实验三MATLAB的符号运算
Matlab 课后上机练习3-Matlab绘图和符号运算

11、绘制曲线13++=x x y ,x 的取值范围为[-5,5]。
clear; x=-5:0.1:5; y=x.^3+x+1; plot(x,y,'k'); title('曲线图像'); xlabel('x') ylabel('y') grid on;hold on;2、有一组测量数据满足-at e =y ,t 的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线。
并添加标题:运动曲线图;添加横坐标:时间 t/s ;添加纵坐标:位移 s/mm ;添加图例。
t=0:0.5:10; y1=exp(-0.1*t); y2=exp(-0.2*t); y3=exp(-0.5*t);plot(t,y1,':*r',t,y2,'-^g',t,y3,'-ob') title('运动曲线图'); xlabel('时间 t/s') ylabel('位移 s/mm') legend('a=0.1','a=0.2','a=0.5')3、22y xxe z --=,当x 和y 的取值范围均为-2到2时,用建立子窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和等高线效果图。
[x,y]=meshgrid([-2:0.2:2]);z=x.*exp(-x.^2-y.^2); mesh(x,y,z) subplot(2,2,1) plot3(x,y,z)title('plot3(x,y,z)') subplot(2,2,2) mesh(x,y,z)title('mesh(x,y,z)') subplot(2,2,3) surf(x,y,z)title('surf(x,y,z)') subplot(2,2,4) surf(x,y,z) shading interptitle('surf(x,y,z) shading interp')shading interp4、在同一坐标内绘制如下曲线:(1)y1=tsin(t)(红色连续线‘—’);(2)y2=t2-cos(t);(蓝色间断线‘—.’)(3)题头:小车运动学分析曲线;图例:y1曲线、y2曲线(4)x轴:时间t/s;y轴:位移曲线/mm (5)曲线上标注文字说明:该运动曲线良好。
MATLAB实验三参考答案

how =collect(x)
4、求下列函数的极限(写出命令) (1) lim
cos x e x 0 x4
x2 2
syms x; limit('(cos(x)-exp(-1/2*x^2))/(x^4)',x,0) -1/12 (2) lim
2 x ln 2 x 1 x 0 1 cos x
syms n; S=symsum(1/((3*n-2)*(3*n+1)),n,1,inf) 8、试求出函数 f ( x )
sin x 的麦克劳林幂级数展开式的前 9 项,并求出关于 x=2 x 3x 2
2
的 Taylor 幂级数展开式的前 5 项。(命令 taylor 或者 taylortool)
河南财经政法大学数学与信息科学学院 1
实验报告
结果: EXPR =(x^2+x*exp(-t)+1)*(x+exp(-t)) expr1 =x^3+2*exp(-t)*x^2+(1+exp(-t)^2)*x+exp(-t) expr2 =x*exp(-t)^2+(2*x^2+1)*exp(-t)+(x^2+1)*x 3、factor(因式分解),simple(简化运算,对表达式尝试多种不同的算法进行简化,并以最 简化形式给出,How 中记录的为简化过程中使用的方法, )指令的使用 syms a x; f1=x^4-5*x^3+x^2+5*x-6; factor(f1) x^4-5*x^3+x^2+5*x-6 f2=x^2-a^2; factor(f2) (x-a)*(x+a) f3=2*sin(x)^2-cos(x)^2 [y , how]=simple(f3) y 为 f 的最优化简形式,How 中记录的为简化过程中使用的方法 y =-3*cos(x)^2+2 how =simplify [y , how]=simple(f1) y =x^4-5*x^3+x^2+5*x-6
在Matlab中使用符号计算和代数运算

在Matlab中使用符号计算和代数运算在Matlab中,符号计算和代数运算是非常重要的功能。
它们能够帮助我们解决各种数学问题,包括求解方程、求导、积分等等。
在本文中,我们将探讨如何在Matlab中使用符号计算和代数运算。
首先,让我们来了解一下什么是符号计算。
符号计算是一种基于符号表达式的计算方法,与数值计算相对。
在符号计算中,我们不需要给出具体的数值,而是使用符号变量来表示数学表达式。
这样,在进行运算的时候,我们能够保留运算中的符号信息,从而得到更加详细和准确的结果。
在Matlab中,我们可以通过声明符号变量来进行符号计算。
使用'sym'函数,我们可以创建一个符号变量。
例如,下面的代码创建了一个符号变量x:```matlabsyms x```有了符号变量后,我们就可以进行各种代数运算了。
比如,我们可以使用符号变量来表示一个多项式函数:```matlabf = x^2 - 2*x + 1;```在上面的代码中,变量f表示了一个二次多项式函数。
这样,我们可以对f进行各种代数运算,比如求导、积分等等。
首先,让我们来看一下如何在Matlab中进行符号微积分运算。
符号微积分是符号计算的一个重要应用领域,它能够帮助我们求导、积分等等。
在Matlab中,我们可以使用'diff'函数来对符号变量进行求导运算。
例如,下面的代码对函数f进行求导运算,并将结果保存在变量df中:```matlabdf = diff(f);```在上面的代码中,变量df表示了函数f的导函数。
同样,我们也可以对df进行各种代数运算,比如求导、积分等等。
接下来,让我们看一下如何在Matlab中进行符号积分运算。
符号积分是符号计算中另一个重要的应用领域,它能够帮助我们求解各种积分问题。
在Matlab中,我们可以使用'int'函数来对符号变量进行积分运算。
例如,下面的代码对函数f进行积分运算,并将结果保存在变量F中:```matlabF = int(f);```在上面的代码中,变量F表示了函数f的不定积分。
matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。
MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。
以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。
例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。
-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。
-转置:使用单引号`'` 来进行转置操作。
例如,`A'` 表示矩阵A的转置。
-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。
例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。
2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。
例如,`result = 2 + 3`。
-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。
例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。
-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。
-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。
-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。
这些是MATLAB中一些常见的数学符号和运算。
MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。
如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。
matlab实验3:多项式运算

代数多项式求值
y = polyval(p,x)
计算多项式 p 在 x 点的值
注:若 x 是向量或矩阵,则采用数组运算 (点运算)! 例:已知 p(x)=2x3-x2+3,分别取 x=2 和一个 22 矩阵,
求 p(x) 在 x 处的每个分量上的值
>> p=[2,-1,0,3]; >> x=2; y = polyval(p,x) >> x=[-1,2;-2,1]; y = polyval(p,x)
例:解方程组
x
2yz xz3
2
x 3y 8
>> A=[1 2 -1; 1 0 1; 1 3 0]; >> b=[2;3;8]; >> x=linsolve(A,b)
b是列向量!
非线性方程的根
Matlab 非线性方程的数值求解
fzero(f,x0):求方程 f=0 在 x0 附近的根。
符号求解
solve 也可以用来解方程组 solve( f1 , f2 , ... , fN , v , ... , fN 确定的方程组关于 v1 , v2 , ... , vN 的解
例:解方程组
x 2 y z 27
x
z
3
x2 3 y2 28
例:2x3-x2+3 <-> [2,-1,0,3]
特别注意:系数中的零是不能省的!
多项式的符号形式:poly2sym 如,>> poly2sym([2,-1,0,3])
运行结果:ans = 2*x^3-x^2+3
多项式四则运算
多项式加减运算
多项式的加减运算就是其所对应的系数向量的加减运算
MATLAB的符号矩阵运算与符号微积分

西北农林科技大学实验报告学院名称:理学院专业年级:2013级信计1班姓名:学号:课程:数学软件实验报告日期:2014年11月1日实验三MATLAB的符号矩阵运算与符号微积分一.实验目的MATLAB 不仅具有数值运算功能,还开发了在matlab环境下实现符号计算的工具包Symbolic Math Toolbox。
本次实验的目的对所学的符号矩阵的创建与修改、各种符号运算进行巩固,学会使用数学软件来求极限、微分、积分,解方程和解微分方程等。
二.实验要求理解符号变量、符号表达式、符号矩阵等概念,掌握符号矩阵和符号表达式的创建,了解符号运算与数值运算的不同点,会修改已有的符号矩阵,并会符号矩阵与数值矩阵的相互转换,掌握符号矩阵矩阵的运算。
熟练掌握符号求极限、符号求微分(导数)、符号求积分(不定积分和定积分),掌握符号代数方程(组)求解、符号微分方程(组)求解,了解符号积分变换。
三.实验内容符号运算一、符号变量、符号表达式、符号矩阵等概念MATLAB符号运算工具箱处理的对象主要是符号变量与符号表达式。
要实现MATLAB的符号运算,首先要将处理的对象定义为符号变量或符号表达式,其定义格式如下:1.sym ('变量名') 或sym ('表达式')2.syms 变量名1变量名. . . 变量名n二、符号运算与数值运算的不同点数值运算:求出具体的数值,不含符号。
(如解方程,求出未知数x=1.5 ,不是未知数=ab+c)符号运算:结果用符号表示。
许多问题,只有数值解,没有符号解。
三、修改已有的符号矩阵及符号矩阵与数值矩阵的相互转换1. 修改已有的符号矩阵(1).直接修改可用↑、←键找到所要修改的矩阵,直接修改(2)指令修改用A1=sym(A,*,*,'new') 来修改。
用A1=subs(A, 'new', 'old')来修改2. 符号矩阵与数值矩阵的相互转换(1)将数值矩阵转化为符号矩阵>> A=[1/3,2.5;1/0.7,2/5]A =0.3333 2.50001.4286 0.4000>> sym(A)ans =[0.333333333333333 2.50000000000000 ][ ][1.42857142857143 0.400000000000000](2) 将符号矩阵转化为数值矩阵函数调用格式:double(a)>> a=sym ('[1,3;4,6;3,4]')a =[1 3][ ][4 6][ ][3 4]>> double(a)ans =1 34 63 4四、符号运算1.符号矩阵和符号表达式的创建(1) 符号表达式的创建>> syms x y z>> x,y,zx =xy =yz =z>> f1=x^2+2*x+1f1 =2x + 2 x + 1>> f2=exp(y)+exp(z)^2f2 =2exp(y) + exp(z)>> f3=f1+f2f3 =2 2x + 2 x + 1 + exp(y) + exp(z)(2)符号矩阵创建a.用sym()创建>> exam=sym ('[1,x;y/x,1+1/y;3+3,4*r]')exam =[ 1 x ][ ][y/x 1 + 1/y][ ][ 6 4 r ] b.普通矩阵方法>> syms a1 a2 a3 a4>> A=[a1 a2;a3 a4]A =[a1 a2][ ][a3 a4] >> A(1),A(3)ans =a1ans =a2c.用矩阵元素通式创建>> syms x y c r>> a=sin((c+(r-1)*3));>> b=exp(r+(c-1)*4);>> c=(c+(r-1)*3)*x+(r+(c-1)*4)*y;>> A=symmat(3,3,a)A =[sin(1) sin(2) sin(3)][ ][sin(4) sin(5) sin(6)][ ][sin(7) sin(8) sin(9)]2.符号微积分(1)极限返回符号对象f当x→a时的极限>> limit(f,x,a)ans =[2 2][ ][4 4]返回符号对象f当x→a时的右极限>> limit(f,x,a,'right')ans =[2 2][ ][4 4]返回符号对象f当x→a时的左极限>> limit(f,x,a,'left')ans =[2 2][ ][4 4] (2).导数求符号对象f关于默认变量的微分diff(f)ans =2 2求符号对象f关于指定变量v的微分>> v=2v =2>> diff(f,v)ans =求符号对象f关于默认变量的n次微分,n为自然数1、2、3…>> n=4n =4求符号对象f关于指定变量v的n次微分>> diff(f,n)ans =[]>> diff(f, v,n)ans =Empty array: 2-by-2-by-1-by-0(3)积分求符号对象f关于默认变量的不定积分>> int(f)ans =[2 x 2 x][ ][4 x 4 x]求符号对象f关于指定变量v的不定积分>> f=v+3f =v + 3>> int(f,v)ans =21/2 v + 3 x 求符号对象f关于默认变量的从a到b的定积分>> f=v+3f =5>> a=2,b=3a =2b =3>> int(f,a,b)ans =53.符号线性代数(1).解符号代数方程>> solve('f=a*x^2+b*x+c',x)ans =[ 2 1/2 ][ -b + (-4 a c + 4 a f + b ) ][1/2 ----------------------------- ][ a ][ ][ 2 1/2][ b + (-4 a c + 4 a f + b ) ][- 1/2 ----------------------------][ a ](2).解微分方程>> dsolve('Dy=1+y^2')ans =tan(t + _C1)四、实验总结通过本次试验,我了解到MATLAB 不仅具有数值运算功能,还开发了在matlab 环境下实现符号计算的工具包Symbolic Math Toolbox。
第3章 MATLAB的符号运算_微分方程求解_符号代数方程

或syms a b c x
f='a*x^2+b*2+c'
9/46
数组、矩阵与符号矩阵(P51)
m1=sym('[ab bc cd ; de ef fg ; h l j]') m2=sym('[1 12;23 34]') 例:
– >>A=hilb(3) A= 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000
dx dx2
例6:已知函数
f
= x2 sin 2 y 求
df
df ,
d2 f ,
dx dy dxdy
例7:已知函数
f
=
xe y y2
求
ff ,
xy
见example3_12
23/46
df
例8:已知导函数
= ax 求原函数
dx
b
例9:已知导函数 f (x) = x2 求 f (x)dx a
例10:计算重积分I = 2 d a r2 sin dr ?
– 例:>>rho=1+sqrt(5)/2; >>sym(rho,’d’); ans= 2.1180339887498949025257388711907
11/46
符号对象转换为数值对象的函数double(), vpa() 1、double()
这种格式的功能是将符号常量转换为双精度数值 2、vpa()
创建符号对象与函数命令(P50)
1、函数命令sym()格式 格式1 s=sym(a)(a代表一个数字值、数值矩阵、数值表达式 格式2 s=sym(‘a’)(a代表一个字符串)
matlab符号计算实验总结

matlab符号计算实验总结
MATLAB 是一种广泛使用的数学软件,其中包括符号计算功能。
符号计算实验可以帮助用户了解如何使用 MATLAB 进行符号计算,以及如何解决实际问题。
以下是 MATLAB 符号计算实验的总结:
1. 熟悉 MATLAB 符号计算环境:MATLAB 符号计算环境包括Symbolic and Algebraic Calculator(SAC) 和 Symbolic Math Kernel(SMK)。
SAC 是一个交互式计算器,可用于符号计算和代数计算。
SMK 是一个内核,可嵌入到 MATLAB 主程序中,用于符号计算和数学推理。
2. 掌握 MATLAB 符号计算基本语法:MATLAB 符号计算的基本语法包括变量名、符号表达式、对数、指数、三角函数、反函数等。
此外,MATLAB 还支持特殊的符号运算符,如+、-、*、/和^。
3. 熟悉 MATLAB 符号计算工具箱:MATLAB 提供了许多符号计算工具箱,包括高级代数、符号微积分、符号微分方程、符号计算物理等。
使用这些工具箱可以更高效地进行符号计算。
4. 掌握 MATLAB 符号计算算法:MATLAB 符号计算算法包括对称群、对称矩阵、雅可比矩阵、特征值和特征向量等。
掌握这些算法可以更好地理解符号计算的原理和实现方法。
5. 实践 MATLAB 符号计算:通过实践 MATLAB 符号计算,可以更好地掌握其语法和算法。
可以尝试解决一些简单的符号计算问题,如求根、解方程、求导、积分等。
MATLAB 符号计算实验可以帮助用户了解符号计算的原理和实现
方法,提高其符号计算技能。
第3讲 MATLAB语言的符号运算

2、微分
Matlab求微分的函数是diff()
说明:
①用diff(f)求 f 对预设独立变量的一次微分;
② diff(f,t)求 f 对独立变量 t 的一次微分;
③用diff(f,n)求 f 对预设独立变量的n次微分 ④diff(f,t,n)求 f 对独立变量 t 的n次微分; ⑤ f 可以是标量、向量、矩阵。
调用格式如下:
通过F=fourier(f)求时域函数f的Fourier变换
①如果采用F=fourier(f)的格式,默认积分变量是x;
③invfourier()为Fourier反变换。
②如果采用F=fourier(f,u)的格式,指定u为积分变量;
例:计算时间函数的 >>syms t w
f (t ) e
(t ) y (t ) x (t ) x(t ) y
[x,y]= dsolve(‘Dx=y’,Dy=-x’) [f,g]= dsolve(‘Df=3*f+4*g’,’Dg=-5*f+2*g’)
⑥ 2个微分方程,给定初始条件 [x,y]= dsolve(‘Dx=y’,Dy=-x’,’x(0)=0’,’y(0)=1’)
3.4 微分方程求解
符号运算中的微分方程求解函数可利用如下格式
dsolve(‘方程1’,‘方程2’,…) 函数格式说明: ①可多至12个微分方程的求解; ②默认自变量为x,并可任意指定自变量t,u等;
③方程的各阶导数项以大写字母“D”作为标识,后接 数字阶数,再接解变量名;
④初始条件以符号代数方程给出,如果初始条件项缺 省,其默认常数为C1,C2,…等; ⑤返回变量的格式为:[Y1,Y2,…]=dsolve(…)
3.6 符号表达式的运算
matlab符号计算实验总结

matlab符号计算实验总结
在本次实验中,我们学习了 Matlab 符号计算工具箱,并进行了一些基本的符号计算实验,总结如下:
1. Matlab 符号计算工具箱提供了方便的符号计算环境,可以进行代数运算、微积分、线性代数等操作,适合数学建模、符号计算、科学计算等领域。
2. 在 Matlab 符号计算工具箱中,可以使用符号变量来表示数学表达式,这些可以包含未知量、函数、常数以及一些特殊符号等。
3. 不同于数值计算,符号计算可以处理精确的数学表达式,因此可以应用于一些需要保证精度的计算,比如微分方程、符号积分、级数求和等问题。
4. 在 Matlab 中,我们可以使用符号表达式来进行计算。
需要注意的是,在使用符号计算工具进行复杂运算时,计算速度较慢,因此需要谨慎考虑计算的复杂度。
5. Matlab 符号计算工具箱提供了多种符号计算函数,如求导函数、积分函数、解代数方程函数、解微分方程函数等。
学习和掌握这些函数对于进行符号计算实验非常有帮助。
6. Matlab 符号计算工具箱的应用范围广泛,在数学、物理、化学、工程等领域都有应用。
学习和熟练掌握 Matlab 的符号计算工具箱对于各类科学计算工作都是很有帮助的。
总之,本次实验学习了 Matlab 符号计算工具箱,了解了符号计算基本原理和方法,并进行了一些简单的符号计算实验。
这对于进一步掌握 Matlab 符号计算工具箱有很大帮助,也有益于我们将来的科学计算工作。
matlab符号运算

第2章符号运算- Presentation Transcript1.第二章符号运算o MA TLAB 的数学计算=数值计算+符号计算o其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。
2. 1. 符号变量、符号表达式和符号方程的生成o使用sym 函数定义符号变量和符号表达式o使用syms 函数定义符号变量和符号表达式3. 2 、用syms 创建符号变量o使用syms 命令创建符号变量和符号表达式o语法:o syms(‘arg1’, ‘arg2’, …, 参数) % 把字符变量定义为o% 符号变量o syms arg1 arg2 …, 参数% 把字符变量定义为符号变量的简洁形o% 式o说明:syms 用来创建多个符号变量,这两种方式创建的符号对象是相同的。
参数设置和前面的sym 命令相同,省略时符号表达式直接由各符号变量组成。
4.使用syms 函数定义符号变量和符号表达式▪>> syms a b c x▪>> f = a*x^2 + b*x + c▪ f =▪a*x^2 + b*x + c▪>> g=f^2+4*f-2▪g =▪(a*x^2+b*x+c)^2+4*a*x^2+4*b*x+4*c-2▪>>ex02015.符号方程的生成▪>> % 符号方程的生成▪>> % 使用sym 函数生成符号方程▪>> equation1='sin(x)+cos(x)=1'▪equation1 =▪sin(x)+cos(x)=1▪>>6. 2.2 符号形式与数值形式的转换o 1 、将符号形式转换为数值形式:o eval 与numerico例:a1='2*sqrt(5)+pi'o a1 =o2*sqrt(5)+pio b2=numeric(a2) % 转换为数值变量o b2 =o7.6137o b3=eval(a1)o b3 =o7.61377. 2.2 符号形式与数值形式的转换▪ 2 、数值形式转换为符号形式▪p=3.1416;▪q=sym(p)▪执行后屏幕显示:▪q=3927/1250▪numeric(q)▪屏幕显示:▪ans =▪ 3.14168. 2.2 符号形式与数值形式的转换3 、多项式与系数向量之间的转换3.1 sym2poly: 将多项式转化为对应的系数向量例:syms x p; p=x^3-4*x+5; sym2poly(p) 执行后屏幕显示:ans= 1 0 -4 5 9. 2.2 符号形式与数值形式的转换o 3 、多项式与系数向量之间的转换o 3.2 poly2sym: 将向量转化为对应的多项式o例o a=[1 0 -4 5];o poly2sym(a)o执行后屏幕显示o ans=o x^3-4*x+510. 3. 符号表达式( 符号函数) 的操作o(1) 符号表达式的四则运算o syms xo f=x^3-6*x^2+11*x-6;o g=(x-1)*(x-2)*(x-3);o h=x*(x*(x-6)+11)-6;o f+g-ho执行后输出:o ans =o x^3-6*x^2+11*x+(x-1)*(x-2)*(x-3)-x*(x*(x-6)+11)11.(1) 符号表达式的四则运算▪>> syms x y a b▪>> fun1=sin(x)+cos(y)▪fun1 =▪sin(x)+cos(y)▪>> fun2=a+b▪fun2 =▪a+b▪>> fun1+fun2▪sin(x)+cos(y)+a+b▪>>fun1*fun2▪ans =▪(sin(x)+cos(y))*(a+b)12.o(1) 将表达式中的括号进行展开: expando(2) 将表达式进行因式分解:factoro(3) 将一般的表达式变换为嵌套的形式:hornero(4) 将表达式按某一个变量的幂进行集项:collecto(5) 化简表达式:simplifyo(6) 化简表达式,使之成为书写长度最短的形式:simple13.o同一个数学函数的符号表达式的可以表示成三种形式,例如以下的f(x) 就可以分别表示为:o多项式形式的表达方式:o f(x)=x^3+6x^2+11x-6o因式形式的表达方式(factor) :o f(x)=(x-1)(x-2)(x-3)o嵌套形式的表达方式(horner) :o f(x)=x(x(x-6)+11)-614.集项-合并符号表达式的同类项o>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x)▪ans =▪(y-1)*x^2+(y-2)*xo>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x,y)▪ans =▪(x^2+x)*y-x^2-2*x15.符号多项式的嵌套(horner )▪>> syms x▪>> fun1=2*x^3+2*x^2-32*x+40▪fun1 =▪2*x^3+2*x^2-32*x+40▪>> horner(fun1)▪ans =▪40+(-32+(2+2*x)*x)*x▪>> fun2=x^3-6*x^2+11*x-6▪fun2 =▪x^3-6*x^2+11*x-6▪>> horner(fun2)▪ans =▪-6+(11+(-6+x)*x)*x16.符号表达式的化简(simplify)▪>> syms x▪>> fun1=(1/x+7/x^2+12/x+8)^(1/3)▪fun1 =▪(13/x+7/x^2+8)^(1/3)▪>> sfy1= simplify (fun1)▪sfy1 =▪((13*x+7+8*x^2)/x^2)^(1/3)▪>> sfy2= simple (sfy1)▪sfy2 =▪(13/x+7/x^2+8)^(1/3)17.subs 函数用于替换求值▪>> syms x y▪ f = x^2*y + 5*x*sqrt(y)▪ f =▪x^2*y+5*x*y^(1/2)▪>> subs(f, x, 3)▪ans =▪9*y+15*y^(1/2)▪>> subs(f, y, 3)▪ans =▪3*x^2+5*x*3^(1/2)▪>>subs(f,{x,y},{1,1})ex0202 ex0203 ex020418. 4 、反函数的运算(finverse )▪>> syms x y▪>> f = x^2+y▪ f =▪x^2+y▪>> finverse(f,y)▪ans =▪-x^2+y使用格式: 1 、g=finverse(f):f,g 均为单变量x 的符号函数; 2 、g=finverse(f,t) 返回值g 的自变量取为t ;19. 5 复合函数的运算(compose)▪>> syms x y z t u▪>> f = 1/(1 + x^2);▪>> g = sin(y);▪>> h = x^t;▪>> p = exp(-y/u) ;▪>> compose(f,g)▪ans =▪1/(1+sin(y)^2)▪>> compose(f,g,t)▪ans =▪1/(1+sin(t)^2)使用格式:Compose(f,g) % 返回当f=f(y) 和g=g(x) 时的复合函数f(g(x)) Compose(f,g,t) % 返回的复合函数以t 为自变量,即有f(g(t))20. 6 函数的极限、导数与积分o(1 )函数极限-limit 函数的使用o(2 )函数求导-diff 函数的使用o(3 )符号积分-int 函数的使用21.o符号极限(limit)假定符号表达式的极限存在,Symbolic Math Toolbox 提供了直接求表达式极限的函数limit ,函数limit 的基本用法如下表所示。
matlab符号运算实验原理

matlab符号运算实验原理
MATLAB中的符号运算是一种使用符号变量和表达式的运算方式,与数值
运算不同。
其原理主要基于以下方面:
1. 符号表达式的创建:MATLAB中的符号运算使用符号常量、符号变量和
符号表达式。
这些都可以通过`sym`函数创建。
例如,`A=sym('1')`会创建
一个符号常量,`B=sym('x')`会创建一个符号变量,而`f=sym('2x^2+3y-
1')`则会创建一个符号表达式。
2. 符号运算的执行:符号运算主要包括基本的四则运算(加、减、乘、除)、复合运算、求导和积分等。
对于初等函数,这些运算可以直接使用基本的数学公式进行。
例如,求导和积分可以使用基本的初等函数导数公式和积分公式,以及四则运算法则和复合函数链式求导法则。
3. 结果的表示:符号运算的结果可以是数值或者符号。
对于数值结果,MATLAB会自动进行数值化表示。
对于符号结果,MATLAB会以符号形式
表示。
4. 特殊情况的处理:对于一些特殊情况,如求高次多项式的零点或者对一些特殊函数进行积分等,可能需要特殊的处理方法或者预存的求根或求积套路。
总的来说,MATLAB的符号运算实验原理主要基于符号表达式的创建、使
用基本的数学公式进行运算以及对特殊情况的处理。
这些原理使得
MATLAB能够方便地进行数学上的符号运算,为数学研究和工程计算提供了强大的工具。
matlab符号运算 多项式

一、介绍matlab符号运算matlab符号运算是指利用matlab软件进行代数表达式的计算和求解。
在matlab中,符号运算可以实现对多项式的加减乘除、导数和积分等操作,非常适用于代数表达式的计算和求解。
在工程、数学和物理等领域,matlab符号运算被广泛应用,能够高效地解决各种代数运算问题。
二、matlab符号运算的基本操作1. 创建符号变量在matlab中,可以使用syms函数来创建符号变量,例如:```matlabsyms x y```这样就创建了两个符号变量x和y,可以用于代数表达式的计算和求解。
2. 代数表达式的运算利用符号变量创建代数表达式,并进行加减乘除等运算,例如:```matlabf = x^2 + 2*x + 1;g = x + 1;h = f * g;```这样就实现了对代数表达式的乘法运算,h为结果表达式。
3. 多项式求导利用diff函数可以对代数表达式进行求导,例如:```matlabf = x^2 + 2*x + 1;df = diff(f,x);```这样就求出了代数表达式f对x的一阶导数df。
4. 多项式积分利用int函数可以对代数表达式进行积分,例如:```matlabf = x^2 + 2*x + 1;F = int(f,x);```这样就求出了代数表达式f对x的不定积分F。
5. 多项式因式分解利用factor函数可以对代数表达式进行因式分解,例如:```matlabf = x^2 + 2*x + 1;factored_f = factor(f);```这样就对代数表达式f进行了因式分解,得到了其因式分解形式。
三、matlab符号运算在工程应用中的实例在工程领域,matlab符号运算被广泛应用于各种代数表达式的计算和求解。
以下以电路分析为例,介绍了matlab符号运算在工程应用中的实例。
1. 电路分析中的符号运算在电路分析中,通常需要对电路中的电压、电流、电阻等元件进行建模和分析。
数学实验3-2matlab符号运算

numeric(A) ans = 0.3333 2.5000 1.4286 0.4000
二、符号运算
1. 符号矩阵运算
数值运算中,所有矩阵运算操作指
令都比较直观、简单。例如:a=b+c;
a=a*b ;A=2*a^2+3*a-5等。
而符号运算就不同了,所有涉及符
号运算的操作都有专用函数来进行
符号矩阵运算的函数: symadd(a,d) —— 符号矩阵的加 symsub(a,b) —— 符号矩阵的减
第三讲 MATLAB的符号运算 (下)
—— matlab 不仅具有数值运算 功能,还开发了在matlab环境下 实现符号计算的工具包Symbolic Math Toolbox
符号运算的功能
• 符号表达式、符号矩阵 • • • • •
的创建 符号线性代数 因式分解、展开和简化 符号代数方程求解 符号微积分 符号微分方程
symmul(a,b) —— 符号矩阵的乘
symdiv(a,b) —— 符号矩阵的除 sympow(a,b) —— 符号矩阵的幂运算 symop(a,b) —— 符号矩阵的综合运算
例1:f= '2*x^2+3*x-5'; g= 'x^2+x-7';
h= symadd(f,g) h= 3*x^2+4*x-12
函数调用格式:sym(A) A=[1/3,2.5;1/0.7,2/5] A= 0.3333 2.5000 1.4286 0.4000 sym(A) ans = [ 1/3, 5/2] [10/7, 2/5]
将符号矩阵转化为数值矩阵
函数调用格式: numeric(A) A= [ 1/3, 5/2] [10/7, 2/5]
MATLAB的运算符号及函数

3.常用的函数及常量
常用的函数及常量如表7-2所示。
函数名 abc(x)
pi sin(x) asin(x) cos(x)
函数功能 绝对值函数 |x|
圆周率 正弦函数 sin(x) 反正弦函数 arcsin(x) 余弦函数 cos(x)
acos(x)
反余弦函数 arccos(x)
tan(x) cot(x)
经济数学
MATLAB的运算符号及函数
1.基本运算
MATLAB能识别常用的加(+)、减(-)、乘(*)、除(/)及 幂次运算符号(^)等绝大部分数学运算符号。因此,要在 MATLAB中进行基本数学运算,只需在命令窗口中的提示符(>>) 之后直接输入运算式并按Enter键即可。
例如:>>(2 * 3+3 * 4)/10
中(均用小括号),从最里层向最外层逐渐脱开。
2.常用快捷键 常用快捷键如表7-1所示。
快捷键 ↑(Ctrl+P) ↓(Ctrl+N) ←(Ctrl+B) →(Ctrl+F) Esc(Ctrl+U) Del(Ctrl+D)
表7-1
功能 调用上一行 调用下一行 光标左移一个字符 光标右移一个字符 清除当前输入行 删除光标处右侧字符
正切函数 tan(x) 余切函数 cot(x)
函数名 sum(x) sqrt(x)
inf exp(x) log(x)
log10(x)
log2(x) sign(x)
表7-2
函数功能 向量元素求和
平方根 无穷大 指数 ex 自然对数 lnx 以 10 为底的常用对数
lgx 以 2 为底的对数符号 Nhomakorabea数概率学与数理统计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 MATLAB 的符号运算
一 实验目的:
1.掌握符号对象的创建及符号表达式化简的基本方法;
2.掌握符号微积分、符号方程的求解的基本方法。
二 实验装置:
计算机
三 实验内容:
1.符号对象的创建
(1) 建立符号变量
使用sym 函数把字符表达式'2*sin(x)*cos(x)'转换为符号变量。
2.符号表达式的化简
(1)因式分解
对表达式f=x 3-1 进行因式分解。
(2) 符号表达式的展开
对符号表达式f=cos(x+y)进行展开。
(3)符号表达式的同类项合并
对于表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并。
(4)符号表达式的化简
(5)符号表达式的分式通分
对表达式 进行通分。
(6)符号表达式的替换
用新变量替换表达式a+b 中变量b 。
3.符号微积分
(1) 符号极限
计算表达式 的极限。
(2)符号微分
计算表达式f=sinx 的微分。
(3)符号积分。
例:简化32381261+++=x
x x f 22x y y x f +=
x
tgx x lim 0→()⎰+dz
z x
31
计算表达式 的积分。
(4)符号求和
计算表达式 4.符号方程的求解
求解代数方程组 四 实验要求:
1.按照要求预习实验;
2.在MATLAB 中运行实验程序验证仿真结果;
3. 按照要求完成实验报告。
.
10005∑k
⎪⎩
⎪⎨⎧=--=-+=+-0430
35218472z y x z y x z y x。