燃料电池双极板

合集下载

燃料电池双极板的作用

燃料电池双极板的作用

燃料电池双极板的作用
嘿,你问燃料电池双极板的作用呀?这玩意儿可重要啦。

首先呢,双极板就像是燃料电池的“骨架”。

它把燃
料电池的各个部分连接起来,让整个燃料电池结构更稳定。

就好比人得有骨头才能站得直,燃料电池有了双极板才能
稳稳当当的工作。

然后呢,双极板还能起到导电的作用。

它就像电线一样,把电从一个地方传到另一个地方。

在燃料电池里,双
极板把燃料和氧化剂产生的电传导出去,让我们能用上这
些电。

要是没有双极板导电,那电就没法用啦。

还有啊,双极板能分隔燃料和氧化剂。

它就像一堵墙,把燃料和氧化剂隔开,不让它们乱跑。

这样才能保证燃料
电池正常工作,不会发生危险。

要是燃料和氧化剂混在一起,那可就糟糕了。

另外呢,双极板还能散热。

燃料电池工作的时候会产
生热量,双极板可以把这些热量散发出去,让燃料电池不
会过热。

就像人热了要出汗散热一样,燃料电池靠双极板
散热。

我给你讲个事儿吧。

有一次我去参观一个燃料电池工厂,看到那些燃料电池里的双极板。

工作人员给我介绍说,双极板的作用可大了,如果双极板出问题,整个燃料电池
都没法工作。

从那以后,我就知道了双极板在燃料电池里
的重要性。

总之呢,燃料电池双极板的作用有当骨架、导电、分
隔燃料和氧化剂、散热等。

没有双极板,燃料电池可就玩
不转啦。

加油吧!相信你也能认识到双极板的重要性。

燃料电池双极板

燃料电池双极板

复合材料
要点一
总结词
复合材料结合了多种材料的优点,具有较高的机械强度、 耐腐蚀性和抗氧化性。
要点二
详细描述
复合材料由两种或多种材料组成,可以结合各种材料的优 点,弥补单一材料的不足。在燃料电池双极板制造中,常 用的复合材料包括碳纤维增强复合材料、玻璃纤维增强复 合材料等。这些复合材料具有较高的机械强度、耐腐蚀性 和抗氧化性,能够承受燃料电池运行过程中的压力和温度 变化,同时保持稳定的性能。
02
燃料电池双极板材料
金属材料
总结词
金属材料具有较高的导电性和导热性,但易腐蚀,需要采取防腐蚀措施。
详细描述
金属材料如不锈钢、钛等在燃料电池双极板制造中应用广泛。它们具有良好的导电性和导热性,能够满足双极板 对电和热传导的要求。然而,金属材料容易受到腐蚀,特别是在燃料电池的酸性或碱性环境中,因此需要采取表 面涂层、合金化等防腐蚀措施来提高其耐久性。
其他领域
船舶
燃料电池双极板可用于船舶动力系统,提供清洁、高效的能 源,促进船舶行业的绿色发展。
航空航天
在航空航天领域,燃料电池双极板具有轻量化和高效能的特 点,为航天器和无人机提供动力支持。
05
燃料电池双极板的发展趋势与挑 战
技术材料如碳纤维复合材料、金属基复合材料等在双极板制造
精度与性能
新型制造工艺具有更高的制造精度和更优异的性能,尤其在复杂形 状和微孔结构的制造方面具有明显优势。
环境影响
传统制造工艺通常需要大量的材料和能源,而新型制造工艺可实现材 料的有效利用和节能减排。
04
燃料电池双极板的应用
交通工具领域
燃料电池汽车
燃料电池双极板作为核心组件, 为燃料电池汽车提供电力,具有 零排放、高效率和长续航里程等 优点。

氢燃料电池石墨双极板生产及应用(二)

氢燃料电池石墨双极板生产及应用(二)

氢燃料电池石墨双极板生产及应用开发方案一、背景随着环保意识的不断提高,氢燃料电池作为一种清洁、高效的能源转换装置,逐渐受到各国的关注。

其中,石墨双极板作为氢燃料电池中的关键组件,具有优良的导电性能和化学稳定性,被视为理想的燃料电池材料。

然而,当前市场上石墨双极板的生产及应用仍存在诸多瓶颈,亟待开发与优化。

二、工作原理氢燃料电池通过氢气和氧气在电极上的反应产生电能。

石墨双极板作为电池的正负极,可有效地导电并防止氢气和氧气的混合。

通过以下步骤进行工作:1.氢气通过电池的负极板,在催化剂的作用下分解为电子和氢离子。

2.电子通过外部电路传输,为设备提供电能。

3.氢离子通过电解质到达正极板,与氧气反应生成水。

4.氧气通过正极板,与电子和氢离子反应,生成水。

此过程无污染物排放,且只产生水,为环保出行提供了可能性。

三、实施计划步骤1.材料选择与制备:选择高导电性、高化学稳定性的石墨材料作为基底,如天然石墨或人造石墨。

确保材料无杂质,以保证双极板的导电性能。

2.双极板制造:采用精密的制造工艺,如微加工或3D打印技术,将石墨材料加工成具有所需形状和尺寸的双极板。

在此过程中,需要确保石墨板的平整度、光洁度和导电性能。

3.表面处理:为了提高双极板的催化活性,需要在其表面涂覆一层催化剂,如铂或钯等贵金属。

同时,为提高双极板的抗腐蚀性,可对其进行表面涂层处理。

4.装配与测试:将制作好的石墨双极板与其他燃料电池组件进行装配,然后进行电池性能测试。

这包括电流、电压、内阻等方面的测试。

5.优化与量产:根据测试结果,对双极板或其他组件进行调整和优化,确保其性能达到最佳。

随后,可实现规模化生产,降低单位成本。

四、适用范围此方案适用于各种使用氢燃料电池的场景,如汽车、火车、船舶、便携式电源设备等。

特别是对于高效率和长寿命要求的设备,石墨双极板具有显著的优势。

此外,由于其环保特性,也可广泛应用于电力、工业和住宅部门。

五、创新要点1.使用石墨材料:与传统的金属双极板相比,石墨双极板具有更高的导电性和化学稳定性,使其成为氢燃料电池的理想材料。

燃料电池双极板流场结构和燃料电池的制作方法

燃料电池双极板流场结构和燃料电池的制作方法

燃料电池双极板流场结构和燃料电池的制作方法 随着能源的日益紧缺和环境污染的加剧,新能源技术备受关注。

燃料电池作为一种高效、清洁的能源转换技术,逐渐成为新能源领域中备受期待的技术之一。

在燃料电池中,双极板流场结构是一个关键组成部分,其影响着燃料电池的性能和效率。

本文将详细探讨燃料电池双极板流场结构和燃料电池的制作方法。

一、燃料电池双极板流场结构1.1 双极板流场的定义和作用 双极板流场指的是位于燃料电池中的双极板之间的空间,用于引导燃料和氧气在电化学反应中的传输。

其主要作用是增加燃料电池的反应效率,促进燃料和氧气的接触,并减少压降。

1.2 双极板流场结构的种类 根据形状和排列方式的不同,双极板流场结构可以分为直流场、曲折流场、层流场等多种类型。

直流场是最简单的结构,按照直线排列;曲折流场则形成了多条弯曲通道,能增加接触面积;层流场是一种平行排列的结构,利用了高速气流的旋转来增强流体的混合。

1.3 双极板流场结构的优化设计 在设计双极板流场结构时,需要考虑燃料电池的工作压力、流量、传质效率等因素。

通过数值模拟和实验研究,可以对双极板流场结构进行优化设计,以提高燃料电池的性能和效率。

2.1 双极板流场结构的制作方法 制作双极板流场的常用方法是加工或压制,可以使用金属、塑料等材料。

首先,根据燃料电池的设计要求,使用CAD软件进行三维设计或制作模具。

然后,根据设计图纸,使用机械加工工艺将材料加工成所需的形状和尺寸。

最后,通过焊接、粘接等方式将双极板流场与其他组件连接,并进行密封处理。

2.2 双极板流场的材料选择 双极板流场的材料选择应考虑电导性、耐腐蚀性和成本等因素。

目前常用的材料包括金属材料(如不锈钢、钛合金)、高温聚合物材料(如PEEK、PTFE)等。

不同材料具有不同的特点,需要根据实际需求进行选择。

2.3 双极板流场结构的制作工艺 双极板流场的制作工艺包括模具制作、材料加工、组装等过程。

在模具制作过程中,需要精确控制模具的尺寸和表面光洁度。

质子交换膜燃料电池铜基改性双极板研究

质子交换膜燃料电池铜基改性双极板研究

质子交换膜燃料电池铜基改性双极板研究摘要:质子交换膜燃料电池(PEMFC)是一种新兴的绿色能源技术,其具有高效、环保、可靠、噪音低等优点,因而被广泛关注。

铜基双极板作为PEMFC中关键的材料之一,对燃料电池的性能表现有着重要的影响。

本文针对铜基双极板的性能进行改性研究,以提高其导电性、耐腐蚀性等能力,从而提高PEMFC的性能。

通过添加不同比例的导电性添加剂,利用电化学分析技术、表面分析技术等手段,研究不同材料对铜基双极板的影响,通过实验发现添加适量的碳纳米管和金属氧化物等添加剂,铜基双极板的性能得到了显著提高。

关键词:质子交换膜燃料电池;铜基双极板;改性;导电性;耐腐蚀性。

Abstract:The proton exchange membrane fuel cell (PEMFC) is an emerging green energy technology, which has the advantages of high efficiency, environmental protection, reliability, low noise, etc., and thus has been widely concerned. Copper-basedbipolar plates, as one of the key materials in PEMFC, have important influence on the performance of fuel cells. In this paper, the performance of copper-based bipolar plates was studied by modification, in order to improve its conductivity, corrosion resistance and other capabilities, and thus improve the performance of PEMFC. By adding different proportions ofconductive additives, using electrochemical analysis technology, surface analysis technology and other means, the influence of different materials on copper-based bipolarplates was studied. It was found that adding proper amount of carbon nanotubes and metal oxides and other additives could significantly improve the performance of copper-based bipolar plates.Keywords: Proton exchange membrane fuel cell; Copper-based bipolar plate; Modification; Conductivity; Corrosion resistance.1. 引言在全球环保和能源危机的情况下,寻找一种新型的可再生绿色能源已经成为全球各国的共同目标。

PEM燃料电池双极板流道结构及设计要点之综述-燃料电池论文

PEM燃料电池双极板流道结构及设计要点之综述-燃料电池论文

PEM燃料电池双极板流道结构及设计要点之综述摘要: 质子交换膜燃料电池(PEMFC)以其高效率、高比能量、低污染等优点被认为是一种适合人类发展和环境要求的理想电源。

双极板(流场板)是质子交换膜燃料电池的重要部件, 其质量占电池堆60%以上。

流场板上的流道设计对电池性能、运行效率和制造成本有很大影响。

系统地综述了现有的流道设计, 剖析了流道的功能及其对电池性能的影响, 并在此基础上讨论了流道设计的设计要点。

关键词: 质子交换膜燃料电池;双极板;流道设计质子交换膜燃料电池(PEMFC)以其高效率、高比能量、低污染等优点被认为是一种适合人类发展和环境要求的理想电源【1】。

双极板是 PEMFC 的重要部件, 其两面都有加工出的流道,起着分布反应气、收集电流、机械支撑、水热管理以及分隔阴阳两极反应气的重要作用。

实际上, 燃料电池堆的设计很大程度上就是双极板的设计。

据文献报道,适当的流道设计能够使电池性能提高50%左右。

流道结构决定反应气与生成物在流道内的流动状态,设计合理的流道可以使电极各处均能获得充足的反应气并及时排出生成的水, 从而保证燃料电池具有较好的性能和稳定性。

流场的设计要满足以下几个方面的条件:(1)流场设计的基本原则是保证在一定的反应剂供应量情况下,电极各处均能获得充足的反应剂。

特别是对十大面积的电极尤为重要,电极工作面积放大过程中流场设计不合理往往是造成电池性能下降的主要原因之一。

(2)依据电极与双极板材料的导电特性,流场沟槽的面积应有一个最优值。

沟槽面积和电极总面积之比一般称为双极板的开孔率,其值应在40%~75%之间。

开孔率太高会造成电极与双极板之间的接触电阻过大,增加电池的欧姆极化损失。

(3)由流场结构所决定的反应剂在流场内的流动状态,应有利于反应剂经电极扩散层向催化层反应点的传递,并能促进反应产物的顺利排出。

(4)在一定的流量下,反应剂通过流场的压力降要适中,一般为千帕的数量级。

压力降太大会造成过高的动力损失,压力降太小则不利于反应剂在并联的多个单节电池间的分配。

干货燃料电池双极板材料及制备

干货燃料电池双极板材料及制备

干货燃料电池双极板材料及制备摘要质子交换膜燃料电池的发展显示出了它成为清洁、高效和可靠电源的潜力。

双极板作为PEM⁃FC的关键部件之一,具有提供电气连接、输送反应气体、消散反应热、去除副产物的作用,但也是制约PEMFC 成本的主要因素之一。

根据双极板材料的不同可以分为金属双极板、石墨双极板和复合材料双极板,本文综述了双极板材料及其制备工艺。

其中,金属双极板因其优异的机械和物理性能,与无孔石墨及复合材料相比具有较强的成本优势,在乘用车应用中备受关注,但其制造工艺和耐腐蚀性是金属双极板的主要关注点。

未来,开发出优良的耐蚀性和导电性涂层或新型的双极板金属材料将极大地促进PEMFC在乘用车领域的应用。

为了缓解由化石燃料燃烧导致的环境污染和温室效应的问题,急需新型清洁能源的开发。

其中,氢能被认为是最适合的能源来源,而以氢能作为能源的质子交换膜燃料电池由于其效率高、零排放以及工作温度低的优势成为最有潜力的能量装换装置。

但由于PEMFC耐久性及成本方面的制约,还未能实现大规模商业化应用,其中双极板是PEMFC中的关键部件之一。

一般情况下,双极板占电堆总质量的80%以上,占总成本约30%,而电堆体积基本是由双极板占据。

归纳了双极板在燃料电池结构上具有的6个基本功能:(1)、分离各个电池;(2)、输送反应气体;(3)、提供电气连接;(4)、去除水副产物;(5)、消散反应热;(6)、承受夹紧力。

为适应以上功能,美国能源部给出的2020 年和2025年双极板的特性指标如表1所示。

目前,从燃料电池技术团队路线图报告来看,双极板的成本为5.4美元/kW,远远高于美国能源部2025年的目标(2.0美元/kW),因此,双极板材料价格必须更低廉,并且具有高的电导率和导热性,低的接触电阻和良好的耐腐蚀性。

双极板根据材料的不同可以分为金属双极板、石墨双极板和复合材料双极板,表2列出了不同材料双极板的优势与劣势,石墨双极板是目前国内PEMFC最常用的双极板材料,但由于金属双极板在大规模批量生产的时候,其生产成本会极大程度降低,且大功率电堆体积相对石墨板电堆小得多,所以受到越来越多的关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fuel Cell Bipolar PlateIntroductionThis study presents a model that couples the thermal and the structural analysis in a bipolar plate in a proton exchange membrane fuel cell (PEMFC). The fuel cell stack consists of unit cell of anode, membrane, and cathode connected in series through bipolar plates. The bipolar plates also serve as gas distributors for hydrogen and air that is fed to the anode and cathode compartments, respectively. Figure 1 below shows a schematic drawing of a fuel cell stack. The unit cell and the surrounding bipolar plates are shown in detail in the upper right corner of the figure.Fuel cell stackBipolar plate CathodeAnodeMembraneFigure 1: Schematic drawing of the fuel cell stack. The unit cell consists of an anode, membrane electrolyte, and a cathode. The unit cell is supported and supplied with reactants through the bipolar plates. The bipolar plates also serve as current collectors and feeders.The PEMFC is one of the strongest alternatives for automotive applications where it has the potential of delivering power to a vehicle with a higher efficiency, from oil to propulsion, than the internal combustion engine.The fuel cell operates at temperatures just below 100 °C, which means that it has to be heated at start-up. The heating process induces thermal stresses in the bipolar plates. This analysis reveals the magnitude and nature of these stresses.Model DefinitionFigure 2 below shows the detailed model geometry. The plate consists of gas slits that form the gas channels in the cell, holes for the tie rods that keep the stack together, and the heating elements, which are positioned in the middle of the gas feeding channel for the electrodes. Due to symmetry, it is possible to reduce the model geometry to 1/8 of the actual size of the cell.Heat sourceGas channels Holes fortie rods1/8 1/4Figure 2: The modeled geometry.The study consists of a thermal-structural analysis. In the following specification of the problem a number of constants are used; their values are listed in the following table. The constant Q1 represents a power of 200 W distributed over the hole through the 25 bipolar plates in the fuel cell stack.CONSTANT VALUE DESCRIPTIONQ1200/25/(π0.005^2·0.01) W/m3Volume power in one heating elementP19.82·105 N/m2Pressure on the active partP27.85·106 N/m2Pressure on the manifoldh1 5 W/(m2·K)Heat transfer coefficient to thesurroundingsh250W/(m2·K)Heat transfer coefficient in the gaschannelsT H E R M A L A N A L Y S I SThe general equation is the steady-state heat equation according to:where k denotes the thermal conductivity of the different materials, T the temperature, and Q a heat source or heat sink.The modeled domain consists of three different domains. The first domaincorresponds to the active part of the cell, where the electric energy is produced and the current is conducted. The production and conduction of current involve some losses. It is assumed that the cell is heated prior to operation. This means that the model does not account for the heat sources due to the production and conduction of current; see Figure 3.TitaniumQ = 0Figure 3: The active part of the cell bipolar plate is made of titanium.The second domain corresponds to the heating element in the bipolar plate, which is made of aluminum. The power from this element is assumed to be uniformly∇k T ∇–()Q +⋅0=distributed in the small cylindrical domain; see Figure 4.Q= Q1AluminumFigure 4: The heating element in the bipolar plate is made of aluminum.The last domain forms the manifold in the cell and it is made of titanium. In this domain, only heat conduction is present.Q= 0ManifoldFigure 5: The domain that forms the manifold of the cell.There are different material models present for both titanium and aluminum.The boundary conditions for the heat transfer analysis are symmetry conditions and convective conditions. The symmetry condition states that the flux is zero through the boundary.=⋅0.k T∇–()nThe convective conditions set the heat flux proportional to the temperature difference between the fluid outside and the temperature at the boundary. The heat transfer coefficient is the proportionality constant:In this equation, h denotes the heat transfer coefficient.Figure 6 shows the insulation boundaries.Insulation or SymmetryFigure 6: Insulation boundaries.Figure 7 shows the convective boundaries. The heat transfer coefficient is different forthe different groups of boundaries in the figure.h = h 1h = h 2Figure 7: The convective boundaries.S T R U C T U R A L A N A L Y S I SThe thermal expansion causes the stresses in the domain. The thermal loads areproportional to the temperature difference between the reference state and the actual temperature.k T ∇–()n ⋅h T T fluid –().=The constrains are imposed on the symmetry planes, see Figure 8 and Figure 9. There the displacements perpendicular to the boundary are set to zero.No displacements perpendicular to the boundariesFigure 8: The symmetry boundaries.No displacements in the z-directionFigure 9: Additional symmetry plane.In addition, the load applied by the tie rods on the stack is applied in the manifold and the active part at the bipolar plate. The pressure is different in these two domains, see Figure 10.The loads and constraints on all other boundaries are assumed to be negligible. In this context, the only questionable assumption is the possible loads and constraints imposed by the tie rods on the holes in the bipolar plate. In a more detailed analysis, it would be possible to couple a model for the tie rods with a detailed model of thebipolar plate. The probably the pressure on those different parts would show different gradients.Pressure = P1Pressure = P2Figure 10: Pressure due to the rod connection.ResultsFigure 11 shows the temperature field at steady state. The slits for the gas present the largest sinks of heat at the boundaries. The temperature decreases almost with the radial distance from the heating element.Figure 11: Temperature distribution in the plate.Figure 12 shows that the thermal loads generate stresses that are one order of magnitude larger than those generated by the external pressure loads (which you can compute by turning off the thermal expansion). The loads are far from the critical values, but the displacements can be even more important. The displacements must be small enough to grant that the membrane can fulfill its function in separating hydrogen and oxygen in the anode and cathode compartments, respectively. The z-component of the displacement in shown in Figure 13.Figure 12: Effective von Mises stresses due to temperature and external loads.Figure 13: Expansion in the z-direction.Application Library path: Structural_Mechanics_Module/ Thermal-Structure_Interaction/bipolar_plateModeling InstructionsFrom the File menu, choose New.N E W1In the New window, click Model Wizard.M O D E L W I Z A R D1In the Model Wizard window, click 3D.2In the Select physics tree, select Structural Mechanics>Thermal Stress. 3Click Add.4Click Study.5In the Select study tree, select Preset Studies for Selected Physics Interfaces>Stationary. 6Click Done.G L O B A L D E F I N I T I O N SParameters1On the Home toolbar, click Parameters.2In the Settings window for Parameters, locate the Parameters section.3In the table, enter the following settings:Name Expression Value DescriptionP10.982[MPa]9.82E5 Pa Pressure on the activepartP27.856[MPa]7.856E6 Pa Pressure on themanifoldG E O M E T R Y1On the Geometry toolbar, click Work Plane.Rectangle 1 (r1)1On the Work Plane toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size section.3In the Width text field, type 0.12.4In the Height text field, type 0.09.5Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 1 (r1) and choose Build Selected.6Click the Zoom Extents button on the Graphics toolbar.Rectangle 2 (r2)1On the Work Plane toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size section.3In the Width text field, type 0.09.4In the Height text field, type 0.055.5Locate the Position section. In the xw text field, type 0.03.6In the yw text field, type 0.035.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 2 (r2) and choose Build Selected.Rectangle 3 (r3)1On the Work Plane toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size section.3In the Width text field, type 0.01.4In the Height text field, type 0.035.5Locate the Position section. In the xw text field, type 0.01.6In the yw text field, type 0.035.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 3 (r3) and choose Build Selected.Rectangle 4 (r4)1On the Work Plane toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size section.3In the Width text field, type 0.065.4In the Height text field, type 0.01.5Locate the Position section. In the xw text field, type 0.035.6In the yw text field, type 0.01.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 4 (r4) and choose Build Selected.Circle 1 (c1)1On the Work Plane toolbar, click Primitives and choose Circle.2In the Settings window for Circle, locate the Size and Shape section.3In the Radius text field, type 0.005.4Locate the Position section. In the xw text field, type 0.015.5In the yw text field, type 0.015.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Circle 1 (c1) and choose Build Selected.Copy 1 (copy1)1On the Work Plane toolbar, click Transforms and choose Copy.2Select the object c1 only.3In the Settings window for Copy, locate the Displacement section.4In the yw text field, type 0.075.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Copy 1 (copy1) and choose Build Selected.Copy 2 (copy2)1On the Work Plane toolbar, click Transforms and choose Copy.2Select the object c1 only.3In the Settings window for Copy, locate the Displacement section.4In the xw text field, type 0.105.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Copy 2 (copy2) and choose Build Selected.Fillet 1 (fil1)1On the Work Plane toolbar, click Fillet.2On the object r3, select Points 1–4 only.3On the object r4, select Points 1–4 only.4In the Settings window for Fillet, locate the Radius section.5In the Radius text field, type 2.5e-3.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Fillet 1 (fil1) and choose Build Selected.Difference 1 (dif1)1On the Work Plane toolbar, click Booleans and Partitions and choose Difference. 2Select the object r1 only.3In the Settings window for Difference, locate the Difference section.4Find the Objects to subtract subsection. Select the Active toggle button.5Select the objects copy1, fil1(1), copy2, fil1(2), and c1 only.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Difference 1 (dif1) and choose Build Selected.Circle 2 (c2)1On the Work Plane toolbar, click Primitives and choose Circle.2In the Settings window for Circle, locate the Size and Shape section.3In the Radius text field, type 5e-3.4Locate the Position section. In the xw text field, type 0.07.5In the yw text field, type 0.09.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Circle 2 (c2) and choose Build Selected.Rectangle 5 (r5)1On the Work Plane toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Position section.3In the xw text field, type 0.065.4In the yw text field, type 0.09.5Locate the Size section. In the Width text field, type 0.01.6In the Height text field, type 0.005.Plane GeometryRight-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Rectangle 5 (r5) and choose Build Selected.Difference 2 (dif2)1On the Work Plane toolbar, click Booleans and Partitions and choose Difference. 2Select the object c2 only.3In the Settings window for Difference, locate the Difference section.4Find the Objects to subtract subsection. Select the Active toggle button.5Select the object r5 only.6Right-click Component 1 (comp1)>Geometry 1>Work Plane 1 (wp1)>Plane Geometry>Difference 2 (dif2) and choose Build Selected.7Click the Zoom Extents button on the Graphics toolbar.This completes the 2D work-plane geometry.Extrude 1 (ext1)1On the Geometry toolbar, click Extrude .2In the Settings window for Extrude, locate the Distances from Plane section.3In the table, enter the following settings:4Right-click Component 1 (comp1)>Geometry 1>Extrude 1 (ext1) and choose Build Selected .5Click the Zoom Extents button on the Graphics toolbar.Distances (m)0.005Form Union (fin)1In the Model Builder window, under Component 1 (comp1)>Geometry 1 right-click Form Union (fin) and choose Build Selected.The geometry is now complete.S O L I D M E C H A N I C S(S O L I D)1In the Model Builder window, under Component 1 (comp1) click Solid Mechanics (solid).2Select Domains 1 and 2 only.M A T E R I A L SMaterial 1 (mat1)1In the Model Builder window, under Component 1 (comp1) right-click Materials and choose Blank Material.2Select Domains 1 and 2 only.3In the Settings window for Material, locate the Material Contents section.4In the table, enter the following settings:Material 2 (mat2)1In the Model Builder window, right-click Materials and choose Blank Material .2Select Domain 3 only.3In the Settings window for Material, locate the Material Contents section.4In the table, enter the following settings:M U L T I P H Y S I C S1In the Model Builder window, under Component 1 (comp1)>Multiphysics click Thermal Expansion 1 (te1).2In the Settings window for Thermal Expansion, locate the Thermal Expansion Properties section.3In the T ref text field, type 0[degC].PropertyNameValue UnitProperty groupY oung's modulus E 105e9[Pa]Pa Basic Poisson's ratio nu 0.331Basic Densityrho 4940[k g/m^3]kg/m³Basic Thermal conductivity k 7.5[W/(m*K)]W/(m·K)Basic Heat capacity at constant pressureCp710[J/(kg*K)]J/(kg·K)BasicCoefficient of thermal expansionalpha 7.06e-6[1/K]1/KBasicPropertyNameValue UnitProperty groupThermal conductivity k 160[W/(m*K)]W/(m·K)Basic Densityrho 2700[k g/m^3]kg/m³Basic Heat capacity at constant pressureCp900[J/(kg*K)]J/(kg·K)BasicH E A T T R A N S F E R I N S O L I D S(H T)On the Physics toolbar, click Solid Mechanics (solid) and choose Heat Transfer in Solids (ht).Heat Source 11On the Physics toolbar, click Domains and choose Heat Source.2Select Domain 3 only.3In the Settings window for Heat Source, locate the Heat Source section.4In the Q0 text field, type 200/25/(pi*0.005^2*0.01).Heat Flux 11On the Physics toolbar, click Boundaries and choose Heat Flux.2Select Boundaries 8–10, 12, 13, 17–19, 26–30, and 37–39 only.3In the Settings window for Heat Flux, locate the Heat Flux section.4Click the Convective heat flux button.5In the h text field, type 50.6In the T ext text field, type 80[degC].Heat Flux 21On the Physics toolbar, click Boundaries and choose Heat Flux.2Select Boundaries 1 and 2 only.3In the Settings window for Heat Flux, locate the Heat Flux section.4Click the Convective heat flux button.5In the h text field, type 5.6In the T ext text field, type 20[degC].S O L I D M E C H A N I C S(S O L I D)Symmetry 11On the Physics toolbar, click Boundaries and choose Symmetry.2Select Boundaries 3, 5, 20, 23, 25, 36, and 42–44 only.Boundary Load 11On the Physics toolbar, click Boundaries and choose Boundary Load.2Select Boundary 24 only.3In the Settings window for Boundary Load, locate the Force section.4Specify the F A vector as0x0y-P1zBoundary Load 21On the Physics toolbar, click Boundaries and choose Boundary Load.2Select Boundary 4 only.3In the Settings window for Boundary Load, locate the Force section.4Specify the F A vector as0x0y-P2zM E S H11In the Model Builder window, under Component 1 (comp1) click Mesh 1.2In the Settings window for Mesh, locate the Mesh Settings section.3From the Element size list, choose Coarse.Free Triangular 11Right-click Component 1 (comp1)>Mesh 1 and choose More Operations>Free Triangular.2Select Boundaries 4, 24, and 34 only.Size 11Right-click Component 1 (comp1)>Mesh 1>Free Triangular 1 and choose Size. 2In the Settings window for Size, locate the Element Size section.3From the Predefined list, choose Coarse.4Click the Build All button.5Click the Zoom Extents button on the Graphics toolbar.Swept 1In the Model Builder window, right-click Mesh 1 and choose Swept.Distribution 11In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Swept1 and choose Distribution.2In the Settings window for Distribution, locate the Distribution section.3In the Number of elements text field, type 2.4Click the Build All button.5Click the Zoom Extents button on the Graphics toolbar.S T U D Y1On the Home toolbar, click Compute.R E S U L T SStress (solid)The first default plot, displayed in Figure 12, shows the von Mises stress.The second default plot shows the temperature field which should be similar to that displayed in Figure 11.Copy this plot and modify it to visualize the z-displacement field in the deformed plate as shown in Figure 13.Temperature (ht) 11In the Model Builder window, under Results right-click Temperature (ht) and choose Duplicate.2In the Settings window for 3D Plot Group, type Displacement in the Label text field.Displacement1In the Model Builder window, expand the Results>Displacement node, then click Surface 1.2In the Settings window for Surface, locate the Coloring and Style section.3From the Color table list, choose Rainbow.4Click Replace Expression in the upper-right corner of the Expression section. Fromthe menu, choose Model>Component 1>Solid Mechanics>Displacement>Displacementfield (Material)>w - Displacement field, Z component.5On the Displacement toolbar, click Plot.21|F U E L C E L L B I P O L A R P L A T E22|F U E L C E L L B I P O L A R P L A T E。

相关文档
最新文档