3)计算左右两子直方图的累积分布直方图和, 即:tab L (i )tab R (i )4)计算左右两个映射表和, 合并之后得到最终的映射表tab , 其中round 表示四舍五入取整, 即:对于一些低照度和高亮的图像, 均值会处于较低和较高的地方, 若此时基于均值进行分割并分别均衡的话, 很大程度上会导致一个有大量数据的子直方图在小范围内进行均衡的情况出现, 另一个只有少量数据的子直方图却在较宽的范围内均衡.1.2 小波变换图像增强算法19世纪80年代Morlet 提出小波变换的概念, 数学家Merey 在十几年后提出小波基构造思想, 随着Mallat 的加入, 两个人共同建立了小波变换算法. 通过小波逆变换将同态滤波处理的低频分量和经自应阈值噪、改进模糊增强的高频分量得到增强处理后的红外图像[28].1.2.1 标准小波变换图像增强小波理论具有低熵和多分辨率的性质, 处理小波系数对降噪有一定作用, 噪声主要在高通系数中呈现,对高低通子带均需要增强对比度和去噪处理. 标准小波变换图像增强(WT)将图像分解为1个低通子图像和3个具有方向性的高通子图像, 高通子图像包括水平细节图像、垂直细节图像和对角细节图像[29]. 小波变换最大的特点是能较好地用频率表示某些特征的局部特征, 而且小波变换的尺度可以不同[30].1.2.2 改进后的小波变换图像增强算法针对传统方法对图像多聚焦模糊特征进行增强会出现图像不清晰、细节丢失现象, 小波变换图像多聚焦模糊特征增强方法, 利用背景差分法将目标图像的前景区域提取出来, 背景区域亮度会随时间发生变化,进而完成背景区域特征更新; 根据全局像素点熵值和预设阈值校正加强模糊特征, 突出小波变换图像边界局部纹理细节信息, 完成增强变换. 基于小波变换域的医学图像增强方法[31], 是基于Shearlet 变换改进的Gamma 校正, 采用改进的伽玛校正对低频进行处理, 利用模糊对比函数增强图像细节, 增强图像的对比度.二进小波变换简单的对信号尺度参数实现了离散化, 不过仍具备和连续小波变换同样的平移不变特性.利用二进小波变换将指纹图像分解[32], 步骤如下:1)首先将获取的指纹图像进行尺度的分解, 这样得到的频率分量为一低三高;2)对低频分量进行直方图均衡;3)对3个高频分量先进行高斯拉普拉斯掩膜锐化, 得到锐化后的图像;4)直方图均衡后的低频分量和处理后的3个高频分量进行二进小波逆变换重构, 得到增强后的图像.1.3 偏微分方程图像增强算法u (x 1,x 2,···,x n )关于未知函数的偏微分方程是形如式(11)的等式:计算机系统应用2021 年 第 30 卷 第 6 期x =(x 1,x 2,···,x n )Du =u x 1,u x 2,···,u x n 其中, , , F 是关于x 和未知函数u 加上u 的有限多个偏导数的基础函数. 偏微分方程(Partial Differential Equation, PDE)是微分方程的一种, 如果一个微分方程出现多元函数的偏导数, 这种方程就是偏微分方程[33].1.3.1 标准偏微分方程图像增强V l o (p )V l (p )l o V l o (p )V l (p )l o l o l o 假设和分别为两幅图像和l 的对比度场, 若与在每一点上具有相同的梯度方向,但前者大小均大于后者, 则图像应该比l 具有更高的对比度, 可以将看作l 的增强图像. 实际上, 从图像l 到图像的过程就是标准PDE 图像增强实现的过程,可以由以下式子来描述它们的关系:V l o (p )式中, 为增强后图像的对比度场; k 为增强因子,一般情况下k >1, 过大的话会增大噪声. 对于式(12),图像l 是已知的, 其解为:φl o (p )式中, 是一个与坐标无关的常数. 可看到两幅图像之间的动态范围存在k 倍的差距. 对于可在计算机屏幕上显示的数字图像, 其动态范围为0 ~ 255. 我们要做到先要对的对比度场进行约束, 之后开始按照步骤运算, 最后才能得到比较准确的数据.1.3.2 改进的偏微分方程增强方法∇u max ∥∇u ∥min为避免增强图像梯度场同时造成噪声的危害加剧,寻找一种比较适合的增强方法. 定义原图像的数值梯度函数为, 梯度模的最大值为, 最小值为, 增强之后的图像梯度为S [10]:∥∇u ∥[min ∥∇u ∥,max ∥∇u ∥][0,max ∥∇u ∥]式中, 表示梯度场的方向信息. 经过改进的梯度函数梯度场从的区域内映射到内. 原本纹理突显出来的同时保留梯度值较大的边缘.基于量子力学偏微分方程的缺陷图像增强研究方法[15]. 航空材料缺陷的图像增强对缺陷的定性和定量性能起着至关重要的作用, 由于复合材料分布不均匀,将导致缺陷成像对比度不高, 会让识别和量化的难度加大. 算法主要分为两个步骤: 首先是根据量子力学理论, 计算图像边缘的量子概率; 在此基础上, 建立融合各向异性量子概率的偏微分方程来增强航空材料缺陷图像. 此算法可以在有效抑制噪声和减少成像不均匀性的同时, 更好保留缺陷的特征, 增强图像的对比度.1.4 分数阶微分方程增强算法近些年, 分数阶微积分在多领域都有了突破性进展[34]. 分数阶微分不仅可以提升图像中的高频分量, 还可以以一种非线性形式保留图像中低频分量所带有的性能. 常用的分数阶微分定义有G-L 、R-L 、Caputo 三种定义, 其中最常用的是采用非整型分数阶微积分的G-L 定义[35].1.4.1 图像增强的分数阶微分算子构造m ×n 让图像像素邻域中任一像素与对应系数进行乘法运算, 得到的结果再进行和运算, 得到像素点所在位置的回复, 当邻域的大小为, 要求的系数会很多. 这些系数被排列成一个矩阵, 称为滤波器、模板或者掩模[36].f (x ,y )在整数阶微分方程的增强算子中, 有一类是拉普拉斯算子, 对任一二元连续函数来讲, 其拉氏变换可表示为:f (x ,y )f (x ,y )f (x ,y )x ∈[x 1,x 2]y∈[y 1,y 2]n x =[x 2−x 1]n y =[y 2−y 1]由于在图像中, 两个相邻像素点之间灰度产生差异的距离最小, 因此图像在它的x 和y 方向上灰度值的变化只能以像素之间的最小距离为单位来进行数值度量和分析, 所以的最小等分间隔只能设为: h =1, 如果图像中x 和y 方向的持续区间分别为和, 则最大等分份数分别为和.将上式拉普拉斯变换写成离散的表示形式, 对x 方向和y 方向重新定义, 得到它的二阶微分表示:根据以上定义, 可以得到:拉氏算子还要对处理前后的图像完成进一步的叠加, 其方式如下:2021 年 第 30 卷 第 6 期计算机系统应用在雾天图像中应用算子增强图像, 边缘轮廓还有纹理部分的效果会很容易看到, 不过若是图像像素中某一范围灰度变化不明显, 细节可能受到损失. 因此,构建图像增强的分数阶微分算子, 将整数阶微分扩展到分数阶微分上并且应用于图像增强中[37].1.4.2 改进的分数阶微分算子增强图像相比传统的分数阶微分算法的不足, 提出新的改进算法, 在极端条件处理拍摄的交通图像时, 具有良好效果. 上文提到的指纹图像增强算法, 对传统形式加以改造, 在计算精度上有所提升, 进而构造了更加高精度的分数阶微分掩模. 通过对像素周围的纹理对比从而逐点选择微分阶, 明确的选择了具有二阶精度的分数阶微分形式来构造IRH 算子, 并对算子结构进行相应的改进, 之后利用图像的梯度信息和局部统计信息, 结合中心像素对相邻像素的影响, 建立自适应分数阶微分的自适应函数, 此法保留了指纹纹线和图像纹理细节, 对于降噪起到很好的作用.1.5 Retinex 图像增强算法S (x ,y )L (x ,y )R (x ,y )S (x ,y )L (x ,y )Retinex 是retina(视网膜)和cortexv(大脑皮层)组成的, Retinex 算法由美国物理学家提出[38]. Retinex 理论的基础是人类视觉系统的色彩恒常性, 人类视觉感知系统的色知觉存在“先入为主”的特性, 即光源条件发生改变, 视网膜接收到的彩色信息也会被人们的大脑驳回. Retinex 理论的依据就是是原始图像可以分解为照射图像和反射图像, 最重要的就是让摆脱的影响, 以便得到图像的反射属性.1.5.1 经典的Retinex 图像增强对数域进行操作可以把乘法运算变成简单的加法运算, 进而出现了多种Retinex 算法. 经典的有: 单尺度Retinex 算法(SSR)、多尺度Retinex 算法(MSR)和带色彩恢复的多尺度Retinex 算法(MSMCR)等[39].针对运算速度缓慢的问题, 在1986年, Jobson 等[40]将高斯低通滤波与Retinex 结合, 改进了Land 提出的中心环绕Retinex 算法(Center/Surround Retinex), 提出了单尺度Retinex(SSR)算法. 在SSR 算法中, Jobson 等创新的使用高斯函数与图像进行卷积的方式来近似实现了入射分量的表达. 它的数学表达式如式(20)表示:I i (x ,y )i ∈(R ,G ,B )G (x ,y ,c )∗L i (x ,y )其中, 表示原始图像的第i 个通道分量的像素值,颜色通道中的一个, 表示中心环绕函数, 是一种卷积操作表示, 入射分量的表达可以借用Jobson 等的成果, 则可以看做入射图像的第i 个通道分量. SSR 的实现过程如式(21)至式(23)所示:由于SSR 算法处理要对图像细节对比度和色彩的保留做到很好的发展, 而尺度c 又相对难做到极好的运用, MSR 算法的出现, 在很大程度上解决了这一问题, 起到了平衡图像色彩和细节的良好效果.1.5.2 改进的Retinex 图像增强Retinex 算法对于图像增强的效果需要经过精确且复杂的计算, 最后的结果精确度越高, 增强效果将会更好. 文献[20]中基于多尺度Retinex 的HSV 彩色快速图像增强算法. 在HSV 模型中用多尺度Retinex 进行图像增强, 由于颜色转换的非线性, 计算起来非常复杂. 使用亮度校正的MSR 算法基于HSV 颜色模型和修正的V 频道输出图像的RGB 分量的线性形式减少30–75%的平均处理时间, MSR 算法在Haar 小波变换低频区域应用亮度校正的处理速度有很明显优势, 平均加速度接近3倍. 文献[22,23]中介绍了MSRCR 算法. 由于传统均值移位算法有不少的不足, 改进后, 对要增强的图像可以在情况复杂下进行识别物体, 增强对比度的同时, 光晕现象的产生被消灭, 噪声得到抑制,保证图像自然度. 基于Retinex 提出一种自适应的图像增强方法, 其中包括如下4个步骤: (1)用引导滤波器估计其照度分量; (2)提取图像的反射分量; (3)对反射分量进行颜色恢复校正; (4)后处理. 由于雾霾和照度较低, 自然生成的图像质量比较差, 而此法不管是在定量还是定性上都突出了更好的优势. 此算法最终的结果图像具有清晰的对比度和生动自然的颜色[41].1.6 基于深度学习的图像增强算法在当今社会经济科技奋进之时, 深度学习的发展可谓是如日中天, 特别是在图像增强方面.1.6.1 卷积神经网络图像增强算法神经网络(neural networks)最基本的组成结构是计算机系统应用2021 年 第 30 卷 第 6 期神经元(neuron), 神经元概念源于生物神经网络[42]. 卷积神经网络(Convolutional Neural Network, CNN)在传统神经网络基础上, 引入了卷积(convolution)和池化(pooling), CNN 的建筑灵感来自于视觉感知[43]. CNN 是深度学习领域最重要的网络之一, CNN 在计算机视觉和自然语言处理等诸领域都有很大成就. 卷积神经网络的特性比较突出, 除了可以实现权值共享外, 可调的参数相对来说不多, 对二维图像这类的, 它的平移、倾斜、缩放包括其他形变都拥有着极高的不变性.CNN 相比于一般的神经网络, 具有很大优势[44]: (1)局部连接. 每个神经元只与少数神经元相连, 有效地减少了参数, 加快了收敛速度; (2)重量共享. 一组连接可做到同时分享相同的权值, 进一步降低了所需的参数;(3)降采样降维. 池化层利用图像部分相关的依据对图像进行降采样, 降低运算数据量, 留存有效的信息值.卷积神经网络大致包含4部分, 卷积层、池化层、全连接层以及反卷积层, 各自具有不同作用, 承担独自的工作. 深度越深, 网络性能越好; 随着深度增加, 网络性能逐渐饱和.1.6.2 基于深度学习图像增强的改进算法f o=F (g )F (g )Hu 等基于深度学习方法增强MMSI 亮温图像, 设计卷积神经网络重建风云四号卫星MMSI 的亮温图像和风云三号卫星微波成像仪亮温图像[25]. 在根据SRCNN进行实现映射函数, 式中, g 为监测的天线温度的图像, 可用于复原, 使其尽可能接近地面真实高分辨率亮温图像f . 映射函数F 的完成可以依据学习思想, 构建一种卷积神经网络, 为了让观测图像数据重新构建为理想的高分辨数据, 需要对卷积神经网络进行一系列特征变换, 此过程即达成卷积核的卷积操作.相比古老的插值方法而言, SRCNN 方法除了提高图像的峰值信噪比之外, 在提高图像细节较古老的方法也有很大的提高.2 图像增强算法的评价和对比2.1 各种算法增强效果的分析通过对论文文献研究比对, 以及对于其中的经典算法以及改进的算法, 对应用广泛的上述6大类图像增强算法进行较概括的研究分析.图2是几种不同算法得到的增强图像. 从增强图像的效果来看, HE 增强效果是对图像的动态范围进行拉大实现的, 增强效果随动态范围增加而变差. BBHE算法均衡后的图像在增强对比度的同时很好保持原图像的平均亮度. IBBHE 根据各子图像的直方图分别进行独立的均衡化处理, IBBHE 增强效果更好. WT 算法增强图像细节信息, 但是增加了噪声. 小波变换图像多聚集模糊增强方法, 对图像增强后, 图像较为清晰, 细节没有丢失, 效果较好. PDE 和TVPDE 算法放大了图像对比度场, 增强后图像都有较高对比度[45]. 自适应分数阶微分可以很好降噪. SSR 和MSR 算法去除了图像中照度分量影响, 还原景物本身的亮度信息, MSRCR 处理后的图像比原图像细节增加了, 亮度有所提高, 颜色有一定矫正, 对颜色的恢复存在失真现象. 基于深度学习的图像增强算法通过复杂的神经网络, 进行大量的训练, 得到的模型同时减少了训练时间, 取得了更好的精度.2.2 算法增强效果的对比对一幅图像的增强效果来讲, 需要对图像对比度和信息熵来进行评价和比较, 可以对图像有很好认识.图像对比度的计算公式:I i ,j 其中, 为中心像素点的灰度值, N 为图像局部块内像素点的个数. 为了计算一幅完整图像的对比度, 需要对图像中所有部分块对比度总体的平均值来表示.图像的信息熵公式如下:p (k )式中, 为灰度级k 的概率密度, M 为最大的灰度级.表1中为第一幅图通过不同算法得到的图像质量的客观结果评价, 评价指标为对比度和信息熵. 通过对文献中算法的研究以及本文中对增强算法的分析对比, 我们得到表2中对不同算法优缺点的总结.3 增强算法发展趋势及有意义的研究方向根据上文所介绍的不同图像增强算法及实验分析对比结果, 可预见未来的图像增强算法发展将有以下特点: 超分辨率、多维化、智能化和超高速.1)超分辨率, 对获得的低分辨率图像进行增强从而得到超高分辨率的图像, 重点是对采集分辨率以及显示分辨率做进一步的提升, 突破技术壁垒限制, 向时空感知超分辨率迈进.2021 年 第 30 卷 第 6 期计算机系统应用。
图像增强技术外文翻译参考文献综述
图像增强技术外文翻译参考文献综述(文档含中英文对照即英文原文和中文翻译)原文:Hybrid Genetic Algorithm Based Image EnhancementTechnologyAbstract—in image enhancement, Tubbs proposed a normalized incomplete Beta function to represent several kinds of commonly used non-linear transform functions to do the research on image enhancement. But how to define the coefficients of the Beta function is still a problem. We proposed a Hybrid Genetic Algorithm which combines the Differential Evolution to the Genetic Algorithm in the image enhancement process and utilize the quickly searching ability of the algorithm to carry out the adaptive mutation and searches. Finally we use the Simulation experiment to prove the effectiveness of the method.Keywords- Image enhancement; Hybrid Genetic Algorithm; adaptive enhancementI. INTRODUCTIONIn the image formation, transfer or conversion process, due to other objective factors such as system noise, inadequate or excessive exposure, relative motion and so the impact will get the image often a difference between the original image (referred to as degraded or degraded) Degraded image is usually blurred or after the extraction of information through the machine to reduce or even wrong, it must take some measures for its improvement.Image enhancement technology is proposed in this sense, and the purpose is to improve the image quality. Fuzzy Image Enhancement situation according to the image using a variety of special technical highlights some of the information in the image, reduce or eliminate the irrelevant information, to emphasize the image of the whole or the purpose of local features. Image enhancement method is still no unified theory, image enhancement techniques can be divided into three categories: point operations, and spatial frequency enhancement methods Enhancement Act. This paper presents an automatic adjustment according to the image characteristics of adaptive image enhancement method that called hybrid genetic algorithm. It combines the differential evolution algorithm of adaptive search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.II. IMAGE ENHANCEMENT TECHNOLOGYImage enhancement refers to some features of the image, such as contour, contrast, emphasis or highlight edges, etc., in order to facilitate detection or further analysis and processing. Enhancements will not increase the information in the image data, but will choose the appropriate features of the expansion of dynamic range, making these features more easily detected or identified, for the detection and treatment follow-up analysis and lay a good foundation.Image enhancement method consists of point operations, spatial filtering, and frequency domain filtering categories. Point operations, including contrast stretching, histogram modeling, and limiting noise and image subtraction techniques. Spatial filter including low-pass filtering, median filtering, high pass filter (image sharpening). Frequency filter including homomorphism filtering, multi-scale multi-resolution image enhancement applied [1].III. DIFFERENTIAL EVOLUTION ALGORITHMDifferential Evolution (DE) was first proposed by Price and Storn, and with other evolutionary algorithms are compared, DE algorithm has a strong spatial search capability, and easy to implement, easy to understand. DE algorithm is a novel search algorithm, it isfirst in the search space randomly generates the initial population and then calculate the difference between any two members of the vector, and the difference is added to the third member of the vector, by which Method to form a new individual. If you find that the fitness of new individual members better than the original, then replace the original with the formation of individual self.The operation of DE is the same as genetic algorithm, and it conclude mutation, crossover and selection, but the methods are different. We suppose that the group size is P, the vector dimension is D, and we can express the object vector as (1): xi=[xi1,xi2,…,xiD] (i =1,…,P) (1)And the mutation vector can be expressed as (2):()321r r r i X X F X V -⨯+= i=1,...,P (2) 1r X ,2r X ,3r X are three randomly selected individuals from group, and r1≠r2≠r3≠i.F is a range of [0, 2] between the actual type constant factor difference vector is used to control the influence, commonly referred to as scaling factor. Clearly the difference between the vector and the smaller the disturbance also smaller, which means that if groups close to the optimum value, the disturbance will be automatically reduced.DE algorithm selection operation is a "greedy " selection mode, if and only if the new vector ui the fitness of the individual than the target vector is better when the individual xi, ui will be retained to the next group. Otherwise, the target vector xi individuals remain in the original group, once again as the next generation of the parent vector.IV . HYBRID GA FOR IMAGE ENHANCEMENT IMAGEenhancement is the foundation to get the fast object detection, so it is necessary to find real-time and good performance algorithm. For the practical requirements of different systems, many algorithms need to determine the parameters and artificial thresholds. Can use a non-complete Beta function, it can completely cover the typical image enhancement transform type, but to determine the Beta function parameters are still many problems to be solved. This section presents a Beta function, since according to the applicable method for image enhancement, adaptive Hybrid genetic algorithm search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.The purpose of image enhancement is to improve image quality, which are more prominent features of the specified restore the degraded image details and so on. In the degraded image in a common feature is the contrast lower side usually presents bright, dim or gray concentrated. Low-contrast degraded image can be stretched to achieve a dynamic histogram enhancement, such as gray level change. We use Ixy to illustrate the gray level of point (x, y) which can be expressed by (3).Ixy=f(x, y) (3) where: “f” is a linear or nonlinear function. In general, gray image have four nonlineartranslations [6] [7] that can be shown as Figure 1. We use a normalized incomplete Beta function to automatically fit the 4 categories of image enhancement transformation curve. It defines in (4):()()()()10,01,1011<<-=---⎰βαβαβαdt t t B u f u (4)where:()()⎰---=10111,dt t t B βαβα (5)For different value of α and β, we can get response curve from (4) and (5).The hybrid GA can make use of the previous section adaptive differential evolution algorithm to search for the best function to determine a value of Beta, and then each pixel grayscale values into the Beta function, the corresponding transformation of Figure 1, resulting in ideal image enhancement. The detail description is follows:Assuming the original image pixel (x, y) of the pixel gray level by the formula (4), denoted by xy i ,()Ω∈y x ,, here Ω is the image domain. Enhanced image is denoted by Ixy. Firstly, the image gray value normalized into [0, 1] by (6).min max min i i i i g xy xy --=(6) where: max i and m in i express the maximum and minimum of image gray relatively.Define the nonlinear transformation function f(u) (0≤u ≤1) to transform source image to Gxy=f(xy g ), where the 0≤ Gxy ≤ 1.Finally, we use the hybrid genetic algorithm to determine the appropriate Beta function f (u) the optimal parameters α and β. Will enhance the image Gxy transformed antinormalized.V. EXPERIMENT AND ANALYSISIn the simulation, we used two different types of gray-scale images degraded; the program performed 50 times, population sizes of 30, evolved 600 times. The results show that the proposed method can very effectively enhance the different types of degraded image.Figure 2, the size of the original image a 320 × 320, it's the contrast to low, and some details of the more obscure, in particular, scarves and other details of the texture is not obvious, visual effects, poor, using the method proposed in this section, to overcome the above some of the issues and get satisfactory image results, as shown in Figure 5 (b) shows, the visual effects have been well improved. From the histogram view, the scope of the distribution of image intensity is more uniform, and the distribution of light and dark gray area is more reasonable. Hybrid genetic algorithm to automatically identify the nonlinear transformation of the function curve, and the values obtained before 9.837,5.7912, from the curve can be drawn, it is consistent with Figure 3, c-class, that stretch across the middle region compression transform the region, which were consistent with the histogram, the overall original image low contrast, compression at both ends of the middle regionstretching region is consistent with human visual sense, enhanced the effect of significantly improved.Figure 3, the size of the original image a 320 × 256, the overall intensity is low, the use of the method proposed in this section are the images b, we can see the ground, chairs and clothes and other details of the resolution and contrast than the original image has Improved significantly, the original image gray distribution concentrated in the lower region, and the enhanced image of the gray uniform, gray before and after transformation and nonlinear transformation of basic graph 3 (a) the same class, namely, the image Dim region stretching, and the values were 5.9409,9.5704, nonlinear transformation of images degraded type inference is correct, the enhanced visual effect and good robustness enhancement.Difficult to assess the quality of image enhancement, image is still no common evaluation criteria, common peak signal to noise ratio (PSNR) evaluation in terms of line, but the peak signal to noise ratio does not reflect the human visual system error. Therefore, we use marginal protection index and contrast increase index to evaluate the experimental results.Edgel Protection Index (EPI) is defined as follows:(7)Contrast Increase Index (CII) is defined as follows:min max min max,G G G G C C C E O D +-== (8)In figure 4, we compared with the Wavelet Transform based algorithm and get the evaluate number in TABLE I.Figure 4 (a, c) show the original image and the differential evolution algorithm for enhanced results can be seen from the enhanced contrast markedly improved, clearer image details, edge feature more prominent. b, c shows the wavelet-based hybrid genetic algorithm-based Comparison of Image Enhancement: wavelet-based enhancement method to enhance image detail out some of the image visual effect is an improvement over the original image, but the enhancement is not obvious; and Hybrid genetic algorithm based on adaptive transform image enhancement effect is very good, image details, texture, clarity is enhanced compared with the results based on wavelet transform has greatly improved the image of the post-analytical processing helpful. Experimental enhancement experiment using wavelet transform "sym4" wavelet, enhanced differential evolution algorithm experiment, the parameters and the values were 5.9409,9.5704. For a 256 × 256 size image transform based on adaptive hybrid genetic algorithm in Matlab 7.0 image enhancement software, the computing time is about 2 seconds, operation is very fast. From TABLE I, objective evaluation criteria can be seen, both the edge of the protection index, or to enhance the contrast index, based on adaptive hybrid genetic algorithm compared to traditional methods based on wavelet transform has a larger increase, which is from This section describes the objective advantages of the method. From above analysis, we can see that this method.From above analysis, we can see that this method can be useful and effective.VI. CONCLUSIONIn this paper, to maintain the integrity of the perspective image information, the use of Hybrid genetic algorithm for image enhancement, can be seen from the experimental results, based on the Hybrid genetic algorithm for image enhancement method has obvious effect. Compared with other evolutionary algorithms, hybrid genetic algorithm outstanding performance of the algorithm, it is simple, robust and rapid convergence is almost optimal solution can be found in each run, while the hybrid genetic algorithm is only a few parameters need to be set and the same set of parameters can be used in many different problems. Using the Hybrid genetic algorithm quick search capability for a given test image adaptive mutation, search, to finalize the transformation function from the best parameter values. And the exhaustive method compared to a significant reduction in the time to ask and solve the computing complexity. Therefore, the proposed image enhancement method has some practical value.REFERENCES[1] HE Bin et al., Visual C++ Digital Image Processing [M], Posts & Telecom Press,2001,4:473~477[2] Storn R, Price K. Differential Evolution—a Simple and Efficient Adaptive Scheme forGlobal Optimization over Continuous Space[R]. International Computer Science Institute, Berlaey, 1995.[3] Tubbs J D. A note on parametric image enhancement [J].Pattern Recognition.1997,30(6):617-621.[4] TANG Ming, MA Song De, XIAO Jing. Enhancing Far Infrared Image Sequences withModel Based Adaptive Filtering [J] . CHINESE JOURNAL OF COMPUTERS, 2000, 23(8):893-896.[5] ZHOU Ji Liu, LV Hang, Image Enhancement Based on A New Genetic Algorithm [J].Chinese Journal of Computers, 2001, 24(9):959-964.[6] LI Yun, LIU Xuecheng. On Algorithm of Image Constract Enhancement Based onWavelet Transformation [J]. Computer Applications and Software, 2008,8.[7] XIE Mei-hua, WANG Zheng-ming, The Partial Differential Equation Method for ImageResolution Enhancement [J]. Journal of Remote Sensing, 2005,9(6):673-679.基于混合遗传算法的图像增强技术摘要—在图像增强之中,塔布斯提出了归一化不完全β函数表示常用的几种使用的非线性变换函数对图像进行研究增强。
无人机拍摄图像处理技术综述
无人机拍摄图像处理技术综述无人机在摄影、测绘、灾害监测等领域中的应用逐渐增多,而图像处理技术在无人机拍摄图像中的应用也变得越来越重要。
本文将对无人机拍摄图像处理技术进行综述,包括图像获取、图像校正、图像增强、图像分析以及图像识别等方面的内容。
无人机通过搭载摄像头或相机,能够高空俯瞰、低空侦察,获取地面的图像信息。
但是,由于无人机飞行时的姿态变化、光照条件、测绘区域的地形等因素的影响,获取的图像可能会存在失真、模糊、光照不均匀等问题。
因此,图像校正是无人机拍摄图像处理的首要任务之一。
图像校正是指通过计算机图像处理技术对无人机拍摄的图像进行校正处理,使其更加符合实际地面情况。
常用的图像校正方法包括几何校正、辐射校正和光照校正。
几何校正主要通过图像配准、去畸变等手段,消除图像中的几何失真。
辐射校正主要是根据光谱信息对图像进行校正,提高其准确性和可靠性。
光照校正主要是调整图像中的亮度和对比度,使其更加清晰、真实。
在图像校正之后,图像的细节和信息可能仍然不够清晰,因此需要进行图像增强。
图像增强是指通过图像处理技术对图像进行改进,以增加图像的对比度、增强细节、减少噪声等。
常用的图像增强方法包括直方图均衡化、滤波和锐化等。
直方图均衡化通过调整图像的亮度分布,提高图像的对比度。
滤波主要通过滤波器对图像进行平滑处理,减少噪声。
锐化则是增强图像的轮廓和细节,使其更加清晰。
在图像增强之后,可以进行图像分析和图像识别。
图像分析是指通过计算机图像处理技术对图像进行分析和解释,提取出其中的特征。
无人机拍摄图像具有空间分辨率高、时间分辨率快的优势,因此特别适合用于测绘、农业、环境监测等领域的图像分析。
常用的图像分析方法包括目标检测、目标追踪、遥感图像分类等。
图像识别则是在图像分析的基础上,将图像中的目标或物体进行识别和分类。
常用的图像识别方法包括机器学习、深度学习和神经网络等。
总之,无人机拍摄图像处理技术在各个领域中都发挥着重要的作用。
low light image enhancement 综述
low light image enhancement 综述进入低光照条件下的图像增强技术。
低光图像增强是一项用于改善在光线较暗的环境下拍摄的图像质量的技术。
这个话题是由中括号内的主题"low light image enhancement"确定的。
在本文中,我们将详细介绍低光图像增强的基本概念、应用、算法和评估指标。
我们将一步一步地回答以下问题:1. 什么是低光图像增强?2. 为什么需要低光图像增强?3. 低光图像增强的基本原理是什么?4. 常见的低光图像增强算法有哪些?5. 如何评估低光图像增强算法的性能?6. 低光图像增强的应用领域有哪些?7. 未来低光图像增强技术的发展方向是什么?一、什么是低光图像增强?低光图像增强是指改善在光线较暗的条件下拍摄的图像质量的过程。
在低光条件下,图像会受到噪声、模糊和细节丧失等问题的影响,使得图像质量下降。
因此,低光图像增强的目标是通过算法和技术,提高图像的亮度、对比度和清晰度,以便更好地展示图像细节。
二、为什么需要低光图像增强?低光环境下拍摄的图像常常受到光线条件的限制。
例如,夜晚拍摄、室内拍摄或者阴天拍摄等情况都可能导致图像质量下降。
低光图像增强的目的是在有限的光线条件下,使图像变得更清晰、更明亮,使得观察者能够更好地看清图像细节。
低光图像增强不仅可以改善普通摄影的图像质量,还对安防监控、医学图像、军事侦察等领域的图像质量有重要意义。
三、低光图像增强的基本原理是什么?低光图像增强的基本原理是通过增加图像亮度、对比度和细节来改善图像质量。
常见的低光图像增强算法基于以下几种原理:1. 直方图均衡化:重新分配图像像素的灰度级,使得图像的直方图均匀分布,从而增加图像对比度。
2. 双线性插值:通过插值算法,将图像中过暗的像素与周围的较亮像素加权平均,以提高图像亮度。
3. 傅里叶变换:将图像从空间域转换到频域,利用频域滤波技术去除图像中的噪声和模糊。
图像处理中的图像增强算法综述与比较
图像处理中的图像增强算法综述与比较概述:图像增强是数字图像处理领域的一个重要研究方向,目的是通过改善图像的视觉效果或提取出对应的有效信息。
在现实应用中,图像增强算法被广泛应用于医学图像处理、安防监控、遥感图像分析、电视视频处理等多个领域。
本文将综述与比较目前常用的图像增强算法,包括直方图均衡化、滤波器、Retinex 与算法、小波变换以及深度学习方法。
直方图均衡化:直方图均衡化是一种基本且被广泛使用的图像增强方法。
它通过对图像像素的灰度值分布进行调整,使得图像的像素灰度值能够均匀分布在整个灰度级范围内,从而改善图像的对比度和亮度。
传统的直方图均衡化算法可以有效地增强图像的整体对比度,但往往过度增强细节,导致图像出现失真。
滤波器:滤波器分为线性滤波器和非线性滤波器两种类型。
线性滤波器通常通过卷积运算来修改图像的空间频率特征,常用的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。
非线性滤波器如边缘增强滤波器可以通过检测图像的边缘信息来增强图像的细节。
滤波器方法简单直观,但在处理图像噪声、复杂纹理、低对比度等问题时,效果有一定限制。
Retinex 算法:Retinex 算法是一种模拟人眼感知机制的图像增强方法,它主要专注于提高图像的亮度、对比度和颜色鲜艳度。
该算法基于假设,认为图像的亮度和颜色信息可以被分离开来,并通过增强亮度的同时保持颜色信息的稳定性。
Retinex 算法具有较好的图像局部细节增强效果,但对于整体对比度改善不够显著,且在对比度较低的图像上效果不佳。
小波变换:小波变换是一种基于时间-频率分析的图像增强方法,它将图像分解为多个不同频率的子带图像,然后对每个子带图像进行增强处理,并通过逆变换得到最终增强后的图像。
小波变换方法可以有效地增强图像的对比度和细节,能够提取出不同尺度的细节信息,并具有很好的图像重构能力。
但小波变换方法需要选择合适的小波基和阈值参数,且对图像处理时间较长。
深度学习方法:深度学习方法在图像增强领域取得了显著的成果。
(图像增强技术)第四章超分辨率技术综述
超分辨率重建模型
01
02
03
重建目标
从低分辨率图像中恢复出 高分辨率图像,提高图像 的清晰度和细节表现力。
重建模型
描述超分辨率重建过程的 数学模型,通常包括图像 先验知识、正则化项和优 化算法等。
重建模型的作用
为超分辨率重建提供算法 框架和实现方法,有助于 实现高效、稳定和准确的 超分辨率重建。
重建算法分类与比较
主观评价
通过观察超分辨率重建后的图像质量,如边缘清晰度、纹理细节丰富度、色彩鲜 艳度等方面进行评估。这种方法依赖于观察者的主观感受和经验,具有一定的主 观性和不确定性。
客观评价
采用峰值信噪比(PSNR)、结构相似性(SSIM)等客观指标对超分辨率重建后的 图像质量进行定量评估。这些指标可以衡量重建图像与原始高分辨率图像在像素级 别上的相似度,以及结构信息的保持程度,具有客观性和可重复性。
重建算法性能评估
峰值信噪比(PSNR)
一种客观评价指标,用于衡量重建图像与原始高分辨率图像之间的像素级差异。PSNR值越高,说明重建图像的质量 越好。
结构相似性(SSIM)
一种综合考虑亮度、对比度和结构信息的图像质量评价指标。SSIM值越接近1,说明重建图像与原始高分辨率图像在结构 上越相似。
主观评价
基于学习的方法
利用机器学习或深度学习技术,通过学习低分辨率到高分 辨率的映射关系,实现图像的超分辨率重建,如稀疏编码 、卷积神经网络等方法。
基于重建的方法
通过引入先验知识或正则化项,优化重建过程,如最大后 验概率法、迭代反投影法等,能够较好地保持边缘和纹理 信息。
最新研究进展
近年来,随着深度学习技术的快速发展,基于深度学习的 超分辨率方法取得了显著成果,如残差网络、生成对抗网 络等模型的应用。
基于深度学习的低光照图像增强研究综述
基于深度学习的低光照图像增强研究综述摘要:随着深度学习技术的快速发展,其在低光照图像增强领域取得了显著的成果。
本文对基于深度学习的低光照图像增强方法进行了全面的综述。
首先介绍了低光照图像增强的研究背景和意义,然后详细讨论了深度学习在该领域的应用,包括常用的网络架构、损失函数、训练策略等方面。
接着分析了现有方法的优点和不足,并对未来的研究方向进行了展望。
关键词:深度学习;低光照图像增强;网络架构;损失函数一、引言在实际的图像采集过程中,由于光照不足、曝光时间有限等原因,经常会得到低光照的图像。
这些图像的质量较差,存在亮度低、对比度低、噪声大等问题,严重影响了后续的图像分析和处理。
因此,低光照图像增强技术具有重要的研究意义和应用价值。
传统的低光照图像增强方法主要包括直方图均衡化、基于 Retinex 理论的方法等。
这些方法虽然在一定程度上能够提高图像的亮度和对比度,但也存在一些局限性,如容易产生过增强、颜色失真、噪声放大等问题。
近年来,深度学习技术的出现为低光照图像增强提供了新的思路和方法。
深度学习模型具有强大的特征学习能力,能够自动地从大量的数据中学习到低光照图像和正常光照图像之间的映射关系,从而实现更有效的图像增强。
二、基于深度学习的低光照图像增强方法(一)网络架构1.卷积神经网络(CNN)N 是最早应用于低光照图像增强的深度学习模型之一。
它通过多个卷积层和池化层的组合,能够自动地提取图像的特征,并对图像进行增强。
例如,一些基于 CNN 的方法采用了简单的网络结构,如单层或多层卷积神经网络,直接对低光照图像进行处理,取得了一定的增强效果。
2.为了提高网络的性能,研究人员还提出了一些改进的CNN 架构,如残差网络(ResNet)、密集连接网络(DenseNet)等。
这些网络架构能够有效地解决深度神经网络中的梯度消失问题,提高网络的训练效果和泛化能力。
2.生成对抗网络(GAN)1.GAN 由生成器和判别器组成,生成器用于生成增强后的图像,判别器用于判断生成的图像是否真实。
图像增强基本理论综述
摘 要 : 增强是数 字 图像 处理 的最基 本的方 法之 一, 图像 本文 总结 了图像 增强 的基本 理论 , 并对 新的 图像增 强的 方法作 了 简单 介绍 。
Ab ta t I g e h n e nt s f n a ntl n i otn tc n lg i i g p o e sn fed S f n a ntl h oy n sme e sr c : ma e n a c me i a u d me a a d mp ra t e h oo y n ma e rc s ig il . o u d me a te r a d o n w
…【 f f a
,
=
3 图像 增 强 的基 本 理 论 图 像 增 强 技 术 主 要 包 括 : 度 变换 , 方 图修 正 , 灰 直 图像 平 滑 , 图
像 锐 化 及彩 色增 强 等 。从 图像 增 强 的作 用域 出发 可 分 为 两 类 : 空 ① 除梯度算子 以外 ,还可采用 R br 、rwt和 Sb l o e sPe i t t o e 算子计算 域 处理 法 ; 频域 处 理 法 。 ② 梯度 , 未增 强边 缘 。 31空 间域 图像 增 强 技 术 空 间域 指 的是 平 面 本 身 ,空 间 域 图 . ②高通滤波法。 高通滤波法就是用高通滤波算子和图像卷积来 像 增 强 方法 是 对 图像 的像 素 进行 处理 。 可 以定 义 为 f 0 —1 0 1 f 一1 —1 —1 1 gxY)TfxY】 (, : 【 ,) ( () 1 增强边缘。常用的算子有:Il15— I H=— H:一 1 211 9— l 1 其 中 , xY 是输 入 图 像 ,(, ) 处理 后 的 图像 , f ,) ( gx Y是 T是 对 f 一 的 0— 0j 1 【1— 1 一 1— J 种 操作 。 空 间域 图 像增 强技 术 又 可 分 为点 处 理 和 邻域 处理 。 32频 域 图 像 增 强技 术 频 域 ( - 变换 域 ) 像 增 强 操 作 的 基 本原 图
图像增强文献综述(可编辑修改word版)
文献综述题目图像增强与处理技术学生姓名李洋专业班级网络工程 08-2 班学号 200813080223院(系)计算机与通信工程学院指导教师(职称)吴雪丽完成时间2012 年 5 月 20 日综述题目图像增强与处理技术专业班级:网络工程08-2 班姓名:李洋学号:200813080223图像增强与处理技术综述内容摘要数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。
图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。
本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过 Matlab 实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。
关键词:图像增强对比度增强平滑锐化梯度变换拉普拉斯变换AbstractDigital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm.The application of occasions, and its image enhancement method of performance evaluation.Keywords: Image Enhancement histogram enhancement contrast enhancement smoothing sharpening1 图像增强概述1.1图像增强背景及意义在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。
图像处理技术综述
图像处理技术综述图像处理技术是指利用计算机对图像进行处理的一种技术。
图像处理技术广泛应用于电视、摄影、图像识别、医学影像分析等领域。
本文将对图像处理技术进行综述,包括基本概念、常见方法及应用领域。
图像处理技术主要包括图像获取、图像增强、图像恢复、图像编码、图像分割和图像识别等几个方面。
图像获取是指从物理世界中获取图像的过程。
常见的图像获取设备包括摄像机和扫描仪。
摄像机通过感光器将光信号转换为电信号,并经过采样和量化等过程得到数字图像。
扫描仪则通过扫描物体获得图像。
图像获取的质量直接影响后续图像处理结果的准确性。
图像增强是指通过一系列处理方法增强图像的视觉效果。
常见的图像增强方法有直方图均衡化、滤波和锐化等。
直方图均衡化通过调整图像的像素灰度分布来增强图像的对比度。
滤波方法通过去除噪声和平滑图像来增强细节。
锐化方法通过增强图像的边缘和细节来使图像更加清晰。
图像恢复是指通过一系列处理方法恢复损坏或失真的图像。
常见的图像恢复方法有去模糊和去噪声等。
去模糊方法通过估计图像模糊模型来恢复被模糊的图像。
去噪声的方法通过滤波等处理来去除图像中的噪声,从而使图像更加清晰。
图像编码是指将图像数据通过编码压缩算法转换为更小的数据量。
常见的图像编码方法有无损编码和有损编码等。
无损编码方法通过保留所有图像信息来实现压缩,如Huffman和LZW编码。
有损编码方法通过牺牲一定的图像信息来实现更高的压缩率,如JPEG和MPEG编码。
图像分割是指将图像分割为多个子区域的过程。
图像分割可以将图像中的目标物体从背景中分离出来,为后续的图像分析和处理提供基础。
常见的图像分割方法有阈值分割、边缘检测和区域生长等。
图像识别是指根据图像的特征对图像进行分类和识别的过程。
图像识别常用于物体识别、人脸识别和文字识别等领域。
图像识别主要依靠特征提取和分类器来实现。
常见的特征提取方法有SIFT、SURF和HOG等。
常见的分类器有SVM、KNN和神经网络等。
图像处理技术综述
图像处理技术综述图像处理技术是指通过对图像进行采集、处理和分析,来提取有价值的信息或改变图像的质量或特征的一系列技术。
随着计算机视觉的发展和应用的广泛,图像处理技术变得日益重要。
本文将对图像处理技术进行综述。
图像处理技术主要包括图像采集、图像增强、图像复原、图像压缩、图像分析和图像识别等多个方面。
图像采集是图像处理的第一步,是指通过摄像机或其他设备获取图像数据。
图像采集技术包括光学成像、电子成像、红外成像、超声成像等。
光学成像是最常用和最常见的图像采集方式,它通过摄像机的镜头将光信号转换为电信号。
电子成像技术则是通过电子感光元件来转换光信号为电信号。
图像增强是指通过增加图像的对比度、清晰度或改善图像的质量来提高图像的可视化效果。
图像增强技术包括灰度变换、直方图均衡化、滤波等。
灰度变换是一种对图像的亮度或对比度进行变换的方法,常用的方法有线性变换和非线性变换。
直方图均衡化是将输入图像的直方图变换为均匀直方图的过程,以提高图像的对比度。
滤波则是通过对图像进行空间域或频域滤波来增强或去除噪声。
图像复原是指通过恢复图像的原始信息或去除图像中的噪声或模糊,来提高图像的质量和可视化效果。
图像复原技术包括退化模型、滤波器设计、最小二乘估计等。
退化模型是描述图像退化过程的数学模型,常用的模型有模糊模型、噪声模型等。
滤波器设计是通过设计合适的滤波器来恢复图像的原始信息。
最小二乘估计是一种优化方法,通过最小化残差平方和来估计图像的原始信息。
第四,图像压缩是将图像数据进行编码和压缩,以减少存储和传输的数据量。
图像压缩技术包括有损压缩和无损压缩。
有损压缩是指通过去除图像中的冗余信息或者降低图像的质量,以达到压缩数据量的目的。
无损压缩则是通过编码和解码来压缩和解压缩图像数据,以保留原始图像的质量。
图像分析和图像识别是通过对图像进行特征提取和分类来实现图像的自动分析和理解。
图像分析技术包括边缘检测、特征提取、目标检测等。
边缘检测是通过检测图像中的边缘来提取图像的轮廓和形状信息。
基于深度学习的低照度图像增强技术研究综述
第1期2021年1月No.1January,20210 引言生活中,光线暗,照度低、曝光不足会导致图片整体亮度偏低,噪声大,边缘细节信息丢失严重,影响图像视觉效果,因此对低照度图像进行处理是极有必要的。
早年间,主要采用直方图均衡化、伽马变换、Retinex 理论[1]等方法对低照度图像进行增强。
虽然这些方法在一些程度上可以提高图像的亮度,增强图像的可读性,但同样存在一些棘手的问题无法解决,如:增强后的图像色彩不均,颜色失真,图像有大量光晕出现。
后来,随着深度学习在不同领域的应用取得不错成果后,大量学者开始将目光投向于用深度学习的方法增强低照度图像。
目前,经过大量实验证明,基于深度学习的方法在低照度图像增强上具有可行性。
增强后图像无论从主观的视觉体验还是客观的图像质量评价方面的表现都十分出色。
1 传统的低照度图像增强算法目前,应用比较广泛的传统的低照度图像增强算法主要分为4类,分别是基于色调映射算法、基于背景融合算法、基于直方图均衡化算法和基于模型算法[2]。
1.1 基于色调映射算法色调映射技术产生于20世纪90年代,主要通过扩展低照度图像的动态范围,提高图像的亮度,改善图像的光照不均匀性。
色调映射方法可以大致分为两类:全局方法与局部方法。
全局方法对图像的动态范围变换中的每个像素应用相同的变换曲线,选择不同的曲线可以达到不同的视觉效果。
这种算法计算简单,实现容易。
但是由于对图像中所有像素的变换相同,得到的图像在色度、亮度和细节方面都有一定的损失。
局部色调映射算法的实质是图像中每个像素的映射曲线都是同邻域像素信息相关的,其优势在于通过对图像局部特征进行处理,弥补了全局算法不能保留局部特征的缺点。
1.2 基于背景融合算法背景融合类算法是将白天的亮度信息融合到夜间的图像中,利用白天背景的亮度来增强夜间图像的像素,从而达到增强人眼视觉的效果。
侯雷等[3]曾采用平均K 帧的方法获取白天背景,再利用Retinex 理论提取了白天背景和夜间视频帧的亮度,采用帧差法提取了夜间视频帧的移动物,将相同场景的白天背景亮度融合夜间帧的视频以达到图像增强的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:数字图像;图像增强;直方图增强;对比度增强;平滑;锐化。
Graphic Enhancement Technique Were Reviewed
Abstract
Digital image processing technology is now widely used in various industries, and image enhancement processing technology is one of the main components. The so-called image enhancement processing, restrain the interference factors in the original image, so as to improve the quality on the surface of the original painting. In other words, is the important content of strengthening and inhibition of not important content, and then get a clear image display effect. Sometimes because of the influence of the scene condition, leading to the visual effect of image taken out is not good, this would require the use of image enhancement technique to improve the visual effect of people to see. Some characteristics such as highlighted in the image of target, from digital image to extract target feature parameters, and so on, these are beneficial for the target in the image recognition, tracking and understanding. Concept in this paper, we study the principle of image enhancement and digital images of some basic definitions, and according to the classification of image enhancement methods, the histogram enhancement, contrast enhancement, smoothing and sharpening the enhanced several frequently used methods for the analysis of the system, the use of Matlab simulation experiment on the image effect of digital image enhancement techniques were discussed and compared, and summarize the advantages and disadvantages of image enhancement technology.
本科毕业论文(设计)
题 目图像增强技术综述
学 院机械与电子工程学院
专 业电子信息工程
学生王林林
学 号11028065
指导教师申海洋、素平职称助教、讲师
论文字数8735字
完成日期:2015年5月31日
学院本科毕业论文(设计)诚信承诺书
本人重声明:所呈交的本科毕业论文(设计),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。
的毕业论文(设计)在解密后遵守此规定。
本人签名:
日期:
导师签名:
日期:
图像增强技术综述
摘 要
数字图像处理技术现在已普遍应用于各种行业,而图像增强处理技术就是其主要组成部分之一。所谓的图像增强处理,抑制原始图像上的干扰因素,从而改善原画面的质量。换句话说,就是对重要容进行增强,以及对不重要容进行抑制,然后获得清晰的图像显示效果。有时由于场景条件的影响导致图像拍摄出来的视觉效果不好,这就需要利用图像增强技术来改善人们看到的视觉效果。例如突出图像中目标物的一些特点、从数字图像中提取目标的特征参数等,这些都有利于对于图像中目标物的识别、跟踪和理解。本文研究图像增强的原理概念和数字图像的一些基础定义,并根据图像增强的方法分类,对直方图增强技术、对比度增强技术、平滑和锐化这几种经常用到的增强方法的进行系统的分析,最后利用Matlab进行实验仿真对数字图像增强技术的图像效果进行探讨和对比,并总结图像增强技术的优点和缺点。
本人签名:
日期:
学院本科集、保留和使用毕业论文 (设计)的规定,即:本科生在校期间进行毕业论文(设计)工作的知识产权单位属学院。学校根据需要,有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业论文 (设计)被查阅和借阅;学校可以将毕业论文(设计)的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业,并且本人电子文档和纸质论文的容相一致。