南京大学历年考研试卷量子力学
南京大学2005量子力学考研真题
r
(5 分) (5 分)
一维定态薛定谔方程的解ψ ( x ) 是否也必定是复数? 3) 以下的波函数是否代表同一个量子态,并说明为什么: a) b) 4)
ψ (x, t ) 和 e
r r ψ (x, t ) 和
iϕ
ψ ( x , t ) ,其中 ϕ 是实常数。
r
r ψ (x , t ) ,其中 ϕ (x ) 是实函数。
1 µω 2 x 2 x > 0 , 其中 x > 0 区 V ( x ) 为谐振子势能, 求解基态的能量和归一化 V (x ) = 2 x<0 ∞
波函数。 (20 分) 四、设质子是半径为 R 的薄球壳,其电荷 e 均匀分布在球壳表面上。对于氢原子,以电子所
(1) 受势能偏离质子为点粒子模型时的值为微扰, 求氢原子第一激发态能量的一级修正 E 2
六、求两个关在一维无穷深势阱
0 0 < x < a V (x ) = ( a 为正常数) ∞ x < 0, x > a
中,并以接触势 U ( x1 , x 2 ) = dδ ( x1 − x 2 ) ( d << 1 )相互作用的全同中子系统的零级 近似归一化波函数(不考虑自旋态);并以接触势为微扰,求准确到 d 的一次方的基态能 量。 (2究生入学考试试题(三小时) 三小时)
考试科目名称及代码: 适 用 专 业 :
注意: 注意: 1. 所有答案必须写在“南京大学研究生入学考试答题纸”上,写在试卷和其他低上无 效; 2. 本科目允许/不允许使用无字典存储和编程功能的计算器。 3. 本试卷中第一题至第四题为必做题, 第五题和第六题中任选一题, 做六题者按得分 最低的五题计分。 一、问答题: 1) 试述量子态的叠加原理。 (5 分) 讨论自由粒子的波函数是否一定是平面波?为什么? (5 分) 2) 为什么波函数ψ ( x , t ) 必定是复数?
免费的南大历年《量子力学》的真题
南京大学1998年硕士研究生考试试题——量子力学(一) 20分 有半壁无限高势垒的一维阱 ()ax a x x V x V ><<<⎪⎩⎪⎨⎧∞=000在0V E <的情形下,该系统是否总存在一个束缚态?如果回答是否定的,那么系统中至少有一个束缚态的存在的充要条件是什么?(二)20分 一个取向用角坐标θ和ϕ确定的转子,作受碍转动,用下述哈密顿量描述:()ϕ2cos ˆˆ22 B L A H+=,式中A 和B 均为常数,且B A >>,2ˆL 是角动量平方算符,试用一级微扰论计算系统的p 能级(1=l )的分裂,并标出微扰后的零级近似波函数。
(三)20分求在一维无限深势阱中,处于()x n ψ态时的粒子的动量分布几率()2p n φ 。
(四)20分 试判断下列诸等式的正误,如果等式不能成立,试写出正确的结果: (1)i j x i p jx i peee21ˆˆˆˆˆˆˆˆ-⋅+⋅⋅⋅=⋅ ?式中i ˆ和j ˆ分别是x 和y 方向的单位矢量。
(2)()[])(ˆˆˆˆ,ˆ'x f pip x f p px x x x = ?式中xi p x ∂∂= ˆ ,(3)系统的哈密顿算符为()r V p H+=μ2ˆˆ2 ,设()r n ϕ是归一化的束缚态波函数,则有:()n n n n r V r p ϕϕϕμϕ∇⋅=212ˆ2?(五)20分碱金属原子处在z 方向的外磁场B 中,微扰哈密顿为Bls H H H ˆˆˆ1+= ,其中S L dr dV r c H ls⋅⎪⎭⎫ ⎝⎛=121ˆ22μ ,()Z Z B S L c eB H 22+=μ , 当外磁场很弱时,那些力学量算符是运动积分(守恒量),应取什么样的零级近似波函数,能使微扰计算比较简单,为什么? 注: ()()()()ϕθπim mllm e m l m l l Y P cos !!412+-+=()x x P =01;()()2/12111x x P -=;()()x x x P 2/121213-=()()22213x x P -=专业: 理论物理、粒子物理与原子核物理(20分) 一、 t =0时,粒子的状态为][sin )(2kx A x =φ,求此时动量的可能测值和相应的几率,并计算动量的平均值。
量子力学考研试题及答案
量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。
答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。
答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。
答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。
答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。
答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。
在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。
2. 描述一下量子力学中的量子态叠加原理。
答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。
这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。
3. 解释什么是量子纠缠,并给出一个实际应用的例子。
答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。
南大量子力学考研真题
南大量子力学考研真题南大量子力学考研真题南大量子力学考研真题一直以来都备受考生关注。
作为中国科学界的重要学府,南京大学的量子力学考研真题不仅考察了考生对量子力学基本概念的理解,还要求考生具备深入思考和解决实际问题的能力。
在这篇文章中,我们将探讨南大量子力学考研真题的一些特点和解题技巧,希望能对广大考生有所帮助。
首先,南大量子力学考研真题注重考察考生对量子力学基本原理的掌握。
量子力学是现代物理学的基石,它描述了微观世界中粒子的行为规律。
因此,对于考生来说,掌握量子力学的基本原理是非常重要的。
在南大的考研真题中,经常会涉及到薛定谔方程、波函数、算符等概念,要求考生能够准确地理解和应用这些基本概念。
因此,考生在备考过程中,要注重对量子力学基本原理的理解和记忆,通过大量的练习和习题训练,提高自己的解题能力。
其次,南大量子力学考研真题强调解决实际问题的能力。
量子力学不仅仅是一门理论学科,它也有着广泛的应用。
在南大的考研真题中,经常会出现一些与实际问题相关的题目,要求考生能够将理论知识与实际问题相结合,解决实际应用中的量子力学问题。
这对于考生来说是一个挑战,需要他们具备一定的应用能力和创新思维。
因此,考生在备考过程中,要注重培养解决实际问题的能力,多进行实际问题的练习和思考,提高自己的应用能力。
另外,南大量子力学考研真题注重考察考生的综合能力。
量子力学作为一门复杂的学科,需要考生具备扎实的物理基础知识和数学能力。
在南大的考研真题中,经常会出现一些需要考生综合运用物理和数学知识解决问题的题目,要求考生具备较强的综合能力。
因此,考生在备考过程中,要注重物理和数学知识的学习和理解,提高自己的综合能力。
同时,还要注重培养自己的逻辑思维和分析问题的能力,以便能够在解题过程中灵活运用所学知识。
最后,南大量子力学考研真题注重考察考生的思考能力和创新思维。
量子力学是一门前沿学科,其中的一些问题至今仍然没有完全解决。
因此,在南大的考研真题中,经常会出现一些需要考生进行深入思考和创新的题目,要求他们能够从不同的角度思考问题,提出新的解决方案。
量子力学考研试题及答案
量子力学考研试题及答案一、选择题(每题3分,共30分)1. 量子力学中,粒子的波函数ψ(x,t)描述了粒子的哪种物理量?A. 粒子的位置B. 粒子的动量C. 粒子在空间的分布概率D. 粒子的能量答案:C2. 海森堡不确定性原理表明了哪两个物理量的不确定性之间存在关系?A. 位置和能量B. 动量和时间C. 动量和位置D. 时间和能量答案:C3. 在量子力学中,一个粒子的波函数在某个位置的概率密度是该波函数在该位置的什么?A. 绝对值的平方B. 对数C. 导数D. 积分答案:A4. 根据泡利不相容原理,一个原子中的两个电子不能具有完全相同的一组量子数,这些量子数包括哪些?A. 主量子数和磁量子数B. 主量子数、磁量子数和自旋量子数C. 所有四个量子数D. 主量子数和自旋量子数答案:B5. 薛定谔方程是一个描述什么的波动方程?A. 粒子的波动性质B. 粒子的运动轨迹C. 粒子的能量分布D. 粒子的动量分布答案:A6. 在量子力学中,一个系统的状态可以用哪种数学对象来描述?A. 矩阵B. 向量C. 张量D. 标量答案:B7. 量子力学中的隧穿效应是指什么?A. 粒子通过一个高于其能量的势垒B. 粒子在两个势垒之间振荡C. 粒子在势垒内部反射D. 粒子在势垒外部反射答案:A8. 在量子力学中,一个二能级系统在两个能级间跃迁时,必须吸收或发射一个具有特定能量的光子,这个能量差是由什么决定的?A. 两个能级的差B. 光子的频率C. 系统的总能量D. 系统的动量答案:A9. 量子纠缠是指两个或多个粒子之间的一种什么关系?A. 经典力学关系B. 量子力学关系C. 热力学关系D. 电磁相互作用答案:B10. 下列哪个原理说明了在量子力学中测量一个物理量会改变系统的状态?A. 海森堡不确定性原理B. 哥本哈根解释C. 德布罗意假说D. 薛定谔猫佯谬答案:B二、简答题(每题10分,共40分)11. 简述德布罗意假说的内容及其对量子力学发展的意义。
北京大学南京大学量子力学考研试题题库
峪F黢 嘁ing
参 C)haptcΓ 1 0ri胥 :ins OfQuantum Physics
α1apter2 M【rtthcmatic1b()ls OfQ11ar、 tt1mλ4ec丨】anics Chaptcr3 POstulatcs OfQuantulvl人丌cchani(;s
C∷haptcr4 ()haptcr5
j的
本
^=o^不
征值 和本和f函
数
。
学 (b)在 宏农象巾,求 箅符
ε的铡i阵 表示 ,以 及 月的本 征竹 和l本 征 函数 。
)供ε 奋兀二砷 · ⑹ 求从 ⒔农象到 捻表象^的和幺i∷ 变换知阵。
(;罗
:(∶
彳a艹 £甫:口
″ι
w
厶 \ 丿
叫
+ d
n
` 丨
‘
\ ︑
R”
●夕
一b' 丶
0
d
丿
一 一
6,Ⅵ so″ 】而 ε 阝勿 切 /lT伤 nⅠ `卩 c犭 tRf/饣
ቤተ መጻሕፍቲ ባይዱ
J冫 幻 /s氵
)l飞 1nlC Ⅱ I。
PA· M· IⅡ rac
C,·
ρ .J· ∫·Sakur缸
sy11a笾冫us
考 7`3eP而
刀c洌es
q厂 Q溺 nFⅣ 饲
∧亻0c向 佣
泅
冫4th刚 itiOn
f‘
吹 ,
Ⅳ o初 mQ“ 溺/PrⅡ Jlf姒佗c九四崩 cs,Rc∽ scd Edi⒈ iOn 衤1.
王鸳?矿廴卩 嚅
。dFˇ 石 .
饣 马∷助赳 η
乙耕 ”:
·
爹 亻 鲁
2016年南京大学物理学院博士生量子力学入学考试真题
2015年南京大学物理学院博士生“申请-考核”制入学
专业课程笔试试题
考试科目: 量子力学 考试时间:三小时
本试卷共计五大题
一、基本概念题
简述量子力学的基本原理。
二、设一个质量为m 的粒子处于区域为(0, a )的一维无限深势阱中, 其状态波函数为2=sin cos x
x
a a ππψ ,试求:
1)、一维无限深势阱的本征值问题;
2)、测量到粒子处于不同能量本征态的几率。
三、设两个算子ˆA
与ˆB 满足交换关系式:ˆˆˆˆˆˆ[,]1A B AB BA =-=,试求: 1)、n 为正整数, ˆˆ[,]n A
B ; 2)、()f x 为解析函数,ˆˆ[,()]A
f B 。
四、 已知两个算子ˆa 与ˆa +满足ˆˆˆˆ1a a aa ++=-,令ˆˆˆN a a +=,且有ˆN
n n n =, 求证:n 为实数。
五、量子力学中的韦尔(Weyl)波动方程式为:
(,)(,)i r t c r t t i ψσψ∂
=⋅∇∂
,
其中=x x y y z z e e e σσσσ++
为泡利矩阵所组成的矢量,
(,)r t ψ 为泡利二 分量波函数,其它为量子力学标准符号。
求
1)、该系统的韦尔定态方程式与力学量完全集;
2)、该系统的能量本征值并说明其物理意义;
3)、该系统的本征波函数。
各高校量子力学考研试题汇总
习题1一、填空题1.玻尔的量子化条件为。
2.德布罗意关系为。
3.用来解释光电效应的爱因斯坦公式为。
4.波函数的统计解释:_______________________________________________________________________________________________5.为归一化波函数,粒子在方向、立体角内出现的几率为,在半径为,厚度为的球壳内粒子出现的几率为。
6.波函数的标准条件为。
7.,为单位矩阵,则算符的本征值为__________。
8.自由粒子体系,__________守恒;中心力场中运动的粒子___________守恒。
9.力学量算符应满足的两个性质是。
10.厄密算符的本征函数具有。
11.设为归一化的动量表象下的波函数,则的物理意义为_______________________________________________。
12.______;_______;_________。
28.如两力学量算符有共同本征函数完全系,则___。
13.坐标和动量的测不准关系是____________________________。
14.在定态条件下,守恒的力学量是_______________________。
15.隧道效应是指__________________________________________。
16.量子力学中,原子的轨道半径实际是指____________________。
17.为氢原子的波函数,的取值范围分别为。
18.对氢原子,不考虑电子的自旋,能级的简并度为,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为,如再考虑自旋与轨道角动量的耦合,能级的简并度为。
19.设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__________。
20.力学量算符在态下的平均值可写为的条件为____________________________。
南京大学2001量子力学考研题
南京大学2001年硕士研究生入学考试试题———量子力学 专业: 理论物理、、凝聚态物理、光学等一、有一质量为μ的粒子处于长度为a 的一维无限深势阱中()⎩⎨⎧<<><∞=a x a x x x V 0,0;0,,在t=0时刻,粒子的状态由波函数()⎩⎨⎧<<-><=a x x a Ax a x x x 0),(;0,0ψ描述。
求: (20分) 1.归一化常数A; 2.粒子能量的平均值; 3.t=0时刻,粒子能量的几率分布; 4. 人艺t>0时刻的波函数的级数表达式。
提示:96145,3,14π=∑⋅⋅⋅=n n二、考虑势能为()⎩⎨⎧<>=0,00,0x x V x V 的一维系统,其中0V 为正常数。
若一能量为E 的粒子从-∞=x 处入射,其透射系数和反射系数各为多少?考虑E 的所有可能值。
(20分)三、有一质量为μ的粒子,在一维谐振子势场()2221x x V μω=中运动。
在动能μ22p T =的非相对论极限下,基态能ω 210=E ,基态波函数为()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ψ24102exp x x μωπμω。
考虑T 与p 的关系的相对论修正,计算基态能级的移动E ∆至21c 阶。
(c 为光速)(20分) 四、氯化钠晶体中有些负离子空穴,每个空穴束缚一个电子。
可将这些电子看成束缚在一个尺度为晶格常数的三维无限深势阱中。
晶体处于室温,试粗略地估计被这些电子强烈吸收的电磁波的最长的波长。
(20分) 提示:电子质量fm MeV c MeV mc ⋅≈=197,511.02 ,晶格常数01A a ≈ 五、考虑自旋 21=S 的系统, 1.求算符zy S B S A T ˆˆˆ+=的本征值和归一化本征波函数;(A 、B 为实常数) 2.若此时系统正处在T ˆ的某一个本征态上,求此时测量y S ˆ结果为⎪⎭⎫ ⎝⎛+2 的几率。
南京大学2002量子力学考研题
南京大学2002年硕士研究生入学考试试题———量子力学
一、 一维自由粒子的状态由波函数()kx kx x cos 2
1sin 2+=ψ描述。
求粒子的动量平均值和动能平均值。
(20分)
二、 粒子被约束在半径为r 的圆周上运动
1)设立“路障”进一步限制粒子在00ϕϕ<<的一段圆弧上运动,即
()⎩⎨⎧<<∞<<=π
ϕϕϕϕϕ2,0,000V ,求解粒子的能量本征值和本征函数; 2)设粒子处在上述情形的基态,现突然撤去“路障”,问撤去“路障”后,粒子仍然处在最低能量态的几率是多少?
(20分) 提示:在柱坐标系下222222
11z u u u u ∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇ϕρρρρρ 三、 设算符ˆˆˆN a a +=且ˆˆ,1a a +⎡⎤=⎣⎦,
证明:如果ψ是N ˆ的本征函数,对应的本征值为λ,那么,波函数ψ=ψa ˆ1也是N ˆ的本征函数,对应的本征值为1-λ,而波函数ψ=ψ+a ˆ2
也是N ˆ的本征函数,对应的本征值为1+λ。
(20分)
四、 一个粒子在二维无限深势阱()⎩⎨⎧∞<<=elsewhere
a y x x V ,,0,0中运动,设加上微扰xy H λ=1 ()a y x <<,0,求基态和第一激发态的一阶能量修正(20分)
五、 若电子处于z S ˆ的本征态,试证在此态中,y S ˆ取值为2
-或2 的几率各为21。
(20分)。
南京大学考研量子力学试题2001-2009
南京大学2001年硕士研究生入学考试试题———量子力学 专业: 理论物理、、凝聚态物理、光学等一、有一质量为μ的粒子处于长度为a 的一维无限深势阱中()⎩⎨⎧<<><∞=a x a x x x V 0,0;0,,在t=0时刻,粒子的状态由波函数()⎩⎨⎧<<-><=a x x a Ax a x x x 0),(;0,0ψ描述。
求: (20分) 1.归一化常数A; 2.粒子能量的平均值; 3.t=0时刻,粒子能量的几率分布; 4. 人艺t>0时刻的波函数的级数表达式。
提示:96145,3,14π=∑⋅⋅⋅=n n二、考虑势能为()⎩⎨⎧<>=0,00,0x x V x V 的一维系统,其中0V 为正常数。
若一能量为E 的粒子从-∞=x 处入射,其透射系数和反射系数各为多少?考虑E 的所有可能值。
(20分)三、有一质量为μ的粒子,在一维谐振子势场()2221x x V μω=中运动。
在动能μ22p T =的非相对论极限下,基态能ω 210=E ,基态波函数为()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=ψ24102exp x x μωπμω。
考虑T 与p 的关系的相对论修正,计算基态能级的移动E ∆至21c 阶。
(c 为光速)(20分) 四、氯化钠晶体中有些负离子空穴,每个空穴束缚一个电子。
可将这些电子看成束缚在一个尺度为晶格常数的三维无限深势阱中。
晶体处于室温,试粗略地估计被这些电子强烈吸收的电磁波的最长的波长。
(20分) 提示:电子质量fm MeV c MeV mc ⋅≈=197,511.02 ,晶格常数01A a ≈ 五、考虑自旋 21=S 的系统, 1.求算符zy S B S A T ˆˆˆ+=的本征值和归一化本征波函数;(A 、B 为实常数) 2.若此时系统正处在T ˆ的某一个本征态上,求此时测量y S ˆ结果为⎪⎭⎫ ⎝⎛+2 的几率。