湍流基础知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L 0
1 u ui pudu N i 1

雷诺平均方程
RANS 方程和封闭问题 N-S方程:
u i 0 xi
ui ui 2ui 1 p uj fi t x j xi x j x j
物理量的瞬态值定义为系综平均值与脉动值之和
ui x, t ui
3.5×106
雷诺平均方程
雷诺平均 考虑到湍流的随机性, 1895 年 Reynolds 首 次将瞬时湍流看作为时均运动(描述流动的平 均趋势)+脉动运动(偏离时均运动的程度)。 以后逐渐提出空间分解和统计分解等方法。
(1)时间分解法(Reynolds的时均值概念)
如果湍流运动是一个平稳的随机过程,则在 湍流场中任一点的瞬时速度 u可分解为时均速度 +脉动速度。 u u u
T T
雷诺平均方程
平稳随机过程
非平稳随机过程
雷诺平均方程Biblioteka (2)空间分解法(空间平均法) 如果湍流场是具有空间均匀性的随机场, 则可采用空间平均法对湍流的瞬时量进行空间 分解。即 1 u udx L (3)系综平均法(概率意义上的分解) 如果湍流运动既不是时间平稳的、也不是空 间均匀的,那么我们可在概率意义上对湍流的 瞬时运动进行分解。即
湍流基本特征
雷诺数的影响
Re < 5 5-15 < Re < 40 40 < Re < 150 150 < Re < 3×105 3×105 < Re < 3.5×106
蠕动层流
层流尾迹中具有一对 稳定的涡 层流涡街 层流分离,湍流尾迹 边界层转捩后流动分 离 湍流涡街,但是分离 比层流窄
Re >
x, t u' x, t
i
pi x, t pi x, t pi' x, t
对N-S方程进行系综平均,可以得到 ERANS 方 程。 u
i
xi
0
雷诺应力, Rij
2
ui ui ui 1 p uj fi t x j xi x j x j
雷诺平均方程
式中,时均速度定义为 这里取时均值的时间T要求远远大于脉动运 动的积分时间尺度。 对于非平稳的随机过程,严格而言不能用时 均分解法,但如果时均运动的特征时间远大于 脉动运动的特征时间,且当取均值时间T远小 于时均运动的特征时间而又远大于脉动运动的 特征时间时,时均值分解仍近似成立。
1 1 u udt Lim udt T0 T T 0
湍流基础知识
§湍流基本特征 §湍流控制方程 §湍流平板边界层的能量平衡 §湍流平板边界层厚度和阻力 §粗糙平板紊流边界层
湍流基本特征
湍流具有非定常的、三维的、周期性的漩涡运动 特征,即脉动特征,能够增强动量掺混、热量传 递和剪切应力。
湍流脉动在空间上和时间上都是随机的,但是湍 流脉动量的统计平均却能展示其主要输运机理。 所有的湍流中均包含尺度范围很广的漩涡,从小 尺度漩涡到大尺度漩涡。 湍流对于初始条件非常敏感,即湍流行为很大程 度上取决于初始条件。
湍流平板边界层
像圆管湍流一样,湍流平板边界层流动也 是壁面湍流的一种,只不过固体边界的特征不 同。圆管湍流是流动发生在由固体边界所包围 的空间内,因而固体边界限制了湍流的发展。 而平板边界层流动则是流动发生在某一固体壁 面上,在固体壁面上的湍流边界层可以沿程发 展而其上边界不受固体边界的限制。但是湍流 边界层与圆管湍流在流动特点方面也有很多共 同之处。
u i' u 'j x j
湍流平板边界层
平板边界层流动中,势流流速和压强在整个 流场中均为常数。当边界层雷诺数 达到临界值后 ,边界层流动将可能由层流转变为湍流。湍流边 界层中的流速分布、阻力规律、边界层厚度的沿 程发展等均与层流边界层不同。而且在湍流边界 层流动中又因固体壁面的光滑或粗糙而使得流动 情况发生变化。 湍流平板边界层流动是一种基本的流动现象 ,对于航空、造船、化工、水力机械和水工建筑 物的设计都有重要的意义。
湍流基本特征
湍流结构
小尺度 涡结构
大尺度 涡结构
能量注入
耗散能量
大尺度涡
能量流动方向 能量串级 (after Richardson, 1922)
耗散涡
湍流基本特征
什么是湍流?
外流
沿着壁面的流动
绕物体的流动 内流
L x, d, dh , etc.
其他一些因素也可能引发流动 在低雷诺数下发生转捩,例如 自由来流湍流度、物面条件、 吹气、吸气、以及其他扰动。
相关文档
最新文档