药物理化性质和药效的关系
药物的化学结构和药效的关系药物化学
总结词
计算机辅助药物设计利用计算机模拟 技术来预测和优化药物与靶点的相互 作用。
详细描述
这种方法通过建立药物与靶点相互作 用的数学模型,对大量化合物进行虚 拟筛选,快速找出具有潜在活性的化 合物。这大大缩短了新药研发的时间 和成本,提高了成功率。
先导化合物的优化
总结词
先导化合物优化是在找到具有初步活性的先 导化合物后,通过对其化学结构进行修饰和 优化,提高其药效、降低副作用的过程。
总结词
药物分子的极性影响其在体内的吸收、分布和代谢,从而影响药效。
详细描述
药物分子的极性与其化学结构密切相关,极性大小直接影响分 子在体内的溶解度和渗透性。一般来说,极性适中的药物分子 具有较好的水溶性和脂溶性,有利于其在体内的吸收和分布。 此外,药物的代谢过程也与其化学结构有关,某些结构特征可 以促进或抑制代谢酶的活性,从而影响药物的代谢速度和药效 持续时间。例如,某些药物分子中含有羟基或羧基等极性基团, 可以增加其在体内的溶解度和渗透性,从而提高药物的生物利 用度。
总结词
药物分子的电子分布影响其与靶点的相互作 用,从而影响药效。
详细描述
药物分子中的电子分布决定了其与靶点分子的相互作用方式, 如静电、共价键等。药物分子中的电子分布与其化学结构密切 相关,通过改变药物分子的电子分布,可以调整其与靶点的相 互作用,从而优化药效。例如,某些药物分子中的特定基团可 以通过电子转移与靶点分子形成共价键,从而提高药物的稳定 性。
氢键
总结词
氢键是一种相对较弱的相互作用力,但对药物与靶点的结合和药效的发挥具有重要影响。
详细描述
氢键的形成是由于药物分子中的氢原子与靶点分子中的电负性原子(如氧或氮)之间的 相互作用。这种相互作用虽然较弱,但能够使药物与靶点结合更加稳定,从而影响药物 的吸收、分布和代谢等过程。例如,某些药物通过与蛋白质的特定氨基酸残基形成氢键,
第一章 药物的化学结构与药效的关系
第一章药物的化学结构与药效的关系(一)药物的化学结构与药效的关系33分钟1.药物理化性质药物的溶解度、分配系数、解离度和官能团对药效的影响2.药物的电子云密度分布与立体结构电子云密度和立体结构对药效的影响3.键合特性药物和生物大分子作用时的键合形式对药效的影响药物具有不同的结构,具有不同的药效,结构决定功能。
影响药物产生药效的主要因素有两个方面:1.药物到达作用部位的浓度药物服用〉进入血液循环〉组织分布2.药物与受体的作用药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。
药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式。
药物和受体的结合方式有化学方式和物理方式。
药物的作用有两种不同类型,一类是结构非特异性药物:药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少;另一类是结构特异性药物:药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效。
而大多数药物属于结构特异性药物。
结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。
受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。
(钥匙和孔)第一节药物理化性质和药效的关系(药物的溶解度、分配系数、解离度和官能团对药效的影响,)在对于结构非特异性药物,药物的理化性质直接影响药物的活性。
药物的理化性质主要有药物的溶解度、分配系数和解离度。
一、药物的溶解度和分配系数对药效的影响在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。
而药物在通过各种生物膜(包括细胞膜)时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。
药物的化学结构和药效的关系
离子通道( ion channel )
绝大多数通道蛋白形成的与离子转运有关 的有选择性开关的多次跨膜通道.
特点
一 具有离子选择性,离子通道对被转运离 子的大小与电荷都有高度选择性,而且转运 速率高,其速率是已知任何一种载体蛋白的 最快速率的1000倍以上.
2021/1/12
16
二 离子通道是门控 离子通道的活性由通
NO2 ≥ COOH > COCH3> CHO > OH >
NHCOCH3> NH2 > CONH2 > SO2NH2
2021/1/12
40
2、解离度对药效的影响
□ 有机药物多数为弱酸或弱碱,在体液中只 能部分离解
□ 药物的离子型和分子型在体液中同时存在
□ 通常药物以分子型通过生物膜,进入细胞 后,在膜内的水介质中解离成离子型,以 离子型起作用。
□ 与药物结构、理化性质密切相关
□ 其作用与体内特定的受体相互作用有关
□ 同一药理作用类型的药物与某一特定的受体 相结合,在结构上往往具有某种相似性
□ 同类药物中化学结构相同的部分称为该类药
2021/1物/12 的基本结构(药效结构)
3
药物和受体的相互作用
2021/1/12
4
药物效应动力学
1 药物的基本作用
1 药物的基本作用
22
药物的作用靶点
3 药物的作用机制
44
药物与受体
■以受体为靶点 ■以酶为靶点 ■以离子通道为靶点 ■以核酸为靶点
2021/1/12
7
药物效应动力学-受体
2021/1/12
8
常见与受体有关的药物
受体
药物
药物化学结构和药效的关系
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响
药物在体内分布与药效关系的研究
药物在体内分布与药效关系的研究药物在体内分布的方式与药效之间存在着密切的关系。
了解药物分布的特点及其对药效的影响,对于药物疗效的评估和合理用药具有重要意义。
本文将探讨药物在体内分布的几个关键因素,并讨论其与药效之间的关联。
一、药物在体内分布的影响因素1. 药物的理化性质:药物的溶解性、极性、分子大小等理化性质将影响其在体内的分布。
例如,具有较好溶解性的药物更容易在水相环境中分布,而脂溶性较高的药物则更易通过血脑屏障进入中枢神经系统。
2. 组织亲和性:药物对不同组织的亲和性不同,导致药物在体内的分布差异。
一些药物会在特定组织中积累,例如肌肉组织中的肌肉注射药物,而其他药物则在脂肪组织中积累。
3. 药物与血浆蛋白的结合:药物在血浆中的结合程度与其在组织中的分布密切相关。
药物与血浆蛋白结合后,其活性部分较少,不能自由扩散到组织内,从而影响其药效。
4. 生理障碍及病理状态:生理障碍或病理状态对药物分布起到重要影响。
例如,肾功能不全的患者会导致尿液中药物排泄减少,药物在体内的浓度增加,从而可能出现药物过量的副作用。
二、药物分布与药效的关系1. 靶部位与药物分布:药物的药效与其作用部位的分布相关。
例如,某些药物在中枢神经系统中的作用更为明显,而对于其他组织和器官则作用较小。
因此,了解药物在体内的分布有助于预测其药效。
2. 药物浓度与药效:药物在体内的浓度与其药效也有密切关系。
通常情况下,药物浓度越高,药效越强。
然而,过高的药物浓度可能导致药物毒性反应的发生,因此,合理控制药物的剂量和浓度非常重要。
3. 组织分布与治疗效果:药物在体内的组织分布也会直接影响其治疗效果。
例如,抗生素药物需要在感染部位积累足够的浓度才能发挥疗效,而对于某些药物,如抗肿瘤药物,则要求其在肿瘤组织中积累。
三、优化药物分布以提高药效1. 药物给药途径的选择:根据药物的理化性质和作用部位,选择合适的给药途径,以促进药物在体内的分布。
如药物需要迅速到达中枢神经系统,可以选择经口或静脉给药途径。
药物的化学结构与药效
第二章药物的化学结构与药效的关系本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。
第一节药物化学结构的改造药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。
由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展一、生物电子等排原理在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。
所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。
利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。
生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。
(一)经典生物电子等排体1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。
2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。
3.三价原子和基团如—CH=、—N=等都有5个外层电子。
4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。
这些电子等排体常以等价交换形式相互替换。
如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。
(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2OCH 2N(二)非经典生物电子等排体常见可相互替代的非经典生物电子等排体,如—CH =、—S —、—O —、—NH —、—CH 2—在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。
1药物的化学结构与药效关系
• 我们称分子势能最低的构象为优势构象(preferential conformation)
• 一般由X-射线结晶学测定的构象为优势构象。
官能团的作用
• 酸性和碱性基团 • 烷基 • 卤素 • 羟基与巯基 • 磺酸基和羧基 • 氨基和酰胺 • 醚键
一、酸性和碱性基团
• 极性基团,对药物的物理化学性质影响 较大,因而对生物活性有决定性的影响
二、烃基
• 药物分子中引入烃基,可改变溶解度、 离解度、分配系数,还可增加位阻,从 而增加稳定性。
• 醚类化合物由于醚中的氧原子有孤对电 子,能吸引质子,具有亲水性,碳原子 具有亲脂性,使醚类化合物在脂-水交界 处定向排布,易于通过生物膜。
第四节 立体结构对药效的影响
一、原子间距离对药效的影响
• 1.化学键的作用 结构特异性药物与特定的靶 点,通常是生物大分子(例如受体或酶)发生 相互作用形成药物-受体复合物,才能产生药 理作用,各种各样的化学键能使这种药物-受 体复合物稳定。这些化学键可分为可逆和不可 逆两类。药物与受体以共价键结合是不可逆的,
• 药物中光学异构体生理活性的差异反映了药物与受体结 合时的较高的立体要求。一般认为,这类药物需要通过 三点与受体结合,如图中D-(-)- 肾上腺素通过下列 三个基团与受体在三点结合:①氨基;②苯环及其两个 酚羟基;③侧链上的醇羟基。而L-异构体只能有两点结
合。
• 有一些药物,左旋体和右旋体的生物活性类型都不一样
• 药物分子的基本结构不同,但可能会以相同的 作用机制引起相同的药理或毒理效应,这是由 于它们具有共同的药效构象,即构象等效性 (conformational equivalence),从而以相同的 作用方式与受体部位相互作用。
药物的化学结构与药效的关系共28页文档
三、电子云密度分布对药效的影响
受体和酶都是以蛋白质为主要成分的生物大分子, 蛋白质分子从组成上来讲是由各种氨基酸经肽键结合 而成,在整个蛋白质的链上存在各种极性基团造成电 子云密度分布的不均匀,有些区域的电子云密度高, 形成负电荷或部分负电荷;有些区域的电子云密度低, 即带有正电荷或部分正电荷。如果药物分子中的电子 云密度分布正好和受体或酶的特定位点相适应时,由 于电荷产生的静电引力,有利于药物分子与受体或酶 结合,形成比较稳定的药物-受体或药物-酶的复合物。
和水相中平衡浓度CW之比值。 2.脂水分配系数表示方法 P值 LgP (因P数值较大) 3.数学表达式为:
4.意义
P C0 CW
4.意义: P值表示药物的脂溶性的大小。药物分子结构的
改变对脂水分配系数发生显著的影响;不同类 型的药物对脂水分配系数的要求不同,只有适 合的脂水分配系数,才能充分发挥药物的疗效。
导入新课:
药物的化学结构与药效这之间的关系,简称药 效关系。药物在体内的作用机制以及药物的化 学结构与药效之间的关系,已成为现代新药研 究和设计的基础。
影响药物产生药效的主要因素
影响药物产生药效的主要因素有两个方面: 1、药物到达作用部位的浓度 药物只有到达作用部位并具有一定的浓度,才能产
特异性结构药物:大多数药物属于特异性 结构药物,其生物活性与药物的理化性质 相关外,主要受药物的化学结构与受体相 互作用关系的影响。这类药物的化学结构 稍微改变,就可影响其药效。
第一节药物的理化性质与药效的关系
一、药物的溶解度和分配系数对药效的影响:
17药物的化学结构与药效的关系
(2) 由带电荷的大分子层所组成的细胞膜, 能排斥或吸附离子,阻碍离子的通过 -----(如组成蛋白质的部分氨基酸可解离 为羟基负离子和铵基正离子)
计算公式
弱酸或弱碱类药物在体液中解离后,离 子与未解离分子的比率由酸(或碱的共轭 酸)的解离常数(pKa值)和体液介质的pH 值决定。
弱酸性药物在胃中的吸收
药物的化学结构与生物活性(包括 药理与毒理作用)之间的关系,简称构 效关系(structure-activity relationships SAR)。 研究药物的构效关系是药物化学的中 心内容之一。
根据药物化学结构对生物活性的影 响程度或药物在体内分子水平上的作用 方式,宏观上将药物分子分为两种类型: 结构非特异性药物 (structurally nonspecific drug) 结构特异性药物 (structurally specific drug)
分布 组织 血浆蛋白 排泄
(一)药物在作用部位的浓度
药物必须以一定的浓度到达作用部位, 才能产生应有的药效 ---该因素与药物的转运(吸收、分布、 排泄)密切相关,如
口服 抗疟药 人体 胃肠道粘膜
血流
红细胞膜
疟原虫体内
疟原虫细胞膜
(二)药物作用的体内靶点
• 药物的作用靶点:是指与药物在体内发生 相互作用的生物大分子,如酶、受体、离 子通道、核酸等。
• • 巴比妥酸的pKa值约为4.12, 在生理pH7.4时,有99%以上呈离子型, 不能通过血脑屏障进入中枢神经系统而起 作用。
O H R O R
5
OH NH N N OH OHH+ R
-O
ON N O-
N H
O
HO
苯巴比妥的生物活性
第一章药物的化学结构与药效关系
五、醚和硫醚
醚中氧的孤电子对能吸引质子,有亲水性,烃基则有亲脂性, 醚中氧的孤电子对能吸引质子,有亲水性,烃基则有亲脂性, 故醚类化合物能定向排列于脂水两相之间,易于通过生物膜。 故醚类化合物能定向排列于脂水两相之间,易于通过生物膜。 氧和亚甲基为电子等排体,互相替换对生物活性影响不大。 氧和亚甲基为电子等排体,互相替换对生物活性影响不大。但 氧的负电性如影响了分子近旁的正电性, 氧的负电性如影响了分子近旁的正电性,则会对活性有一定影 响。 硫醚易被氧化成亚砜和砜。砜为对称结构,使分子极性减小, 硫醚易被氧化成亚砜和砜。砜为对称结构,使分子极性减小, 脂溶性增大。亚砜则为较稳定的棱锥形结构, 脂溶性增大。亚砜则为较稳定的棱锥形结构,形成新的手性中 可拆分对映异构体,硫氧键又使极性增大, 心,可拆分对映异构体,硫氧键又使极性增大,一般使水溶性 增大。 增大。
4、卤素及相关官能团的应用 、
四、羟基和巯基
引入羟基可增强与受体的结合力;或可形成氢键, 引入羟基可增强与受体的结合力;或可形成氢键,使水溶性 增加,生物活性也随之改变。 上羟基, 增加,生物活性也随之改变。取代在脂肪链 上羟基,常使活 性和毒性下降;取代在芳环上时, 性和毒性下降;取代在芳环上时,有利于和受体的碱性基团 结合,则使活性和毒性均增高。 当羟基酰化成酯或烃化成醚, 结合,则使活性和毒性均增高。 当羟基酰化成酯或烃化成醚, 活性多降低。 其α活性多降低。 巯基形成氢键的能力较羟基低,引入巯基 活性多降低 巯基形成氢键的能力较羟基低, 对水溶性的影响小,脂溶性较相应的醇高, 时,对水溶性的影响小,脂溶性较相应的醇高,比醇易于吸 巯基易被氧化形成二硫键,二硫键也易被还原成巯基。 收。 巯基易被氧化形成二硫键,二硫键也易被还原成巯基。 巯基化合物又易与双键,主要与, 巯基化合物又易与双键,主要与,α,β-不饱和酮 加成。也易 不饱和酮 加成。 与金属离子生成硫醇盐,并可与一些酶的吡啶环生成复合物, 与金属离子生成硫醇盐,并可与一些酶的吡啶环生成复合物, 因此对代谢的影响显著。 因此对代谢的影响显著。
药物的物理化学作用对药物及制剂性质的影响
药物的物理化学作用对药物及制剂性质的影响
药物的物理化学作用对药物及制剂性质产生的影响包括以下几个方面:
1. 溶解度:药物在水或其他溶剂中的溶解度受物理化学性质的影响,包括分子大小、极性、水合性等。
溶解度的大小会影响药物的口服吸收和药效。
2. 离子化状态:药物可以存在于不同状态下,如离子状态或非离子状态。
药物的离子状态会影响药物在不同体液和组织间的分布和渗透能力。
3. 化学稳定性:药物可能会在制剂或储存过程中发生化学反应,引起降解或失去活性。
药物的物理化学性质可以影响药物的稳定性,因此药物制剂的选型和保存条件需要谨慎选择。
4. 结晶形态:药物以不同的结晶形态存在,这可能在药物制剂中影响药物的稳定性、药效和生物利用度。
5. 药物相互作用:药物的物理化学性质还会影响药物与其他物质间的相互作用,如药物与受体或配体的结合力。
总之,药物的物理化学作用对药物及制剂性质的影响非常重要,需要经过严格的分析、测试和研究,才能选定最佳的药物配方和制剂方法。
药物作用生物学基础
• 神经递质是由神经末梢释放的一些化学物质,用 于神经系统向细胞传递信息,通常是一些小分子 化合物,如乙酰胆碱、去甲肾上腺素、多巴胺和 5-羟基色胺等。
O Me O
NMe3
乙酰胆碱
OH
HO
NH2 HO
HO 去甲肾上腺素
HO 多巴胺
NH2 HO
NH2
N H 5-羟基色胺
(2)激 素
• 激素由特别的腺体或细胞分泌,随血液流 遍全身并激活所有能识别它们的受体。 如:皮质激素、性激素、生长激素、胰岛 素等。
载体蛋白
细胞膜
细胞内
载体蛋白抑制剂
• 某些药物能够抑制载体蛋白转运它的自然宿客。 如三环类抗抑郁药物,可卡因等。
神经递质
载体蛋白
细胞膜 细胞内
受体
信号
阻断剂
信号
药物“偷运”
• 药物与一个自然底物结合,然后被载 体蛋白转运进入细胞内。
O HN
Cl N
Cl
ON H
尿嘧啶氮芥
HO
COOH
HO
H2N Hnz
COOH
2.氢键
氢键仅短距离有效,在生理情况下,药物分子 中含有孤对电子的O,N和卤素特别是F能与受体, 生物大分子间形成氢键,药物与受体的相互作 用中氢键非常重要,另外氢键对增加药物的溶 解度起重要的作用。
OHO O
R
OHN
N
O
R
3. 静电作用
静电键包括离子-离子相互作用,偶极-偶极相互作用 和离子-偶极相互作用。当同时存在氢键等短距离键时, 静电键可得到加强。
离子流
通道
细胞膜
• 此外还有少数药物能够与类脂载体作 用,如万古霉素能够与运送糖肽的类 脂载体作用,从而抑制细菌细胞壁的 构建。
药物化学结构与药效的关系
化学结构相似的药物,能与同一受体结合,引起相似 作用(激动药,拟似药)或相反的作用(拮抗药,阻断药).
例:
乙酰胆碱
(神经递质)
氨甲酰胆碱
(拟胆碱药)
D=药物;R=受体;DR=药物-受体复合物 E=药理效应;
药物-受体复合物的键合方式包括:共价键、 氢键、离子键、离子-偶极和偶极-偶极作用、 范德华力等。
5. 受体激动药与受体拮抗药
根据药物与受体结合后所产生效应的不同,将药 物分为受体激动药与受体拮抗药
激动药(agonist):对受体既有亲和力又有内在 活性的药物,它们与受体结合并激活受体产生效 应。
2.2 受体学说
1. 受体的概念
受体(Receptor,R)是指对生物活性物质具有 识别能力,并选择性与之结合,传递信息,引起 特定效应的生物大分子。
受体存在于细胞内,具有一定坚固性的三维结 构. 各种药物的受体是不相同的, 但是它们可能 都具有:
(1) 一个高度折叠的近似球状的肽链; (2) 有一个空穴,此空穴至少部分被多肽区域 所 包围.
2.1 药物的作用机制:
药物的作用机制(mechanism of drug action)是研究药物如何与机体不 同靶细胞结合,又如何发挥作用的。
一.药物的作用机制简介:
1、理化作用 2、参与或干扰细胞代谢 3、影响酶的活性 4、影响生理物质的合成、释放与转运 5、影响离子通道 6、影响核酸代谢 7、影响免疫机制 8、作用于受体
2.7 药物的立体结构对药效的影响
1.官能团间的距离对药效的影响
第二章 药物的构效关系 药物化学 课件
第二章 药物的构效关系
第四节 药物其它特性对药效的影响
二、电子云密度对药效的影响
各种元素的原子核对其核外电子的吸引力各不相同而显示 电负性的差异。由电负性不同的原子组成的化合物分子就存在 电子密度分布不均匀状态。药物分子的电子密度分布如果和酶 蛋白分子的电荷分布恰好相反,则有利于相互作用而结合,形 成复合物。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
药物作用过程的三个阶段
过程分类 发生过程 研究目的
药剂相
药物的释放
优化处方和 给药途径
药物动力学
药效相
吸收、分布和消除 药物-受体在靶 (代谢及排泄) 组织的相互作用
优化生物利用度
优化所需的 生物效应
化学工业出版社
化学工业出版社
P=CO/CW
化学工业出版社
第二章 药物的构效关系
第二节 药物的理化性质和药效的关系
二、药物的解离度对药效的影响 多数药物为弱酸、弱碱及其盐类,体液中部分解离,
以离子型和非离子型(分子型)同时存在。药物常以分子型 通过生物膜,在膜内的水介质中解离成离子型,再起作用。 因此药物需有适宜的解离度。
胃肠道各部分的pH不同,不同pKa药物在胃肠道各部分 的吸收情况也就有差异。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
三、药物的特异结构与非特异结构 (一)结构非特异性药物
药物活性主要取决于药物分子的各种理化性质,与化学结 构的关系不大。临床应用的非特异性药物较少,主要有全身吸 入麻醉药,酚类和长链季铵盐的杀菌药以及巴比妥的催眠药等。 (二)结构特异性药物
药物与药效
药物的化学结构与药效的关系提要药物的化学结构与药效的关系是药物化学研究的重要任务之一。
药物在体内能否产生药效,主要取决于药物作用的动力学时相和药效学时相。
药物动力相的构效关系,简要介绍药物的转运、影响药物到达作用部位的因素等。
药物能否到达作用部位,主要受三个因素的影响,即药物的吸收、分布和与蛋白的结合等。
而药物的分配系数、溶解度及解离度与上述三个因素密切相关。
药效相的构效关系,详细介绍药物-受体的相互作用和立体因素对药效的影响。
药物-受体如何相互作用,如何产生药效?主要取决于药物的结构、电子云密度分布、药物-受体的亲和力(即氢键、离子键、共价键、疏水作用及范德华力等)和药物分子的立体因素。
药物为什么会产生药效?药物的化学结构与药效存在什么样的关系?是人们一直在探索的重要问题。
研究这些从实践中提出的问题,有助于认识药物与机体的作用规律。
生物化学、生物物理学、理论有机化学和药理学等学科的发展,尤其是分子生物学、分子药理学、量子生物化学取得的一系列成果,使得人们对机体的认识从宏观进入到微观的分子水平。
药物对机体的作用,也可能在分子水平上进行探讨。
现在可以比较深入地阐明药物在体内的作用机制以及显示药物的化学结构与药物作用的构效关系。
根据药物的化学结构对生物活性的影响程度,或根据药物在分子水平上的作用方式,可把药物分成两种类型,即非特异性结构药物(Structurally Nonspecific Drug)和特异性结构药物(Structurally Specific Drug)。
前者的药理作用与化学结构类型的关系较少,主要受药物理化性质的影响。
如较典型的全身吸入麻醉药,这类药物的化学结构可有很大的差异,但其麻醉强度与分配系数(Partition Coefficient)成正比。
后者的作用依赖于药物分子特异的化学结构及其按某种特异的空间相互排列。
其活性与化学结构的关系密切,其作用与体内特定的受体的相互作用有关。
药物化学药物的化学结构与药效的关系
CH3
利多卡因
达克罗宁
普鲁卡因
H N
H
δ
CO
Oδ
CH2CH2
C 2H 5 H
N
C 2H5
V
V
V
D
E
O
C 2H5
N O
CO O
CH2CH2
N C 2H5
无局麻作用
O
O
N .HCl
H2N
普鲁卡因的局麻作用似与分子极化有平行关系:
◆供e基甲氧基、乙氧基、二甲氨基取代-NH2, ED50减小 ◆吸e基硝基取代-NH2,ED50增大 ◆在苯环和碳基间嵌入乙撑基, 共轭效应被阻, ED50增大 ◆在苯环和碳基间嵌入乙烯基, 共轭效应不变, ED50不变
N-甲 酰 溶 肉 瘤 素
H
ClCH2CH2
N
Np O
C lC H 2C H 2
N
HO
尿嘧啶氮芥
ClCH2CH2
O
环磷酰胺
二、结构改造
结构变化带来新的物理性质,也改 变了分子化学反应性,可导致药物在细 胞与组织中分布的改变,进而改变对酶 及受体作用部位的结合,改变对这些部 位的反应速率及排泄方式。
四价
=C= =N+= =P+= =As+= =Sb+=
环 内 等 价 -CH =CH - -S- -O - -NH -
a. 一 价 原 子 或 基 团 的 取 代
H2N
S O2NHCONHC4H9 丁 磺 酰 脲
H3C
S O2NHCONHC4H9 甲 磺 丁 脲
氯磺丁脲
Cl
S O2NHCONHC4H9
延长半衰期
减低毒性
b. 二 价 原 子 或 基 团 的 交 换
第04章-药物化学(药学导论)
脂溶性药物易通过表皮角质层和脂蛋白,为被动扩散, 无选择性;亲水性药物易通过毛囊和汗腺(面积太小)。
二、药物分布
给药后药物随血流可逆转运于身体各组织,称为分布。 1. 血液循环和药物分布 血液循环起着运载、储存、代谢和缓冲等作用,是关键性的中
Verloop多维立体参数。
第三节 药物的转运代谢与药效关系
药物的体内过程一般分为吸收、分布、代谢和排 泄。吸收、分布和排泄统称为转运。 药效产生依赖于 吸收和分布;代谢和排泄则控制了药物的作用过程和 持效时间。药物的转运代谢与药物的化学结构和理化 性质密切相关
一、药物吸收
药物吸收除受许多生理因素影响外,其化学结构、 酸碱性、解离度、脂水分配系数、晶型及颗粒大小等均 有显著影响。
系数;2)解离度。
1. 溶解度、脂水分配系数对药效的影响
药物
↙↘
一定的水溶性 一定的脂溶性
(亲水性) (亲脂性)
↓
↓
扩散转运
通过脂质生物膜
↓
↓
血液或体液→ 进入细胞内→(至作用部位)
2. 解离度对药物的影响
有机药物多为弱酸或弱碱,在体液中部分解离, 以离子型和分子型混存于体液中且存在动态平衡。
药物以脂溶性的分子通过生物膜,在膜内解离 成离子,以离子型起作用。 ① 穿过生物膜需要脂溶性的分子型。 ② 与受体结合、相互作用需要离子型。 ③ 吸收、分布和保持有效浓度,需混合型。
二、药物理化性质对药效的影响
理化性质对结构非特异性药物的活性影响起主导 地位,对结构特异性药物也因影响其到达作用部位的 能力而影响其活性。理化性质主要影响药物的转运和 代谢。是决定药物作用部位浓度药效主要因素之一。 理化性质:溶解度、分配系数、解离度、分子极性、 表面化学等。其中主要的有:1)溶解度、脂/水分配
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(药物的溶解度、分配系数、解离度和官能团对药效的影响,)
在对于结构非特异性药物,药物的理化性质直接影响药物的活性。
药物的理化性质主要有药物的溶解度、分配系数和解离度。
一、药物的溶解度和分配系数对药效的影响
在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。
而药物在通过各种生物膜(包括细胞膜)时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。
由此可以看出药物亲水性或亲脂性的过高或过低都对药效产生不利的影响。
在药学研究中,评价药物亲水性或亲脂性大小的标准是药物的脂水分配系数,用P来表示,其定义为:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。
由于生物非水相中药物的浓度难以测定,通常使用在正辛醇中药物的浓度来代替。
C org 表示药物在生物非水相或正辛醇中的浓度;C W表示药物在水中的浓度。
P值越大,则药物的脂溶性越高,为了客观反映脂水分配系数的影响,常用其对数lgP来表示。
药物分子结构的改变对药物脂水分配系数的影响比较大。
影响药物的水溶性因素比较多,当分子中官能团形成氢键的能力和官能团的离子化程度较大时,药物的水溶性会增大。
相反若药物结构中含有较大的脂环等非极性结构时,则导致药物的脂溶性增大。
各类药物因其作用不同,对脂溶性有不同的要求。
如:作用于中枢神经系统的药物,需通过血脑屏障,应具有较大的脂溶性。
吸人性的全身麻醉药属于结构非特异性药物,其麻醉活性只与药物的脂水分配系数有关,最适lgP在2左右。
二、药物的解离度对药效的影响
有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型,脂不溶)或非解离的形式(分子型,脂溶)同时存在于体液中。
通常药物以非解离的形式被吸收,通过生物膜,进入细胞后,在膜内的水介质中解离成解离形式而起作用。
酸性药物解离:HA+H20A- + H30+
碱性药物解离:B+H20BH+ + OH-
药物的解离常数(pK a,药物解离50%时溶液的pH值)
由于体内不同部位,pH的情况不同,会影响药物的解离程度,使解离形式和未解离形式药物的比例发生变化,这种比例的变化与药物的解离常数和体液介质的pH有关,可通过下式进行计算:
酸性药物:
对酸性药物,环境pH越小(酸性越强),则未解离药物浓度就越大
碱性药物:
对碱性药物,环境pH越大(碱性越强),则未解离药物浓度就越大
根据药物的解离常数(pK a)可以决定药物在胃和肠道中的吸收情况,同时还可以计算
出药物在胃液和肠液中离子型和分子型的比率。
弱酸性药物如水杨酸和巴比妥类药物在酸性的胃液中几乎不解离,呈分子型,易在胃中吸收。
弱碱性药物如奎宁、麻黄碱、氨苯砜、地西泮在胃中几乎全部呈解离形式,很难吸收;而在肠道中,由于pH值比较高,容易被吸收。
碱性极弱的咖啡因和茶碱在酸性介质中解离也很少,在胃中易被吸收。
强碱性药物如胍乙啶在整个胃肠道中多是离子化的,以及完全离子化的季铵盐类和磺酸类药物,消化道吸收很差。
三、药物结构的官能团对药物理化性质及药效的影响
药物结构中不同的官能团的改变可使整个分子的理化性质、电荷密度等发生变化,进而改变或影响药物与受体的结合,影响药物在体内的吸收和转运,最终影响药物的药效,有时会产生毒副作用。
1.烃基
药物分子中引入烃基,可改变溶解度、离解度、分配系数,还可增加位阻,从而增加稳定性。
2.卤素
卤索是很强的吸电子基,可影响分子间的电荷分布和脂溶性及药物作用时间。
3.羟基和巯基
引入羟基可增强与受体的结合力,增加水溶性,改变生物活性。
4.醚和硫醚
醚类化合物由于醚中的氧原子有孤对电子,能吸引质子,具有亲水性,碳原子具有亲脂性,使醚类化合物在脂-水交界处定向排布,易于通过生物膜。
5.磺酸、羧酸、酯
磺酸基的引入,使化合物的水溶性和解离度增加,不易通过生物膜,导致生物活性减弱,毒性降低。
羧酸成盐可增加水溶性。
羧酸成酯可增大脂溶性,易被吸收。
6.酰胺
在构成受体或酶的蛋白质和多肽结构中含有大量的酰胺键,因此酰胺类药物易与生物大分子形成氢键,增强与受体的结合能力。
7.胺类。